

2013, Vol.18 No.5, 393-401

Article ID 1007-1202(2013)05-0393-09

DOI 10.1007/s11859-013-0947-3

A Novel Fuzzy Keyword Retrieval
Scheme over Encrypted Cloud Data

□ TIAN Ke, ZHANG Weiming, LI Ke,

WU Junming, YU Nenghai†

School of Information Science and Technology, University of

Science and Technology of China, Hefei 230027, Anhui, China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2013

Abstract: In this paper, we focus on the fuzzy keyword search
problem over the encrypted cloud data in the cloud computing and
propose a novel Two-Step-Bloom-Secure-Filter (TSBSF) scheme
based on Bloom filter to realize the efficiency and flexibility of
data use. The proposed scheme not only reduces the space com-
plexity significantly but also supports the data update with low
time complexity and guarantees the search accuracy. Experimental
results on real world data have certified the validity and practical-
ity of this novel method.

Key words: fuzzy search; privacy preserving; cloud computing
CLC number: TP 309.2

Received date: 2013-04-30
Foundation item: Supported by the National Natural Science Foundation of
China (61170234) (60803155), the Strategic Priority Research Program of the
Chinese Academy of Sciences (XDA06030601), and the Funding of Science
and Technology on Information Assurance Laboratory (KJ-13-02)
Biography: TIAN Ke, male, Ph.D. candidate, research direction: network
communications and information security. E-mail: tianke@mail.ustc.edu.cn,
ketian@vt.edu
† To whom correspondence should be addressed. E-mail: ynh@ustc.edu.cn

0 Introduction

In recent years, the rapid growth of the data espe-
cially the appearance of the Big Data impels the develop-
ment of cloud computing

[1]. At present, more and more

important data will be outsourced from the local storage to
the cloud server. With the popularity of cloud storage,
many corporations and companies are still afraid of out-
sourcing their data to the cloud server for the reason that
their data may be leaked and then abused by cloud sever.
In order to protect data privacy, the best solution is en-
cryption; in other words, the data owner will encrypt
his/her data before they outsource them to the remote
cloud server. After encryption, we have to face a new
challenge-how to make best use of these encrypted data to
achieve efficient application, such as information retrieval
for the reason that searching is always the prior demand
for the users. All the files are encrypted in the cloud server,
and the decryption keys are only shared by the data owner
and users. Without the keys, the cloud server will never
know the exact content of files. Traditional symmetric
encryption needs the users to download all the data, de-
crypt all the data, and search keyword as plaintext search.
This method not only costs user plenty of time but also is
rather impractical with the huge increase of data. In order
to solve the problem, searchable encryption (SE) [2] has
been proposed. SE is a very useful technology to help us-
ers directly do operations on the encrypted data. However,
deploying this technology to large-scale cloud data will
cost plenty of time and make the search inefficient. To
solve the problem, building a secure index

[3] is suggested.
Furthermore, fuzzy keyword is a hot point in the

plaintext information retrieval because users cannot of-

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.5 394

fend the spell mistakes, which is also a creative work in the
encrypted database, and many researchers

[4-12] have done
active study in this area. Li et a l [6] and Wang et al [7] have
proposed wildcard-based fuzzy set construction to make a
list of fuzzy keyword set from a keyword, which is most
popularly used in this area. They also suggest a solution
using trie-tree for the search index built, but it has limita-
tions: the first is that the space cost of building an index is
very large, and the second is that its update functions are
infeasible. Even though several work has been thought up
to reduce the cost, such as Chuah et al [8] using bedtree, Liu
et al [9] using secret sharing, but they could not guarantee
the high efficiency. Recently, Zhou et al [10] proposed a dif-
ferent method to make fuzzy set by introducing k-gram.
However, this method will also face the efficiency problem.

In this paper, we mainly concentrate on the fuzzy
keyword search in the encrypted database in cloud com-
puting. We propose our newly solution, which is called
Two-Step-Bloom-Secure-Filter (TSBSF) based on the
technique Bloom filter [13], to build the secure index sup-
porting the fuzzy keyword search. Our solution will re-
duce much more space complexity and guarantee highly
efficiency, and it also supports dynamic update and is
provable secure. The main contributions of this paper can
be summarized as follows:

1) We propose a novel TSBSF scheme to build the
secure fuzzy keyword index and fulfill a complete
mechanism design for fuzzy keyword search with the
satisfactory demand of security.

2) Our scheme is highly efficient and reduces the
space complexity significantly according to the experi-
ments.

3) Our scheme also supports the feasible update da-
ta and can be easily applied to multi-fuzzy keyword
search.

The rest of the paper is organized as follows: In Sec-
tion 1, we will describe the system model and preliminar-
ies. In Section 2, we will describe our own scheme and
take an analysis on it. We present the experiment results in
Section 3 and draw a conclusion in Section 4.

1 Problem Formulation

In this section, we describe our searching system
model and the privacy requirements. Then, we will de-
scribe some preliminaries related to our work.
1.1 System Model

Different from traditional information retrieval, the
encrypted database retrieval always has three entities:

the data owner, the remote cloud server, and the users.
The data owner can be the individual or corporations
who own a collection of n document plain files

1 2{ , , , }nD D D D=  . To protect the privacy, the owner
encrypts the files into 1 2{ , , , }nE E Eε =  and out-
sources them to the remote cloud server with the secure
index I to support the fuzzy keyword search. I is built
from the keyword dictionary set 1 2{ , , ,W W W=  }mW ,
and m is total number of the different keyword. I is do-
nated as 1 2{ , , , }.mI I I I= 

To search over the encrypted files ε , the data user
will first make a query Q consisting of keyword the user
wants to search and turn Q into trapdoor T using the en-
crypted key. The cloud server will receive T and search it
in the index I and then find the match keyword ID set

1 2{ID , ID , , ID }kΔ =  . With Δ , the server can easily
find the corresponding files ID and then return the result
R, which consists of the resulting encrypted files; finally,
the user decrypts R and gets the plaintext files. Since all
the procedures are isolated from cloud servers, the cloud
server will not know the keyword the user search nor the
information about return files.

Updating the index means that owner add a new
keyword rW to dictionary W or a new entry rI to in-
dex I, which is a worthy problem because updating may
modify the whole index and increase the time and space
consume obviously.

The whole framework can be divided into six algo-
rithms:

1) KenGen
The data owner generates index encryption keys

1 2{ , , , }tK K K K=  for Hash functions and traditional
symmetric keys K' for encrypting and decrypting files.
The keys are shared with the owner and users.

2) FuzzySetMake
For every different keyword in the dictionary, the

data owner builds corresponding fuzzy keyword set by
adopting construct functions.

3) BuildIndex
The data owner builds a privacy-protecting index I,

supporting fuzzy keyword search from the database D
based on K. After building the index, the owner can send
both I and encrypted ε to cloud server.

4) TrapGen
The data user can generate the trapdoor T according

to the query Q including the interesting terms.
5) Search
The cloud server compares the T with each entry in

I and returns the match result R to the user.

TIAN Ke et al : A Novel Fuzzy Keyword Retrieval Scheme Over Encrypted …

395

6) Update
The data owner adds new entries into the dictionary

W and index I, and reserves the changes in the cloud
storage.

We will discuss more detail in Section 2 and focus
on the BuildIndex, Search, and Update because others
can be done in traditional ways. The whole framework is
presented in Fig.1.

Fig. 1 System model of fuzzy keyword search

1.2 Privacy Requirements
The cloud server is been regarded as “semi-honest”,

also called “honest-but-curious”. Specifically, a cloud
server will not remove encrypted data files or index from
the storage. It will also correctly follow the designated
protocol specification. However, it is curious to analyze
data (including data, trapdoor, and index) in the storage
and flow messages in order to learn additional informa-
tion. This threat model is defined as known background
model. Curtmola et al [2] proves that the model that we
adopt can meet the nonadapt semantic security, and
stored data privacy can be protected by traditional sym-
metric encryption.
1.3 Preliminaries

Edit Distance Given two strings iS and jS , the
edit distance[14] between iS and jS is defined as
minimum number of primitive operations(including
character deletion, insertion, and substitution) needed to
transform from iS to jS , denoted by edit(iS , jS).

Trie-Tree A trie-tree [15], also described as digital
tree or prefix tree, is an ordered tree data structure to
store a dynamic set or associative array where the keys
are usually strings. Unlike a binary search tree, no node
in the tree stores the key associated with that node; in-
stead, its position in the tree defines the key with which
it is associated. All the descendants of a node have a
common prefix of the string associated with that node,
and the root is associated with the empty string.

Bloom Filter Bloom filter[13] is a data structure
with high space efficiency used to answer set member
queries. It is initially set to 0 with an array of b bits
length. Generally, there are r independent Hash functions

(like MD5, SHA-1, etc.). th :{0,1}*→[1,b], t = 1, , r,
which means that with one function, each element is
mapped to a position in b array bits. Here is a simple
map shows how Bloom filter works (Fig.2): in this ex-
ample, array b=9, r=4, the term “flower” has been
mapped to four positions P = {2,3,6,9}. Bloom filter has
a possibility of false positives, because the positions of
an element may have been set by one or more other ele-
ments. Even though Bloom filter is a useful technology,
however, directly applying it to the fuzzy keyword
search will cause serious error rate and cannot guarantee
the efficiency. We will regard the original Bloom filter as
baseline and show the significantly improvement by ap-
plying our TSBSF scheme in the next section.

Fig. 2 A simple example of Bloom filter

2 Proposed Scheme

Before describing our own scheme, we get a short
review of scheme of Wang et al

[7], in which they build the
corresponding fuzzy set from each keyword, and then map
each term in the set to be l=160 bits stream using Hash
functions. Then, each θ bit part is regarded as a charac-
ter in the trie-tree. After dividing the string into “ /l θ ”
parts, eventually, Wang et al [7] builds a single trie-tree
including all the fuzzy keyword set. As mentioned in the

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.5 396

introduction, this scheme has both space and efficiency
limitations. We will fulfill our mechanism in the following
section, which is ordered as different functions we need.
2.1 Fuzzy Keyword Set Construction

Building a practical fuzzy keyword set is our first
challenge to achieve fuzzy keyword retrieval. We define
the ,w dS as the fuzzy keyword set of w, where any

, ,w dw S′∈ edit(w, w') ≤ d, and denote the number of
members including in ,w dS by | ,w dS |. Wang et al [7] have
proposed a wildcard-based fuzzy set construction for a
keyword of length l in edit distance d. If the edit distance
d=1, this algorithm can reduce space complexity from
(2l+1) × 26+1 to 2l+1. For example, when iw = cate,

,1iwS ={*cate, cate, *ate, c*te, c*ate, ca*te, ca*e, ca*te,
cat*}. Furthermore, Wang et al [7] have proved that the in-
tersection of the similarity sets ,iw dS and ,w dS for key-
word iw , and searching input w is not empty if and only if
edit(iw ,w)≤d. Since this technology is practical, we will
also adopt this wildcard-based construction. That is, for an
input w and edit distance 1d ∨ , we calculate all the fuzzy
keyword set on the condition d d′ ∧ like ,w dS =

, 1 , 2 ,1.w d w d wS S S− −  If edit distance d=1, we can
directly insert * into the keyword w in order. Following is
the detail about this algorithm (Algorithm 1). By using this
algorithm, we can get the efficient fuzzy keyword set
without affecting its searching correctness.

Algorithm 1 Fuzzy keyword set construction
Input:
 Keyword iw ;
 Edit distance d;
Output:
 Fuzzy keyword set ,w dS
1 if d ∨1 then CreatFuzzySet(iw , 1d −)
2 end if
3 if d=0 then set ,w d iS w=
4 else
5 for k←1 to | , 1w dS − | do
6 for j←1 to | , 1w dS − [k]|+1 do
7 if j is odd then
8 set variable as , 1w dS − [k]
9 insert * at position (1) / 2j +  
10 else
11 set variable as , 1w dS − [k]
12 replace / 2j   -th position with *
13 end if
14 if variable is not in , 1w dS − then
15 , 1w dS − = , 1w dS −  {variable}
16 end if
17 end for
18 end for
19 end if

2.2 Making Efficient Secure Index
In this section, we will talk about our novel TSBSF

scheme in detail. A symbol-based tri-traverse searching
scheme based on the data structure of trie-tree has been
proposed before. However, it will confront a big chal-
lenge that the method will consume space largely and
cannot support update perfectly. Thus, space complexity
must be taken into consideration, and supporting effi-
cient update will also be an important factor to attract
users using the cloud service. With the selectable pa-
rameters, our scheme can solve these problems perfectly.

2.2.1 TSBSF scheme
The reason why we called the proposed scheme the

TSBSF is that, compared with original Bloom Filter, we
have recorded not only the position information p but
also the gray information g. The definition of gray in-
formation comes from the image gray value to display
the weight quality in one position. We use both position
information and gray information to identify the corre-
sponding keyword.

For each , ,w dw S∈ the first step is to calculate the
position information ph :{0,1}*→[1,b] using function
POS; This step is similar to the original Bloom Filter,
and POS is a function with which we can select the posi-
tion, where w' will be mapped to. That is, with POS
function, we get the random position number with the
input seeds including our Hash result and the keys K.
The second step is to calculate the gray information

gh :{0,1}* → [1,h] with the pseudo-random function
GRAY with seeds iK and {0,1}*, where h is the
maximum number of gray information.

The detail about TSBSF is shown in Algorithm 2.

Algorithm 2 TSBSF
Input:
 One fuzzy keyword set ,w dS
 Encrypt key set K
Output:
 Position information set P
 Gray information set G
1 P= ∅ , G= ∅
2 for i←1 to | ,w dS | do
3 operation on ,i w dw S∈
4 for j←1 to |K| do
5 {0,1}* ←Hash(wi)
6 p0←POS({0,1}*,Kj)
7 g0←GRAY({0,1}*,Kj)
8 insert p0 into P
9 insert g0 into G
10 end for
11 end for

TIAN Ke et al : A Novel Fuzzy Keyword Retrieval Scheme Over Encrypted …

397

Because gray information is also a random number
influenced by the seeds we input, it is nearly impossible
for two different terms be mapped to the same position
with same gray information. In Algorithm 2, each term

iw ,()i w dw S∈ will be mapped to |K| positions with
change of the secret key iK , and each position is asso-
ciated with its corresponding gray information. Thus,
each term will be unique in the view of statistics, be-
cause two terms have very low rate (almost close to 0)
to turned into same vector in both position information
and gray information areas in our situation. In a word,
given a fuzzy keyword set ,w dS , we calculate a vector
of position information P with POS function and a cor-
responding vector of gray information Q at GRAY
function.

The experiment will improve the accuracy in next
section “choosing the parameters”. Our advantage lies in
the fact that we use two random variables to control each
term at the same time, and this method will help us dis-
tinguish two different terms much more correctly.
2.2.2 Building index

We will build a secure index by using TSBSF men-
tioned before. However, a question we need to answer is
that since the different term may be mapped to the same
position by using Bloom filter, we will also have the
same problem even though we include the gray informa-
tion. For example, i, j∈[1, |P|], ,i jp p= but i jq q≠ ,
what should we do to fill them into the array? The origi-
nal Bloom filter will be set position to 1; since we have
introduced gray information to distinguish the different
keyword, we set the position to [] max(,)k i i jI p q q= ,
where kI is one entry of the index I and is a vector of b
length. Moreover, this modification may have bad effect
on our search accuracy, but we will introduce a fault tol-
erant rate ε to defend this modification and guarantee
the accuracy. To further protect the privacy, we can
choose random distortion into the index, which means
that we can embed some random numbers into random
positions.

More discussion is shown in the following section.
Our built index algorithm can be described as follows:
given a keyword collection W, encrypt key set K, and
edit distance d; to each iw W∈ , we first calculate fuzzy
set ,w dS with wildcard-based construction. Second, we
calculate the position information vector P and gray in-
formation vector G with the TSBSF algorithm. Then, we
build a single Bloom filter vector iI containing infor-
mation of P and G mentioned above. In the end, we build
the entire index I by repeating the operations for each

keyword iw and gather them iI together. The detailed
building fuzzy index algorithm is in Algorithm 3.

Algorithm 3 Building fuzzy secure index

Input:

 Keyword collection W

 Encrypt key set K

Edit distance d

Output:

 Secure fuzzy keyword index I

1 I= ∅

2 for i←1 to |W| do

3 setup Ii

4 ,w dS ←CreatFuzzySet(wi) using Algorithm 1

5 {P, G}←TSBSF ,(,)w dS K using Algorithm 2

6 for j←1 to |W| do

7 iI [pj]=max(iI [pj], gi)

8 end for

9 insert Ii into I

10 end for

2.3 Searching Algorithm
When we input query Q, we need TrapGen algorithm

to make a trapdoor T from Q. Because TrapGen algorithm
is similar to that in building one entry of index, we regard
TrapGen as one step to make a search from the index I. In
the search algorithm, the user will first generate the trap-
door T from a query set Q. The cloud server will receive T
and search it in the secure index I. T and iI I∈ are vec-
tors of same b length, and for each []i iI j I⊆ , we have

[] [1,], [1,]iI j h j b⊆ ∈ . Comparing T with each iI , we
calculate the similarity rate by using the measurement
called fault tolerant rate 0ε which we will talk in detail
in the next section. If this similarity rate is within our ac-
ceptable range, we then add the word ID into our result set
R', else we regard this word beyond our interest. After
processing the result of matching keyword set R', the
server will return the encrypted files collection

1 2{ , , }R E E=  by finding those files containing similar-
ity keyword listed in R'. The user can decrypt R with the
sharing keys and get the plaintext files. The main algo-
rithm is shown in Algorithm 4.
2.4 Choosing the Parameters

Since updating data is isolated from the basic sys-
tem framework, before introducing the update algorithm,
we will display how to choose the best parameters to
make building index and searching efficiency. We will
discuss it into two parts: the search parameter fault tol-
erant rate ε and the building parameter embedding rate
λ . The experiment results show that these parameters
can have huge influence on our scheme.

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.5 398

Algorithm 4 Search the index
Input:
 Search query Q
 Encrypt key set K

Secure fuzzy keyeords index I
Output:
 The matching files set R
1 R= ∅ , R′ = ∅
2 T=TrapGen(Q)
3 for i←1 to |I| do
4 count=0,tolerate=0
5 for j←1 to b do
6 if T [j]≥0 and Ii[j]≥T[j] then
7 break
8 end if
9 if T [j]≥0 then
10 if Ii[j]=T[j] then
11 count++
12 end if
13 else
14 count++, tolerate++
15 end if
16 end for

17 if 0

tolerate

count
ε∧ and count ∨ |K| then

18 insert word IDi into R′
19 end if
20 end for
21 get R from R′

2.4.1 Fault tolerant rate

Fault tolerant rate is defined as follows, where
N(count) in Eq.(1) is the number of count, and N(tolerate)
is the number of tolerate in Algorithm 4.

(tolerate)

(count)

N

N
ε = (1)

To help understand the definition better, we take an
analysis based on a given example. Considering that the
edit distance is d, our search query is term w' and turn it
into trapdoor wT ′ , when we use the trapdoor wT ′ to
search the iI I⊆ . If edit (,)iw w d′ ∧ , then the fuzzy
keyword set , ,iw d w dS S′ ≠ ∅ . Moreover, we assume
that tw ∈ , ,iw d w dS S′  . According to Algorithm 2, the

tw will be mapped to |K | number of positions, each with
related gray information. Thus, |T | and iI will share
more than K same positions with related same gray in-
formation in each position in the view of statistics. This
is why we choose the criterion that count ∨ |K |.

However, looking back at Algorithm 3, we may en-
counter a problem called fault tolerant rate, which is first
mentioned in the part of “build the index”. For j ∈ [0, b],
it was compared with T [j] and []iI j , where iI is the
entry index by the input of keyword iw , as shown in

Algorithm 3. If [] []iT j I j∧ at the position j, we cannot
make sure whether this position has the same gray in-
formation. There are two possible happenings: one is that
they do have the same gray information at the beginning,
but the other word ,ix w dw S∈ has been mapped to the
position j , and its larger gray information covers the
original one, which causes [] []iT j I j∧ ; the second is
that they are different terms and just been mapped into
the same positions with different gray information. In
order to solve this problem, we introduce N(count) to
present the total number sharing the same position and
N(tolerate) to present the number of mistakes.

The precision and recall [16] rate are two criterion
parameters to evaluate the accuracy of the searching. We
evaluate our scheme accuracy by comparing our search
results with plaintext results to calculate the precision
rate and recall rate. It is easy to conclude that the larger

0ε , the more likely we will include the false keyword
into our result, and the recall will increase and precision
will decrease; the smaller the 0ε , the most likely that we
delete some matching keyword, and the recall will de-
crease, and precision will increase. We have done an ex-
periment to make the best choice of 0ε , as shown in Fig.
3. High precision will guarantee the accuracy, and high
recall will guarantee the completeness. We test the 500
keyword set and random queries, the results show that
when 0ε =0.6, we get the best performance, which is our
expectation.

Fig. 3 Search accuracy with different fault tolerant rate

2.4.2 Embedding rate
In this part, we will mainly focus on the space and

time complexity. Our goal is to reduce the complexity as
much as possible without the loss of efficiency. We de-
fine the embedding rate λ as

,| | | |w d
d

S K

L
λ

×
= (2)

TIAN Ke et al : A Novel Fuzzy Keyword Retrieval Scheme Over Encrypted …

399

Where, ,w dS means the average size of the fuzzy
set in terms of d edit distance, K is the number of the
encrypt keys for index security, which is the same as the
number of POS functions mentioned in the “searching
algorithm”, and L is the length of vector array that is
equal to b in our algorithm above.

Since the edit distance d=1 is most practical be-
cause most people would not type wrong words with
d ∨ 1 in the view of statistics. Moreover, our experiment
is mainly in the condition d=1; therefore, we can sim-
plify Eq. (2) into

1

(2 1) | |
d

l K

L
λ =

× + ×= (3)

Where, l is average length of the keyword set.
Considering that l is dependent on the file collections
and there are two variable quantities, we define

1
| | | |

L
K K
L

ϕ = = (4)

Considering that |K| is the number of POS functions,
a large |K| will increase the time complexity, but a small
|K| can affect the accuracy; in the experiment, we choose
|K|=4 as the best option. However, we more focus on the
space complexity. Because with the growing computing
capacity, the server will deal with data much more
quickly, and huge stored data will be a disturbing prob-
lem. We will describe how to choose the best ϕ in detail,
if we reduce ϕ , and many different keyword may be
mapped to the same position and result in high fault toler-
ant rate as mentioned above. Furthermore, we use the ori-
gin Bloom filter as a baseline to show the improvement of
our scheme. The experiment is displayed in Figs. 4 and 5.
As shown, when we choose ϕ ≈ 100, we get the best re-
sult, which makes precision rate and recall rate up to
100%. In this situation, 1dλ = ≈ 0.173, which means that in
every 100 positions, nearly 17 different positions have
been mapped. Although the experiments work perfectly,
this still needs mathematical proof, and we will do an
analysis in our future work. We expect to find a formula to
describe the deep relationship between λ and ε .
2.5 Support Update Algorithm
 One of our contributions in this paper is supporting
the update files. Generally speaking, the index built from
mass data will consume huge space; this is why we need
to store it into cloud. It is unrealistic to download the
index, rebuild it, and upload to the cloud server. Thus, it
is very essential to support efficient update data. Our up-
date algorithm can be described as follows: given a

Fig. 4 Precision rate with different ϕ

Fig. 5 Recall rate with different ϕ

keyword iw , first, we make sure whether this keyword
has already existed. If this keyword is a new one, we just
need to set up a new newI using the input iw with the
TSBSF algorithm. After we build newI , we only need to
attach this entry of index to the original one without any
change in the original index. The same with that is when
we want to delete some keyword, we just need to remove
the corresponding entry of index from the original one.
Comparing this with trie-tree, if there is a new character
added into the original tree, the whole index has to be re-
peat calculated to adjust to this change. In other words,
our update algorithm is much more feasible. Given a new
keyword, the data owner does not need to modify the
whole secure index; all he has to do is to make new entries
and combine them with the former ones. It is significantly
useful in the cloud storage. Furthermore, the time com-
plexity is O(1) with one operation, which has the low time
cost. The complete algorithm is shown in Algorithm 5.
2.6 Support Multi-Fuzzy Keyword Search

The proposed scheme can also be easily applied to
multi-fuzzy keyword search. Considering a simple exam-
ple that we want search for the multi-fuzzy keyword

2 1 2{ , }q w w= at the same time in the condition that edit

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.5 400

Algorithm 5 Update the index
Input:
 New keyword set Wnew

Keyword set W
Secure fuzzy keyeords index I

 Encrypt key set K
Output:
 Updated secure index Inew
1 for i←1 to |Wnew| do
2 if new,iw W∈ then
3 goto next keyword in Wnew
4 else
5 set up Inew
6 build Inew with neww using Algorithm 3
7 insert Inew into I
8 end if
9 update I into Inew
10 end for

distance d. First we can use wildcard-based construction
to make each fuzzy set

1 ,w dS and
2 ,w dS . Because d is

the total edit distance of Q, we choose
1 ,w dw S′∀ ∈ and

2 ,w dw S′′∈ , st. edit 1 2(,) edit(,)w w w w d′ ′′+ ∧ , Thus we
can generate two new wQ ′ and wQ ′′ . With the Search
algorithm, we get the result R R R′ ′′=  . This method
can be easily expanded to search n (n ∨ 2) multi-fuzzy
keyword.

3 Results and Comparison

In this section, we will compare TSBSF scheme with
Wang et al’s trie-tree algorithm. For the sake of fairness,
we will compare these algorithms on the same level of the
accuracy. Taking an analysis of all the possible existed
algorithms, to our best knowledge, their algorithm is the
most represented one, others will confront the efficiency
or accuracy problems. We have already done several ex-
periments to choose the suitable parameters in above sec-
tion. With these selectable parameters, Figures 4 and 5
have displayed high efficiency of precision rate and recall
rate. On the condition of guaranteeing the high accuracy,
we will then focus on the space and time complexity espe-
cially the space compared with Wang et al’s trie-tree algo-
rithm [7]. To sum up, we demonstrate a thorough experi-
mental evaluation on the TREC data [17], which consists of
7 594 documents and 16 864 distinct terms. The experi-
ment is implemented by C++ language and conducted on
a computer with i-3 CORE 2.13 GHz processor and Win-
dows 7 home basic system. Furthermore, we choose d=1,
|K|=4, h=256, ϕ =100, and ε =0.6. Moreover, we use
SHA-1 as our Hash function, which was suggested by

Wang et al
[7]. According to Wang et al’s algorithm [7], we

choose l=160 bits, θ =8.

As shown in Fig. 6, our space consumed is much
less than the trie-tree, and our space consumed increases
much slower than the trie-tree with the increase in the
keyword. The time cost comparison is listed in Table 1,
which shows that even though our search time is longer
than that for trie-tree, considering the situation that when
we input a query Q including a keyword 1w , we will
make a trapdoor T and need just one search in the index I.
However, trie-tree needs turn each ,w dw S′∈ into a dis-
tinct trapdoor T and search it in the index I, so it will
need to search a total of ,| |w dS times and may leak
more information. In this situation, our scheme performs
better than Wang et al’s scheme [7].

Fig. 6 Space complexity comparison between Wang et al’s
scheme and proposed TSBSF scheme

Table 1 Time complexity comparison between
Wang et al’s scheme and proposed TSBSF scheme

Scheme BuildIndex TrapGen Search Update

TSBSF O(|W|) O(1) O(|W|) O(1)
Trie-tree O(|W|) O(1) O(1) —

4 Conclusion

In this paper, we fulfill a system model to realize a
fuzzy keyword search in the encrypted database in cloud
computing. To meet the challenge that guarantee the ef-
ficient fuzzy search without privacy leaking, we pro-
posed a novel TSBSF scheme to achieve this goal. Ex-
periment shows that the novel scheme achieves advan-
tages both in efficiency and storage space.

[1] Armbrust M, Fox A, Griffith R, et al. A view of cloud comput-

References

TIAN Ke et al : A Novel Fuzzy Keyword Retrieval Scheme Over Encrypted …

401

ting [J]. Communications of the ACM, 2010, 53(4): 50-58.

[2] Curtmola R, Garay J, Kamara S, et al. Searchable symmetric

encryption: improved definitions and efficient constructions [C]

//Proc 13th ACM Conference on Computer and communica-

tions security. New York: ACM Press, 2006: 79-88.

[3] Shmueli E, Waisenberg R, Elovici Y, et al. Designing secure

indexes for encrypted databases [C]//Proc 19th Annual IFIP

WG 11.3 Working Conference on Data and Applications Se-

curity. Berlin, Heidelberg: Springer-Verlag, 2005: 54- 68.

[4] Yang C, Zhang W, Xu J, et al. A fast privacy-preserving

multi-keyword search scheme on cloud data [C]//Proc 2012

International Conference on Cloud and Service Computing

(CSC). Shanghai: IEEE Press, 2012: 104-110.

[5] Xu J, Zhang W, Yang C, et al. Two-Step-Ranking secure

multi-keyword search over encrypted cloud data [C]//Proc

2012 International Conference on Cloud and Service Com-

puting (CSC). Shanghai: IEEE Press, 2012: 124-130.

[6] Li J, Wang Q, Wang C, et al. Fuzzy keyword search over en-

crypted data in cloud computing [C]//Proc 30th IEEE Interna-

tional Conference on Computer Communications (INFOCOM).

San Diego: IEEE Press, 2010: 1-5.

[7] Wang C, Ren K, Yu S, et al. Achieving usable and pri-

vacy-assured similarity search over outsourced cloud data [C]

//Proc 32th IEEE International Conference on Computer

Communications (INFOCOM). Orlando: IEEE Press, 2012:

451-459.

[8] Chuah M, Hu W. Privacy-aware bedtree based solution for

fuzzy multi-keyword search over encrypted data [C]//Proc

31st International Conference on Distributed Computing

Systems Workshops (ICDCSW). Minneapolis: IEEE Press,

2011: 273-281.

[9] Liu C, Zhu L, Li L, et al. Fuzzy keyword search on en-

crypted cloud storage data with small index [C]//Proc 2011

International Conference on Cloud Computing and Intelli-

gence Systems (CCIS). Beijing: IEEE Press, 2011: 269-273.

[10] Zhou W, Liu L, Jing H, et al. K-gram based fuzzy key-word

search over encrypted cloud computing [J]. Journal of Soft-

ware Engineering and Applications, 2013, 6(1): 29- 32.

[11] Wang J, Ma H, Tang Q, et al. A new efficient verifiable

fuzzy keyword search scheme [J]. Journal of Wireless Mo-

bile Networks, Ubiquitous Computing and Dependable Ap-

plications, 2012, 3(4): 61-71.

[12] Ballard L, Kamara S, Monrose F. Achieving efficient co-

junctive keyword searches over encrypted data [C]//Proc 7th

International Conference on Information and Communica-

tions Security (ICICS). Berlin, Heidelberg: Springer-Verlag,

2005: 414-426.

[13] Bloom B H. Space/time trade-offs in Hash coding with al-

lowable errors [J]. Communications of the ACM, 1970, 13(7):

422-426.

[14] Levenshtein V. Binary codes capable of correcting spurious

insertions and deletions of ones [J]. Problems of Information

Transmission, 1965, 1(1): 8-17.

[15] De La Briandais R. File searching using variable length

keys [C]//Proc Western Joint Computer Conference. New

York: ACM Press, 1959: 295-298.

[16] Morita M, Shinoda Y. Information filtering based on user

behavior analysis and best match text retrieval [C]//Proc

17th International ACM SIGIR Conference on Research and

Development in Information Retrieval. New York: Springer-

Verlag, 1994: 272-281.

[17] Bailey P, Craswell N, Soboroff I, et al. The CSIRO enter-

prise search test collection [C]//ACM Special Interest Group

on Information Retrieval. New York: ACM Press, 2007,

41(2): 42-45.

□

