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Abstract: Reversible watermarking has extensive applications in 
fields such as medical data management and forensic enforcement. 
In this article, we propose a modified reverse zero-run length 
(RZL) coding method for reversible watermarking, which intro-
duces fewer modifications to cover than previous ones under the 
same embedding rate. By combining the coding method with his-
togram shift and quantization table modification strategy, we pro-
pose a novel reversible data hiding algorithm for JPEG images. 
Compared with previous art, when embedding the same payload, 
our method has an improvement of at least 2 dB in stego image’s 
quality, which proves the effectiveness and advantage of our algo-
rithm. 
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0  Introduction 

As a technique that embeds secret information into a 
cover media, digital watermarking has been used in appli-
cations such as media notation, copyright protection, and 
integrity authentication[1]. For most watermarking meth-
ods, the embedding process will introduce permanent dis-
tortion to the cover and the original cover can never be 
restored from the watermarked media. However, in some 
applications, such as medical imagery, military imagery, 
and law enforcement, no degradation of the original cover 
is allowed. In these situations, we need exactly to restore 
the original cover media after secret message is extracted. 
The technique for this requirement is called reversible data 
hiding (RDH) or reversible watermarking. 

The main application of reversible watermarking is 
image integrity protection. In a classic framework, the hash 
of an image’s important region is reversibly embedded into 
unimportant region. In fact, reversible authentication wa-
termarks have been incorporated as an integrity protection 
mechanism into the ISSE military guard[2]. Integrity protec-
tion watermarks can also be embedded inside the imaging 
hardware of cameras for forensic personnel[2]. Since firstly 
introduced in a Kodak patent[3], many RDH algorithms 
have been proposed for grayscale images. These algorithms 
roughly fall into three categories. The first algorithms fol-
low the idea of compression-embedding framework, which 
was first introduced by Fridrich et al[4]: in these algorithms, 
a two-value feature is calculated for each group of pixels 
and the features form a binary sequence. The sequence is 
compressible and the message can be embedded in the extra 
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space left by compression. An extension of this work was 
presented in Celik et al’s work[5]. The second category is 
based on difference expansion[6], in which the differences of 
pixel are expanded, for example, multiplied by 2; thus, the 
least significant bits of the differences can be used for em-
bedding message. These algorithms can usually achieve a 
considerable high embedding capacity[7,8]. The last and 
most promising RDH algorithms are based on histogram 
modification[9]. The histogram of one special feature for 
natural image is quite uneven, which implies that the histo-
gram can be compressed for embedding data. For instance, 
some space can be saved for watermarks by shifting the 
bins of histogram. These algorithms following the idea of 
histogram shift can often achieve a very high PSNR with an 
acceptable embedding payload[10,11]. 

JPEG is the most popular image format currently, so 
RDH algorithms designed for JPEG images seem more 
useful and necessary. Some recent applications of re-
versible authentication watermarks for JPEG images can 
be found in Zhang et al[12]. However, there are not that 
many RDH algorithms for JPEG images. Fridrich and 
Goljan[2] first made an attempt. They selected some 
quantized DCT coefficients equal to 0 and 1, the 0’s and 
1’s then form a compressible binary sequence, and the 
spare space after lossless compression can be used to 
carry message bits. Chang et al [13] have introduced a 
RDH algorithm that searches special pattern that has two 
distinct states in each block. Message can be embedded 
via representing the two states with 0 and 1, respectively. 
Li et al [14] and Xuan et al [15] adopted the idea of histo-
gram shift. Li et al’s method[14] combines simple histo-
gram shift with quantization table modification and has 
shown a satisfactory performance. Xuan et al’s method[15] 
took several factors into consideration and tried to find a 
best PSNR for any given payload. 

Reversible watermarking appreciates large payload 
and low distortion between cover and stego image. 
There’s a coding method named reverse zerorun length 
(RZL)[16] that can help this. However, RZL method is a 
binary coding method for all-zero cover. We can modify 
it for our application. 

In this article, we propose a reversible watermarking 
algorithm by combining a modified RZL coding method, 
histogram shift, and quantization table modification. The 
rest of this article is as follows. In Section 1, we present 
our modified RZL method for ternary cover and make 
some theoretical analysis. In Section 2, the entire process 
of RDH algorithm for JPEG image is presented. The ex-
perimental results are demonstrated in Section 3, and the 

article is concluded with a discussion in Section 4. 

1  Modified RZL Coding 

1.1  RZL Coding 
Li et al[14] proposed a simple but efficient reversible 

data hiding method for JPEG images, in which the quan-
tized DCT coefficients at some positions of an 8×8 block 
are used to embed data. First, the histogram of the se-
lected quantized DCT coefficients is shifted in following 
manner. All bins with entry larger than 0 are shifted 
rightward, whereas all bins with entry smaller than 0 are 
shifted leftward, and then the message is embedded into 
the zero coefficients. The empty locations where entry is 
equal to 1 or 1−  are used to embed message. If the 
message bit is 0, then the coefficient holds 0; if message 
bit is 1, then the coefficient is changed to be 1 or 1−  
randomly. The recipient can extract the message by de-
coding 0 as bit “0” and ±1 as bits “1”. The coefficients 
can be reconstructed by modifying ±1 to 0 and reversely 
shifting all non-zero coefficients. 

In the above method, an all-zero cover is constructed 
after shifting non-zero coefficients. On this cover, every 
element, zero, can be modified toward two directions, 1 or 

1− . To reduce the embedding distortion, the key problem 
is to reduce the number of modified zeros for a message 
with given length. One coding method for this purpose has 
been proposed by Wong et al[16], which is called RZL 
coding method. 

RZL is designed for an all-zero cover with only one 
modification direction, i.e., 0 can only be changed to 1. 
In RZL coding, the binary message sequence is first di-
vided into disjoint segments of k bits. To embed one 
segment, covert the corresponding vector of k bits to a 
positive integer, denoted by d, and then skip d zeros in 
the cover, and flip the (d+1)th 0. To extract the message, 
the recipient only needs to convert the distance between 
1’s in the stego to binary vectors of k bits. 

We use embedding rate versus modification rate to 
evaluate such kind of coding methods. The embedding 
rate α is defined as the average number of message bits 
embedded into per cover element, for a binary cover se-
quence, 1α ≤ ; the modification rate c is defined as the 
probability of one cover element being modified. If we 
assume the message is encrypted sequence that is ran-
dom, then it is easy to calculate and confirm that RZL 
method has embedding rate 1/ (2 0.5)kkα −= +  and 
modification rate 11 / (2 0.5)kc −= + [16]. 

We compare RZL with the ordinary representation 
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scheme (ORS; which means to directly replace the cover 
element by 0 or 1 according to message bit). RZL 
achieves lower modification rate than ORS for most 
range of embedding rate but performs poorly for larger 
embedding rate ( 0.7)α ∨ . On the contrary, although 
RZL can be directly applied to Li et al’s scheme[14], the 
embedding potential cannot be exploited sufficiently, 
because there are two modification directions, +1 and 

1− , in Li et al’s scheme. 
1.2 Modified RZL Coding for Binary 
Embedding 

As mentioned before, RZL performs poorly for 
large embedding rate, we can use some flag bits to im-
prove its performance. First, we consider the case of bi-
nary embedding, in which the cover element, “0”, can 
only be changed to “1”. In RZL coding, the integer 
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k i
i
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l a −

=

=  determines the number of cover elements 

cost by embedding the binary vector 1( )ka a . There-
fore, small l implies large embedding rate. To decrease 
the expectation value of l, we use a flag bit f to control 
the most significant bits (MSBs) of several vectors, and 
make the majority of them to be “0”. Based on this idea, 
the RZL coding is modified as follows. 

Encoding: 

 Divide the message sequence to segments of k 
bits, and group every m segments into one group, where 
m is an odd number larger than 1; 

 For each group 1,1 1, ,1 ,{( ) ( )}k m m ka a a a   , set 

,1
1

m

i
i

s a
=

= ; if s is larger than / 2m , then flip the ,1ia  to  

be ,11 ia− , for 1, ,i m=  , and set the flag bit 1f = ; if 
s is smaller than m/2, then ,1ia  are not changed, and 

0f = ; 
 Embed the group of bits (maybe have been 

changed) into cover segment by segment via RZL em-
bedding; 

 Finally, embed the flag bit f into cover using 
ORS. 

Decoding: 
 Continuously extract m segments of k bits from 

marked cover using RZL message extraction method [16], 
and set these m segments into a group 1,1 1,{( )ka a′ ′   

,1 ,( )};m m ka a′ ′  
 Extract the corresponding flag bit f from the 

cover; if 1f = , then flip ,1ia′  to be ,11 ia′− , for 
i = 1, ,m ; else, if 0f = , do nothing; 

 Concatenate every group of k m  bits to form 

the final extracted message sequence. 
Now we make a theoretical analysis about the em-

bedding rate and modification rate of the above method. 
For embedding one segment of message ,1 ,( )i i ka a , if 

,1 1ia = , then the expectation of occupied locations of 
cover is 1 2

1 2 2 0.5k kn − −= + + ; otherwise, if ,1 0ia = , 
then the expectation of occupied locations of cover is 

2
0 2 0.5kn −= + . 

For 1,1 ,1( ),mH a a=   the number of 1’s x in H is 
binomial distributed: ( ) 2 , 0, , ;i m

mP x i C i m−= = =   
then, in modified RZL (MRZL) coding, if / 2x m∨ , 
then the header bits are flipped; if / 2x m∧ , then 

.H H′ =  Therefore, the distribution of number of 1’s 
x′  is ( ) ( ) ( ) 2 2 ,i m

mP x i P x i P x m i C −′= = = + = − =   0,i =  
, ( 1) / 2m − . If x i′ = , then to embed 1,1 1,{( ), ,ka a′ ′   

,1 ,( )}m m ka a′ ′  in RZL embedding, the expectation of 
occupied locations of cover is (0.75 2 0.5)k

iN i= + +   
( ) (0.25 2 0.5).km i− +   Therefore, the expectation of 
occupied locations of cover for MRZL coding is 
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It can be simplified as 
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For each segment, the expectation of the modifica-

tion locations is 

1
1

2
R

m
= +


,        (2) 

where 1 is from RZL coding, 
1

2 m
 is for the flag bit f. 

Therefore, we obtain the embedding rate α  and 
modification rate c as 

, , 1
k R

c k
n n

α = = ∨         (3) 

In practice, we suggest setting the number of segments 
3m = . 

1.3  MRZL Coding for ±1 Embedding 
In this section, we further modify the coding method 

in Section 1.2 with ±1 embedding, which means the cover 
element “0” can be changed to +1 or 1− . In fact, a ter-
nary coding construction hides behind the ±1 embedding. 
Ordinarily, we can convert the binary message sequence to 
a ternary sequence and then embed the ternary sequence 
into the cover with a ternary code. However, this method 
requires extra computational complexity for the conver-
sion between binary and ternary sequences. Instead of the 
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common method, we propose the following two-layer 
embedding strategy that is much simpler and faster. 

We divide the original message sequence into two 
parts: basic sequence and extra sequence. The basic se-
quence is encoded to be an intermediate sequence by 
using the coding method described in Section 1.2. Then, 
the intermediate sequence is embedded into the cover. 
When the embedded bit of intermediate sequence is 0, 
we do not change the cover; if the embedded bit is 1, we 
embed a message bit of the extra sequence in following 
manner. If the bit picked up from the extra sequence is 0, 
change the cover element to 1; otherwise, change cover 
element to 1− . 

In the above two-layer scheme, whenever a modifi-
cation in the first layer appears, an extra bit can be em-
bedded without introducing any more modification. 
Therefore, comparing the coding method with binary 
embedding, we can increase embedding rate while keep-
ing the modification rate the same, and the increment of 
embedding rate is just equal to the modification rate. 
Based on Eqs. (1) and (2), we get the embedding rate and 
modification rate of the two layer scheme as 

,
k R R

c
n n

α += =               (4) 

As shown in Fig. 1, the proposed method signifi-
cantly outperforms ORS and RZL. As this is in fact a 
ternary coding construction, the largest theoretical em-
bedding rate increases from 1 to log23. 

 

Fig. 1  Comparison of ORS, RZL, and proposed coding method 

Next, we provide a simple example to describe the 
encoding and decoding process of proposed coding 
method. 

Example 1 
Encoding: 
The cover is an all-zero sequence: [0 0 0 ]  . 

Assume the message sequence is [1 0 0 1 1 1 0 1 1 0 
 ], and set k=2 and m=3. First, we pick up m segments 
of k bits to form a group: {(1 0)(01)(11)} , the MSBs of 

each segment are (1 0 1), which include two 1’s, larger than 
m/2=1.5), so the MSBs are flipped to be (0 1 0) and set 

1f = ; then, the modified segments, {(0 0) (1 1) (0 1)}, are 
embedded into cover by RZL coding segment by segment: 
(1) (0 0 0 1) (0 1), followed by the flag 1f = ; thus, the 
intermediate sequence is [1 0 0 0 1 0 1 1], in which totally 
four 1’s exist. Therefore, we continue to read four extra bits 
from original message sequence: (0 1 1 0); if extra bit is 0, 
then hold the 1 unchanged; else, if extra bit is 1, the corre-
sponding 1 is changed to −1; so, after this process, the final 
ternary sequence becomes [1 0 0 0 −1 0 −1 1]. The follow-
ing message sequence is encoded in the same way. 

Decoding: 
The received ternary sequence is [1 0 0 0 −1 0 −1 1]. 

We first wipe out their signs: [1 0 0 0 1 0 1 1]; read the 
sequence until three “1”s appear: [1 0 0 0 1 0 1], and 
decode it with RZL: (0 0) (1 1) (0 1); read the next flag 
bit 1f = , which indicates that the MSBs of the decoded 
vector should be flipped: (1 0) (0 1) (1 1); finally, as the 
four non-zeros in this round are (1 −1 −1 1), then we ad-
ditionally extract four bits: (0 1 1 0). Thus, the decoded 
binary sequence is [1 0 0 1 1 1 0 1 1 0]. 

2  Proposed RDH Algorithm for 
JPEG Image 

2.1  Proposed RDH Algorithm 
In this section, we improve Li et al’s method[14] by 

using the coding method proposed in Section 1.3. 
In his original method, a quantization table modifi-

cation technique is used to restrain degradation of the 
marked image. 

Suppose original quantization step is q and quan-
tized DCT coefficient is v. Then, via histogram shift, v is 
changed to v′=v+1, and the error of dequantized DCT 
coefficient is | |q v q v q′− =  . However, if we modify 
q to be p s q=  , where 0 1s∧ ∧  is the scaling factor. 

Meanwhile, set 
q v v

v
p s

   ′= =     


, where [ ]x  is round-

ing function. Then, the error of dequantized DCT coeffi-
cient is | |q v p v′−  . Denote [ ]x x θ= + , 0.5− ∧  

0.5θ ≤ , we have | | | ( ) |
v

q v p v q v s q
s

θ′− = − +      

| |s q qθ=   ∧ ; thus, the degradation of image quality is 

restrained. 
By incorporating this modification technique and 

the coding method in Section 1.3, we proposed the fol-
lowing RDH algorithm for JPEG images. 
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Algorithm 1 
Data embedding process 

 Convert the original binary message sequence to 
ternary sequence via proposed coding method in Section 1.3. 

 Select some entries in quantization table, and the 
corresponding quantized DCT coefficients will be used 
to embed data. For these entries, modify quantization 
step from q to p s q=  ; meanwhile, calculate A and B. 
Herein, A is the smallest positive integer that satisfies 

1A ∨  and [ ] [( 1) ]A p A p B= + =  . 
 For each 8×8 quantized DCT coefficient block 

of luminance component from a JPEG image after 
Huffman decoding and run-level decoding, pick up coef-
ficients that will be used to embed message. 

 For each selected quantized DCT coefficient v, 
do the following steps: 

if v=0, then embed one “bit” t from ternary se-
quence by setting v t′ = ; 

if 0 | |v B∧ ∧ , sign( ) (| | 1)v v v′ = + ; 
if | |v B= , sign( ) ( 1)v v A′ = + ; 
if | |v B∨ , choose v′  that minimizes | p v′ −  
|q v .  

 Recode the modified quantization table and 
changed quantized DCT coefficients to form a marked 
JPEG image via run-level coding and Huffman coding. 

Data extraction process 
 For each 8×8 quantized DCT coefficient block 

of luminance component from a JPEG stego image after 
Huffman decoding and run-level decoding, pick up coef-
ficients that may carry message bits. 

 For each selected quantized DCT coefficient v′ , 
do the following steps: 

if | | 1v′ ≤ , set v=0; meanwhile, a ternary message 
bit t is extracted: t=v′; 

if 1 | |v A′ ≤∧ , then sign( ) (| | 1)v v v′ ′= − ; 
if | |v A′ ∨ , then choose v that minimizes | p v′  

|q v−  . 
 Concatenate every extracted bit to form a ter-

nary sequence, and convert the ternary sequence to a 
binary sequence via inverse coding method. 

Then, the original binary message sequence is ex-
tracted and the original cover is exactly restored. 
2.2  Determine the Number of DCT Coefficients 

When embedding data into quantized DCT coeffi-
cients, modification to low-frequency coefficients will re-
sult in serious degradation to subjective visual quality; on 
the contrary, modification to high-frequency coefficients 
will cause distinct decrease of PSNR, which represents 
image’s objective visual quality. Thus, in our algorithm, we 

choose mid-frequency coefficients to embed message. 
The number of message bits embedded into cover 

image is called payload. The required payload may vary 
drastically in different applications. In general, we are 
happy to see that our algorithm works well within large 
payload range. This can be fulfilled by adopting different 
numbers of coefficients in every 8×8 block. 

To test the performance of our algorithm under various 
payloads, we implement several experiments for a Lena 
JPEG image with quantization parameter Q=50. We first 
array the DCT coefficients in a zigzag order and then select 
coefficients in the following manner: the numbers of coeffi-
cients (and corresponding positions) are 1 (12th), 2 (11th and 
12th), 5 (10th to 14th), 8 (10th to 17th), and 11 (10th to 20th), 
respectively. The performances of these experiments are 
depicted in Fig. 2. Then, for every given payload, we choose 
the highest PSNR from five candidates. Then, by connecting 
the best PSNR points, we can draw our ultimate perform-
ance curve, as shown in Fig. 2. Every point on this curve 
stands for an achievable payload-PSNR pair. By carefully 
choosing coding parameter k and coefficient numbers, we 
can achieve the best image quality for any given payload. 

 

Fig. 2  Ultimate performance curve of  
proposed RDH algorithm 

3  Experimental Results 

To demonstrate the performance of proposed algo-
rithm, we make a series of comparisons between the 
proposed algorithm and three previous arts in Refs. 
[13-15]. The test images are four standard images: Lena, 
Barbara, Airplane, and Baboon (Fig. 3). The raw images 
are in PGM format and we compress them with standard 
JPEG coder, during which the Q-factor is set as 50. If a 
reversible data embedding method can support large 
payload, low distortion, and low file-size increment, then 
we believe the method is good. Therefore, we compare 
PSNR and file-size increment, respectively. The com-
parison results are illustrated in Figs. 4 and 5.
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Fig. 3  Test images 

 

Fig. 4  PSNR comparison 
 

 
Fig. 5  File-size increment comparison 
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Figure 4 shows the PSNR comparison, from which we 
can surely draw the conclusion that the proposed algorithm 
outperforms previous arts with regard to image quality. For 
each test image, the proposed algorithm can achieve a larger 
PSNR for all payload. It can provide an improvement of 2-6 
dB in PSNR compared with Li et al’s work[14] throughout 
the payload axis. When compared with Chang et al’s 
work[13] and Xuan et al’s work [15], the improvement can be 
surprisingly more than 8 dB. Figure 5 shows the file-size 
increment comparison, which is not an advantage of our 
algorithm. The advantage of proposed method compared 
with Ref. [14] is preserving stego image’s quality. 

4  Conclusion 

Li et al[14] proposed a reversible data hiding algo-
rithm for JPEG images via histogram shift and quantiza-
tion table modification, in which we found a hidden 
coding model of all-zero cover with two modification 
directions. If the model’s character is sufficiently ex-
ploited, the performance of RDH algorithm can be im-
proved considerably. Inspired by RZL coding in Ref. 
[16], we have designed a modified RZL coding method 
for the coding model behind Li et al’s method. 

We take our coding method as a preprocessing tool 
to binary message sequence. Then, by combining the tool 
with Li et al’s reversible data hiding algorithm, we pro-
pose a novel reversible data hiding algorithm for JPEG 
images under preprocessing-embedding framework. 

To test the performance of our algorithm, we im-
plement our algorithm with several previous arts for dif-
ferent test images. The experiments demonstrate that our 
method is satisfactory in preserving stego image’s visual 
quality but fails to have a prevailing advantage in re-
stricting file-size increment. 
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