

2013, Vol.18 No.2, 126-132

Article ID 1007-1202(2013)02-0126-07

DOI 10.1007/s11859-013-0904-1

Reversible Watermarking in JPEG
Images Based on Modified RZL Codes
and Histogram Shift

□ CHEN Biao1, ZHANG Weiming1,2,

YU Nenghai1†

1. Department of Electronic Engineering and Information

Science, University of Science and Technology of China, Hefei

230027, Anhui, China;

2. Department of Information Research, Zhengzhou Information

Science and Technology Institute, Zhengzhou 450002, Henan,

China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2013

Abstract: Reversible watermarking has extensive applications in
fields such as medical data management and forensic enforcement.
In this article, we propose a modified reverse zero-run length
(RZL) coding method for reversible watermarking, which intro-
duces fewer modifications to cover than previous ones under the
same embedding rate. By combining the coding method with his-
togram shift and quantization table modification strategy, we pro-
pose a novel reversible data hiding algorithm for JPEG images.
Compared with previous art, when embedding the same payload,
our method has an improvement of at least 2 dB in stego image’s
quality, which proves the effectiveness and advantage of our algo-
rithm.
Key words: reversible watermarking; JPEG images; image au-
thentication; payload; PSNR
CLC number: TP 309.7

Received date: 2012-04-05
Foundation item: Supported by the National Natural Science Foundation of
China (61170234 and 60803155), the National Science and Technology Major
Project of China (2010ZX03004-003), and the High-Tech Research and Devel-
opment Program of China (863 program) (2009AA012201).
Biography: CHEN Biao, male, Master candidate, research direction: image
and video processing, information hiding. E-mail: chb893@mail.ustc.edu.cn
† To whom correspondence should be addressed. E-mail: ynh@ustc.edu.cn

0 Introduction

As a technique that embeds secret information into a
cover media, digital watermarking has been used in appli-
cations such as media notation, copyright protection, and
integrity authentication[1]. For most watermarking meth-
ods, the embedding process will introduce permanent dis-
tortion to the cover and the original cover can never be
restored from the watermarked media. However, in some
applications, such as medical imagery, military imagery,
and law enforcement, no degradation of the original cover
is allowed. In these situations, we need exactly to restore
the original cover media after secret message is extracted.
The technique for this requirement is called reversible data
hiding (RDH) or reversible watermarking.

The main application of reversible watermarking is
image integrity protection. In a classic framework, the hash
of an image’s important region is reversibly embedded into
unimportant region. In fact, reversible authentication wa-
termarks have been incorporated as an integrity protection
mechanism into the ISSE military guard[2]. Integrity protec-
tion watermarks can also be embedded inside the imaging
hardware of cameras for forensic personnel[2]. Since firstly
introduced in a Kodak patent[3], many RDH algorithms
have been proposed for grayscale images. These algorithms
roughly fall into three categories. The first algorithms fol-
low the idea of compression-embedding framework, which
was first introduced by Fridrich et al[4]: in these algorithms,
a two-value feature is calculated for each group of pixels
and the features form a binary sequence. The sequence is
compressible and the message can be embedded in the extra

CHEN Biao et al : Reversible Watermarking in JPEG Images Based on Modified …

127

space left by compression. An extension of this work was
presented in Celik et al’s work[5]. The second category is
based on difference expansion[6], in which the differences of
pixel are expanded, for example, multiplied by 2; thus, the
least significant bits of the differences can be used for em-
bedding message. These algorithms can usually achieve a
considerable high embedding capacity[7,8]. The last and
most promising RDH algorithms are based on histogram
modification[9]. The histogram of one special feature for
natural image is quite uneven, which implies that the histo-
gram can be compressed for embedding data. For instance,
some space can be saved for watermarks by shifting the
bins of histogram. These algorithms following the idea of
histogram shift can often achieve a very high PSNR with an
acceptable embedding payload[10,11].

JPEG is the most popular image format currently, so
RDH algorithms designed for JPEG images seem more
useful and necessary. Some recent applications of re-
versible authentication watermarks for JPEG images can
be found in Zhang et al[12]. However, there are not that
many RDH algorithms for JPEG images. Fridrich and
Goljan[2] first made an attempt. They selected some
quantized DCT coefficients equal to 0 and 1, the 0’s and
1’s then form a compressible binary sequence, and the
spare space after lossless compression can be used to
carry message bits. Chang et al [13] have introduced a
RDH algorithm that searches special pattern that has two
distinct states in each block. Message can be embedded
via representing the two states with 0 and 1, respectively.
Li et al [14] and Xuan et al [15] adopted the idea of histo-
gram shift. Li et al’s method[14] combines simple histo-
gram shift with quantization table modification and has
shown a satisfactory performance. Xuan et al’s method[15]
took several factors into consideration and tried to find a
best PSNR for any given payload.

Reversible watermarking appreciates large payload
and low distortion between cover and stego image.
There’s a coding method named reverse zerorun length
(RZL)[16] that can help this. However, RZL method is a
binary coding method for all-zero cover. We can modify
it for our application.

In this article, we propose a reversible watermarking
algorithm by combining a modified RZL coding method,
histogram shift, and quantization table modification. The
rest of this article is as follows. In Section 1, we present
our modified RZL method for ternary cover and make
some theoretical analysis. In Section 2, the entire process
of RDH algorithm for JPEG image is presented. The ex-
perimental results are demonstrated in Section 3, and the

article is concluded with a discussion in Section 4.

1 Modified RZL Coding

1.1 RZL Coding
Li et al[14] proposed a simple but efficient reversible

data hiding method for JPEG images, in which the quan-
tized DCT coefficients at some positions of an 8×8 block
are used to embed data. First, the histogram of the se-
lected quantized DCT coefficients is shifted in following
manner. All bins with entry larger than 0 are shifted
rightward, whereas all bins with entry smaller than 0 are
shifted leftward, and then the message is embedded into
the zero coefficients. The empty locations where entry is
equal to 1 or 1− are used to embed message. If the
message bit is 0, then the coefficient holds 0; if message
bit is 1, then the coefficient is changed to be 1 or 1−
randomly. The recipient can extract the message by de-
coding 0 as bit “0” and ±1 as bits “1”. The coefficients
can be reconstructed by modifying ±1 to 0 and reversely
shifting all non-zero coefficients.

In the above method, an all-zero cover is constructed
after shifting non-zero coefficients. On this cover, every
element, zero, can be modified toward two directions, 1 or

1− . To reduce the embedding distortion, the key problem
is to reduce the number of modified zeros for a message
with given length. One coding method for this purpose has
been proposed by Wong et al[16], which is called RZL
coding method.

RZL is designed for an all-zero cover with only one
modification direction, i.e., 0 can only be changed to 1.
In RZL coding, the binary message sequence is first di-
vided into disjoint segments of k bits. To embed one
segment, covert the corresponding vector of k bits to a
positive integer, denoted by d, and then skip d zeros in
the cover, and flip the (d+1)th 0. To extract the message,
the recipient only needs to convert the distance between
1’s in the stego to binary vectors of k bits.

We use embedding rate versus modification rate to
evaluate such kind of coding methods. The embedding
rate α is defined as the average number of message bits
embedded into per cover element, for a binary cover se-
quence, 1α ≤ ; the modification rate c is defined as the
probability of one cover element being modified. If we
assume the message is encrypted sequence that is ran-
dom, then it is easy to calculate and confirm that RZL
method has embedding rate 1/ (2 0.5)kkα −= + and
modification rate 11 / (2 0.5)kc −= + [16].

We compare RZL with the ordinary representation

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.2 128

scheme (ORS; which means to directly replace the cover
element by 0 or 1 according to message bit). RZL
achieves lower modification rate than ORS for most
range of embedding rate but performs poorly for larger
embedding rate (0.7)α ∨ . On the contrary, although
RZL can be directly applied to Li et al’s scheme[14], the
embedding potential cannot be exploited sufficiently,
because there are two modification directions, +1 and

1− , in Li et al’s scheme.
1.2 Modified RZL Coding for Binary
Embedding

As mentioned before, RZL performs poorly for
large embedding rate, we can use some flag bits to im-
prove its performance. First, we consider the case of bi-
nary embedding, in which the cover element, “0”, can
only be changed to “1”. In RZL coding, the integer

,1
1

2
k

k i
i

i

l a −

=

= determines the number of cover elements

cost by embedding the binary vector 1()ka a . There-
fore, small l implies large embedding rate. To decrease
the expectation value of l, we use a flag bit f to control
the most significant bits (MSBs) of several vectors, and
make the majority of them to be “0”. Based on this idea,
the RZL coding is modified as follows.

Encoding:

 Divide the message sequence to segments of k
bits, and group every m segments into one group, where
m is an odd number larger than 1;

 For each group 1,1 1, ,1 ,{() ()}k m m ka a a a , set

,1
1

m

i
i

s a
=

= ; if s is larger than / 2m , then flip the ,1ia to

be ,11 ia− , for 1, ,i m= , and set the flag bit 1f = ; if
s is smaller than m/2, then ,1ia are not changed, and

0f = ;
 Embed the group of bits (maybe have been

changed) into cover segment by segment via RZL em-
bedding;

 Finally, embed the flag bit f into cover using
ORS.

Decoding:
 Continuously extract m segments of k bits from

marked cover using RZL message extraction method [16],
and set these m segments into a group 1,1 1,{()ka a′ ′

,1 ,()};m m ka a′ ′
 Extract the corresponding flag bit f from the

cover; if 1f = , then flip ,1ia′ to be ,11 ia′− , for
i = 1, ,m ; else, if 0f = , do nothing;

 Concatenate every group of k m bits to form

the final extracted message sequence.
Now we make a theoretical analysis about the em-

bedding rate and modification rate of the above method.
For embedding one segment of message ,1 ,()i i ka a , if

,1 1ia = , then the expectation of occupied locations of
cover is 1 2

1 2 2 0.5k kn − −= + + ; otherwise, if ,1 0ia = ,
then the expectation of occupied locations of cover is

2
0 2 0.5kn −= + .

For 1,1 ,1(),mH a a= the number of 1’s x in H is
binomial distributed: () 2 , 0, , ;i m

mP x i C i m−= = =
then, in modified RZL (MRZL) coding, if / 2x m∨ ,
then the header bits are flipped; if / 2x m∧ , then

.H H′ = Therefore, the distribution of number of 1’s
x′ is () () () 2 2 ,i m

mP x i P x i P x m i C −′= = = + = − = 0,i =
, (1) / 2m − . If x i′ = , then to embed 1,1 1,{(), ,ka a′ ′

,1 ,()}m m ka a′ ′ in RZL embedding, the expectation of
occupied locations of cover is (0.75 2 0.5)k

iN i= + +
() (0.25 2 0.5).km i− + Therefore, the expectation of
occupied locations of cover for MRZL coding is

(1)/2

0

1 1
{ () }

m

i
i

n P x i N
m m

−

=

′= = + .

It can be simplified as
(1)/2

2

0

1 1 1
2 () 2 ,

2

m
i k
m

i

n k m i C
m m

−
−

=

= − + + +

1k ∨ (1)
For each segment, the expectation of the modifica-

tion locations is

1
1

2
R

m
= +

, (2)

where 1 is from RZL coding,
1

2 m
 is for the flag bit f.

Therefore, we obtain the embedding rate α and
modification rate c as

, , 1
k R

c k
n n

α = = ∨ (3)

In practice, we suggest setting the number of segments
3m = .

1.3 MRZL Coding for ±1 Embedding
In this section, we further modify the coding method

in Section 1.2 with ±1 embedding, which means the cover
element “0” can be changed to +1 or 1− . In fact, a ter-
nary coding construction hides behind the ±1 embedding.
Ordinarily, we can convert the binary message sequence to
a ternary sequence and then embed the ternary sequence
into the cover with a ternary code. However, this method
requires extra computational complexity for the conver-
sion between binary and ternary sequences. Instead of the

CHEN Biao et al : Reversible Watermarking in JPEG Images Based on Modified …

129

common method, we propose the following two-layer
embedding strategy that is much simpler and faster.

We divide the original message sequence into two
parts: basic sequence and extra sequence. The basic se-
quence is encoded to be an intermediate sequence by
using the coding method described in Section 1.2. Then,
the intermediate sequence is embedded into the cover.
When the embedded bit of intermediate sequence is 0,
we do not change the cover; if the embedded bit is 1, we
embed a message bit of the extra sequence in following
manner. If the bit picked up from the extra sequence is 0,
change the cover element to 1; otherwise, change cover
element to 1− .

In the above two-layer scheme, whenever a modifi-
cation in the first layer appears, an extra bit can be em-
bedded without introducing any more modification.
Therefore, comparing the coding method with binary
embedding, we can increase embedding rate while keep-
ing the modification rate the same, and the increment of
embedding rate is just equal to the modification rate.
Based on Eqs. (1) and (2), we get the embedding rate and
modification rate of the two layer scheme as

,
k R R

c
n n

α += = (4)

As shown in Fig. 1, the proposed method signifi-
cantly outperforms ORS and RZL. As this is in fact a
ternary coding construction, the largest theoretical em-
bedding rate increases from 1 to log23.

Fig. 1 Comparison of ORS, RZL, and proposed coding method

Next, we provide a simple example to describe the
encoding and decoding process of proposed coding
method.

Example 1
Encoding:
The cover is an all-zero sequence: [0 0 0] .

Assume the message sequence is [1 0 0 1 1 1 0 1 1 0
], and set k=2 and m=3. First, we pick up m segments
of k bits to form a group: {(1 0)(01)(11)} , the MSBs of

each segment are (1 0 1), which include two 1’s, larger than
m/2=1.5), so the MSBs are flipped to be (0 1 0) and set

1f = ; then, the modified segments, {(0 0) (1 1) (0 1)}, are
embedded into cover by RZL coding segment by segment:
(1) (0 0 0 1) (0 1), followed by the flag 1f = ; thus, the
intermediate sequence is [1 0 0 0 1 0 1 1], in which totally
four 1’s exist. Therefore, we continue to read four extra bits
from original message sequence: (0 1 1 0); if extra bit is 0,
then hold the 1 unchanged; else, if extra bit is 1, the corre-
sponding 1 is changed to −1; so, after this process, the final
ternary sequence becomes [1 0 0 0 −1 0 −1 1]. The follow-
ing message sequence is encoded in the same way.

Decoding:
The received ternary sequence is [1 0 0 0 −1 0 −1 1].

We first wipe out their signs: [1 0 0 0 1 0 1 1]; read the
sequence until three “1”s appear: [1 0 0 0 1 0 1], and
decode it with RZL: (0 0) (1 1) (0 1); read the next flag
bit 1f = , which indicates that the MSBs of the decoded
vector should be flipped: (1 0) (0 1) (1 1); finally, as the
four non-zeros in this round are (1 −1 −1 1), then we ad-
ditionally extract four bits: (0 1 1 0). Thus, the decoded
binary sequence is [1 0 0 1 1 1 0 1 1 0].

2 Proposed RDH Algorithm for
JPEG Image

2.1 Proposed RDH Algorithm
In this section, we improve Li et al’s method[14] by

using the coding method proposed in Section 1.3.
In his original method, a quantization table modifi-

cation technique is used to restrain degradation of the
marked image.

Suppose original quantization step is q and quan-
tized DCT coefficient is v. Then, via histogram shift, v is
changed to v′=v+1, and the error of dequantized DCT
coefficient is | |q v q v q′− = . However, if we modify
q to be p s q= , where 0 1s∧ ∧ is the scaling factor.

Meanwhile, set
q v v

v
p s

 ′= =

, where []x is round-

ing function. Then, the error of dequantized DCT coeffi-
cient is | |q v p v′− . Denote []x x θ= + , 0.5− ∧

0.5θ ≤ , we have | | | () |
v

q v p v q v s q
s

θ′− = − +

| |s q qθ= ∧ ; thus, the degradation of image quality is

restrained.
By incorporating this modification technique and

the coding method in Section 1.3, we proposed the fol-
lowing RDH algorithm for JPEG images.

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.2 130

Algorithm 1
Data embedding process

 Convert the original binary message sequence to
ternary sequence via proposed coding method in Section 1.3.

 Select some entries in quantization table, and the
corresponding quantized DCT coefficients will be used
to embed data. For these entries, modify quantization
step from q to p s q= ; meanwhile, calculate A and B.
Herein, A is the smallest positive integer that satisfies

1A ∨ and [] [(1)]A p A p B= + = .
 For each 8×8 quantized DCT coefficient block

of luminance component from a JPEG image after
Huffman decoding and run-level decoding, pick up coef-
ficients that will be used to embed message.

 For each selected quantized DCT coefficient v,
do the following steps:

if v=0, then embed one “bit” t from ternary se-
quence by setting v t′ = ;

if 0 | |v B∧ ∧ , sign() (| | 1)v v v′ = + ;
if | |v B= , sign() (1)v v A′ = + ;
if | |v B∨ , choose v′ that minimizes | p v′ −
|q v .

 Recode the modified quantization table and
changed quantized DCT coefficients to form a marked
JPEG image via run-level coding and Huffman coding.

Data extraction process
 For each 8×8 quantized DCT coefficient block

of luminance component from a JPEG stego image after
Huffman decoding and run-level decoding, pick up coef-
ficients that may carry message bits.

 For each selected quantized DCT coefficient v′ ,
do the following steps:

if | | 1v′ ≤ , set v=0; meanwhile, a ternary message
bit t is extracted: t=v′;

if 1 | |v A′ ≤∧ , then sign() (| | 1)v v v′ ′= − ;
if | |v A′ ∨ , then choose v that minimizes | p v′

|q v− .
 Concatenate every extracted bit to form a ter-

nary sequence, and convert the ternary sequence to a
binary sequence via inverse coding method.

Then, the original binary message sequence is ex-
tracted and the original cover is exactly restored.
2.2 Determine the Number of DCT Coefficients

When embedding data into quantized DCT coeffi-
cients, modification to low-frequency coefficients will re-
sult in serious degradation to subjective visual quality; on
the contrary, modification to high-frequency coefficients
will cause distinct decrease of PSNR, which represents
image’s objective visual quality. Thus, in our algorithm, we

choose mid-frequency coefficients to embed message.
The number of message bits embedded into cover

image is called payload. The required payload may vary
drastically in different applications. In general, we are
happy to see that our algorithm works well within large
payload range. This can be fulfilled by adopting different
numbers of coefficients in every 8×8 block.

To test the performance of our algorithm under various
payloads, we implement several experiments for a Lena
JPEG image with quantization parameter Q=50. We first
array the DCT coefficients in a zigzag order and then select
coefficients in the following manner: the numbers of coeffi-
cients (and corresponding positions) are 1 (12th), 2 (11th and
12th), 5 (10th to 14th), 8 (10th to 17th), and 11 (10th to 20th),
respectively. The performances of these experiments are
depicted in Fig. 2. Then, for every given payload, we choose
the highest PSNR from five candidates. Then, by connecting
the best PSNR points, we can draw our ultimate perform-
ance curve, as shown in Fig. 2. Every point on this curve
stands for an achievable payload-PSNR pair. By carefully
choosing coding parameter k and coefficient numbers, we
can achieve the best image quality for any given payload.

Fig. 2 Ultimate performance curve of
proposed RDH algorithm

3 Experimental Results

To demonstrate the performance of proposed algo-
rithm, we make a series of comparisons between the
proposed algorithm and three previous arts in Refs.
[13-15]. The test images are four standard images: Lena,
Barbara, Airplane, and Baboon (Fig. 3). The raw images
are in PGM format and we compress them with standard
JPEG coder, during which the Q-factor is set as 50. If a
reversible data embedding method can support large
payload, low distortion, and low file-size increment, then
we believe the method is good. Therefore, we compare
PSNR and file-size increment, respectively. The com-
parison results are illustrated in Figs. 4 and 5.

CHEN Biao et al : Reversible Watermarking in JPEG Images Based on Modified …

131

Fig. 3 Test images

Fig. 4 PSNR comparison

Fig. 5 File-size increment comparison

Wuhan University Journal of Natural Sciences 2013, Vol.18 No.2 132

Figure 4 shows the PSNR comparison, from which we
can surely draw the conclusion that the proposed algorithm
outperforms previous arts with regard to image quality. For
each test image, the proposed algorithm can achieve a larger
PSNR for all payload. It can provide an improvement of 2-6
dB in PSNR compared with Li et al’s work[14] throughout
the payload axis. When compared with Chang et al’s
work[13] and Xuan et al’s work [15], the improvement can be
surprisingly more than 8 dB. Figure 5 shows the file-size
increment comparison, which is not an advantage of our
algorithm. The advantage of proposed method compared
with Ref. [14] is preserving stego image’s quality.

4 Conclusion

Li et al[14] proposed a reversible data hiding algo-
rithm for JPEG images via histogram shift and quantiza-
tion table modification, in which we found a hidden
coding model of all-zero cover with two modification
directions. If the model’s character is sufficiently ex-
ploited, the performance of RDH algorithm can be im-
proved considerably. Inspired by RZL coding in Ref.
[16], we have designed a modified RZL coding method
for the coding model behind Li et al’s method.

We take our coding method as a preprocessing tool
to binary message sequence. Then, by combining the tool
with Li et al’s reversible data hiding algorithm, we pro-
pose a novel reversible data hiding algorithm for JPEG
images under preprocessing-embedding framework.

To test the performance of our algorithm, we im-
plement our algorithm with several previous arts for dif-
ferent test images. The experiments demonstrate that our
method is satisfactory in preserving stego image’s visual
quality but fails to have a prevailing advantage in re-
stricting file-size increment.

[1] Petitcolas F, Anderson R, Kuhn M. Information hiding: A

survey [J]. Proceedings of the IEEE, 1999, 87: 1062-1078.

[2] Fridrich J, Goljan M. Lossless data embedding for all image

formats [C]//Proceedings of Photonics West, Electronic Im-

aging, 2002, San Jose: SPIE Security and Watermarking of

Multimedia Contents, 2002: 572-583.

[3] Honsinger C W, Jones P W, Rabbani M, et al. Lossless Re-

covery of an Original Image Containing Embedded Data [P].

US Patent #6278791, 2001.

[4] Fridrich J, Goljan M, Du R. Lossless data embedding: New

paradigm in digital watermarking [J]. EURASIP Journal on

Applied Signal Processing, 2002, 2002(2): 185-196.

[5] Celik M U, Sharma G, Tekalp A M, et al. Lossless general-

ized-LSB data embedding [J]. IEEE Trans on Image Proc-

essing, 2005, 14(2): 253-266.

[6] Tian J. Reversible data embedding using a difference expan-

sion [J]. IEEE Trans on Circuits System and Video Tech-

nology, 2003, 13(8): 890-896.

[7] Thodi D M, Rodriguez J. Expansion embedding techniques

for reversible watermarking [J]. IEEE Trans on Image Pro-

cessing, 2007, 16(3): 721-730.

[8] Hu Y, Lee H K, Li J. DE-based reversible data hiding with

improved overflow location map [J]. IEEE Trans on Circuits

System and Video Technology, 2009, 19(2): 250-260.

[9] Ni Z, Shi Y Q, Ansari N, et al. Reversible data hiding [J].

IEEE Trans on Circuits System and Video Technology, 2006,

16(3): 354-362.

[10] Tsai P, Hu Y C, Yeh H L. Reversible image hiding scheme

using predictive coding and histogram shifting [J]. Signal

Processing, 2009, 89: 1129-1143.

[11] Luo L, Chen Z, Chen M, et al. Reversible image water-

marking using interpolation technique [J]. IEEE Trans on

Information Forensics and Security, 2010, 5(1): 187-193.

[12] Zhang X, Wang S, Qian Z, Feng G. Reversible fragile wa-

termarking for locating tampered blocks in JPEG images [J].

Signal Processing, 2010, 90: 3026-3036.

[13] Chang C C, Lin C C, Tseng C S, et al . Reversible hiding in

DCT-based compressed images [J]. Information Sciences,

2007, 177: 2768-2786.

[14] Li Q, Wu Y, Bao F. A reversible data hiding scheme for

JPEG images [C]//Advances in Multimedia Information

Processing-Pacific Rim Conference on Multimedia (PCM

2010) (LNCS 6297), Shanghai: Springer-Verlag, 2010: 653-

664.

[15] Xuan G, Shi Q, Ni Z, et al. Reversible data hiding for JPEG

images based on histogram pairs [C]//International Confer-

ence on Image Analysis and Recognition (ICIAR 2007)

(LNCS 4633), Montreal: Springer-Verlag, 2007: 715-727.

[16] Wong K, Tanaka K, Takagi K, et al. Complete video qual-

ity-preserving data hiding [J]. IEEE Trans on Circuits Sys-

tem and Video Technology, 2009, 19(10): 1499-1512.

□

References

