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Fast Estimation of Optimal Marked-Signal
Distribution for Reversible Data Hiding

Xiaocheng Hu, Weiming Zhang, Xuexian Hu, Nenghai Yu, Xianfeng Zhao, and Fenghua Li

Abstract—Recently, code construction approaching the rate-dis-
tortion bound of reversible data hiding has been proposed by
Lin et al., in which the coding/decoding process needs the op-
timal probability distribution of marked-signals as parameters.
Therefore, the efficiency and accuracy of estimating the optimal
marked-signal distribution will greatly influence the speeds of
encoding and decoding. In this paper, we propose a fast algorithm
to solve the optimal marked-signal distribution. Furthermore, we
modify the method to achieve the optimal distribution directly ac-
cording to a given distortion constraint or an expected embedding
rate, which makes it more practical for applications.

Index Terms—Convex optimization, distortion, embedding rate,
Lagrange duality, reversible data hiding.

I. INTRODUCTION

A S a technique that embeds messages into cover signals,
information hiding has been widely applied in areas such

as covert communication, copyright protection and media an-
notation. Reversible data hiding (RDH) is one kind of informa-
tion hiding technique with the characteristic that not only the
message needs to be precisely extracted, but also the cover it-
self should be restored losslessly. This property is important in
some special scenarios such as medical imagery [1], military
imagery and law forensics. In these applications, the cover is
too precious or too important to be damaged [2]. Moreover, it
has been found recently that reversible data hiding can be quite
helpful in video error-concealment coding [3].
A plenty of reversible data hiding algorithms have been pro-

posed in the past decade. Classical RDH algorithms roughly fall
into three categories. The first class of algorithms follows the
idea of compression-embedding framework, which was first in-
troduced by Fridrich [4]. In these algorithms, a two-value fea-
ture is calculated for each pixel group, the sequence is compress-

Manuscript received September 12, 2012; revised January 06, 2013 and
March 14, 2013; accepted March 22, 2013. Date of publication April 03, 2013;
date of current version April 15, 2013. This work was supported in part by
the Natural Science Foundation of China under Grant 61170234 and Grant
60803155, and in part by the Strategic Priority Research Program of the Chi-
nese Academy of Sciences under Grant XDA06030601. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Chiou-Ting Hsu. (Corresponding author: W. Zhang.)
X. Hu, W. Zhang, and N. Yu are with the School of Information Science

and Technology, University of Science and Technology of China, Hefei,
230026, China (e-mail: hxc@mail.ustc.edu.cn; weimingzhang@yahoo.cn;
ynh@ustc.edu.cn).
X. Hu is with the Department of Information Research, Zhengzhou Informa-

tion Science and Technology Institute, Zhengzhou 450002, China, and also is
with the Institute of Software, Chinese Academy of Sciences, Beijing, 100196,
China (e-mail: xuexian_hu@yahoo.com.cn).
X. Zhao and F. Li are with the State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
100093, China (e-mail: zhaoxianfeng@iie.ac.cn; lifenghua@iie.ac.cn).
Digital Object Identifier 10.1109/TIFS.2013.2256131

ible and messages can be embedded in the extra space left by
lossless compression. The second class of methods is based on
difference expansion (DE) [5]–[7], in which the differences of
each pixel groups are expanded, e.g., multiplied by 2, and thus
the least significant bits (LSBs) of the differences are all-zeros
and can be used for embedding message. The last RDH algo-
rithms are based on histogram shift (HS) [8]. The histogram of
one special feature (for example, gray-scale value) for nature
image is quite uneven, which implies that the histogram can be
modified for embedding data. For instance, some space can be
saved for watermarks by shifting the bins of histogram. In fact,
better performance can be achieved by applying DE or HS to the
residual part of images, e.g., the predicted errors (PE) [9]–[12].
Almost all recent RDH methods include two steps. The first

step generates a host sequence with small entropy, i.e., the host
has a steeper histogram, which usually can be realized by pre-
dicted errors (PE). The second step reversibly embeds messages
into the host sequence by modifying its histogram with DE or
HS. These are for the sake ofmaximizing the payload for a given
distortion constraint or minimizing the overall distortion for a
given payload.
One natural problem is what is the upper bound of the pay-

load for a given host sequence and a distortion constraint. For
independent and identically distributed (i.i.d.) host sequence,
this problem has been solved by Kalker and Willems [13], who
formulated the RDH as a special rate-distortion problem, and
obtained the rate-distortion function, i.e., the upper bound of
the embedding rate under a given distortion constraint , as
follows:

(1)

where and denote the random variables of host signal and
marked-signal respectively. The maximum entropy is over all
transition probability matrices satisfying the distor-
tion constraint . The dis-
tortion metric is usually defined as the square error dis-
tortion, .
In fact, the optimal solution for (1) implies the

optimal modification manner on the histogram of the host
signal . However, how to efficiently realize the optimal
modification is still a problem. For binary host sequence,
i.e., , Zhang et al. [14], [15], proposed a code
construction approaching the rate-distortion bound (1). Re-
cently, Lin et al. [16] proposed a code construction that can
approach the rate-distortion bound for gray-scale host, i.e.,

. The coding and decoding processes of
the methods in [15],[16] need the optimal transition probability

as parameters. In other words, one should first
solve the optimization problem (1) before coding and decoding.
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Therefore, the efficiency and accuracy of solving problem (1)
directly influence the speeds of coding and decoding. Although
many optimization algorithms can be used to solve problem (1),
it will cost long time for large , because the matrix
to optimize is of size .
Fortunately, in [16], Lin et al. found that the joint distribu-

tion can be expressed by the marginal distributions
and . This means the coder and decoder only need

to calculate the optimal marginal distribution instead of
the conditional distribution . Lin et al. [16] proposed
a backward and forward iterative (BFI) algorithm to estimate

, in which the rate-distortion pair is controlled by a pa-
rameter . In practice, the coder needs the optimal
distribution for a given distortion constraint or embedding rate.
However, in BFI algorithm, no apparent translation between the
parameter and the distortion constraint can be revealed. So
for a given distortion constraint, we have to use binary search
to repeat the BFI algorithm to estimate , which is much
less efficient.
In this paper, we propose a novel algorithm to estimate the

optimal marginal distribution that is significantly faster
than the BFI algorithm [16]. Furthermore, our algorithm can
be easily modified to compute the optimal distribution
directly according to a given distortion constraint or an expected
embedding rate, which makes it more practical for applications.
Our algorithm exhibits fast convergence rate based on Lagrange
duality and logarithmic barrier method, and it scales well for
large cardinality and variant cover signal sources.
In the rest of the paper, we will first sketch the previous work

in Section II. Then we reveal the Lagrange dual problems of
the original problem (1) and its inverse problem in Section III.
Next in Section IV, we propose a path-following algorithm to
estimate the optimal marked-signal distribution and compare it
with the BFI method. Modified algorithms in Section V demon-
strate our algorithm’s efficiency and scalability for practical
scenarios. In Section VII, we combine our algorithm to achieve
the rate-distortion bound for reversible data hiding applica-
tions. We leave some discussions and implementation details
in Section VI and brief conclusions are drawn in Section VIII.

II. PREVIOUS WORK

A. Problem Formulation

In RDH, bits of message
are embedded by the sender into the cover sequence

, through
slightly modifying its elements to produce the marked-se-
quence . The two value sets are

and . We denote
the embedding rate by . Schemes are usually con-
structed to minimize some distortion measure between
and for a given embedding rate . The distortion metric

in this paper is by default defined as the square error
distortion, . Note that it’s not limited to
the square error distortion metric. Lin et al. [16] also discussed
other distortion metrics, such as -Norm .
We assume the cover is an -tuple composed
of i.i.d. samples drawn from the probability distribution

. For example,
is a 7-tuple, where .
Next, we discuss two application scenarios according to the

limited conditions on the sender.
• Distortion-limited sender (DLS) maximize the embed-
ding rate subject to an average distortion constraint .
According to (1), is fixed, and thus the problem can
be formulated as follows1:

(2)

where the variables are the transition probability matrix
, the constant parameters are the source distri-

bution , the distortion measure matrix , and
the distortion constraint .

• Payload-limited sender (PLS) minimize the average dis-
tortion for a given embedding rate , which is
formulated as:

(3)

where the variables are the transition probability matrix
, the constant parameters are the source distri-

bution , the distortion measures , and the en-
tropy constraint .

Actually the two problems above are dual to each other,
meaning that the optimal distribution for the first problem is,
for some value of , also optimal for the second one. Due
to their convexity and smoothness, many convex optimization
algorithms can be used to solve them and are guaranteed to
find the global optimal solution, like gradient projection2 or
interior-point methods [18],[21]. However, gradient based
method exhibits slow convergence, and although interior-point
method takes very few iterations to converge, they have dif-
ficulty in handling problems with large scale. The complexity

1Throughout this paper, we use natural logarithms for defining entropy.
2Available: http://en.wikipedia.org/wiki/Gradient descent.
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of computing the step direction each iteration for interior-point
method is , where is the size of the
transition probability matrix . Therefore, solving the
two primal problems above directly seems too limited for real
applications.
It has been proved both in [16] and [17] that the optimal

transition probability matrix of these two problems has a Non-
crossing-edges Property. To be specific, given an optimal ,
for any two distinct possible transition events
and , if , then holds. Lin
et al. [16] pointed out that, by using this Noncrossing-edges
property, the joint distribution of and can be expressed
as (4). and are cumulative probability distri-
butions of and defined by

, and .
It is noted that and

.

(4)

So the problems (2) and (3) can both be simplified to find
the optimal marginal distribution of the marked-signal
instead of the probability transition matrix .

B. The Iterative Algorithm to Calculate

In [16], Lin et al. proposed a backward and forward iter-
ative (BFI) algorithm to estimate the optimal distribution of
the marked-signal . The BFI algorithm assumes that the
cover and marked-signal value sets, and , are equal, i.e.,

.

Algorithm 1 The iterative algorithm to estimate the optimal
marked-signal distribution (BFI Algorithm [16].

Input: the cumulative probability distribution , a real
number , and the tolerance .
Output: the cumulative probability distribution .

1. Given initial set .
Or the user can design an arbitrary initialization as long
as . Declare the variable

.
2. For form 0 to , update each through

.

After finding the new value , record the maximal offset.

3. For from to 0, update each and the maximal
offset through the same criterion in step 2.

4. If , set and then go to step 2; otherwise,
output .

The BFI method controls an input parameter for various
rate-distortion pairs. The case admits the uniform distri-
bution performing the maximal embed-
ding rate, and another case admits

generating an unchanged marked-sequence with zero
embedding rate. Details can be found in [16].
In most situations while the host sequence possesses a quite

general probability distribution, no apparent translation between
the parameter and the average distortion can be revealed.
So in order to compute the optimal marked-signal distribution
for a given , we need to repeat the BFI algorithm by bi-
nary search to find the optimal in return, which makes it less
practical.

III. THE LAGRANGE DUAL PROBLEMS

In constrained optimization, the Lagrange duality [19] is
largely used to convert the primal problem to its dual one. It is
showed that if the primal problem is convex, the strong duality
property holds, meaning that the optimal objective function
values and corresponding optimal solutions for both problems
are equivalent.
Proposition 1: The Lagrange dual of the DLS problem (2) for

an average distortion constraint is of the following form:

(5)

where the variables are ,
, and . And the constant parame-

ters are , , and . The optimal solution of this
dual problem yields the optimal marked-signal distribution
of problem (2) with the following form:

(6)

Proof: The basic idea of Lagrangian duality is to take the
constraints in (2) into account by augmenting the objective func-
tion with a weighted sum of the constraint functions. The La-
grangian function associated with problem(2) is:

with Lagrange multipliers , ,
, and .

Since and correspond to inequality constraints, we
have and . We get the Lagrange dual
function
by finding the and that minimize , which is a



782 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 5, MAY 2013

convex function of and . First we note that is
a linear function of , thus it’s unbounded below unless

. This is equiva-
lent to since .When
the condition holds,
the Lagrangian becomes

, which means now we should minimize over
. To find the minimum of over
, we let the derivative with respect to equal zero,

i.e., . Thus we get with
the associated minimum value . So the Lagrange dual
function is given by (7) at the bottom of the page.
Strictly speaking, the Lagrange dual of the primal problem (2)

is to maximize the dual function subject to . By
making the inequality constraints explicit, we get:

which is equivalent to (5).
Corollary 1: The Lagrange dual problem of the inverse PLS

problem (3) for an expected embedding rate is of the fol-
lowing form:

(8)

where the variables are , , and . And
the constant parameters are , , and . The op-
timal solution of this dual problem and yields the optimal
marked-signal distribution of problem (3) with the following
form:

(9)

Proof: The derivation is nearly the same as Proposition 1.

IV. PATH FOLLOWING ALGORITHM TO CALCULATE

A. Path-Following Algorithm

In the derived dual problem (5), the parameter
is dual associated with the distortion constraint . The case

admits the uniform distribution

corresponding to the maximal embedding rate, and another case
admits corresponding to

the zero embedding rate. So for a specific input parameter ,
the dual problem (5) can be rewritten as:

(10)
The corresponding optimal marked-signal distribution is
given by (6).
By observing (10), the objective function is smooth and

convex, but it contains too many constraints. From the basic
idea of the barrier method [21], we can eliminate the inequality
constraints by adding logarithmic penalty on them, and thus
problem (10) is approximated as an unconstrained problem:

(11)

where is a penalty parameter, and when , the ap-
proximating error tends to zeros. The variables and
are concatenated into a row vector

conveniently.
The path-following method (barrier method) is based on

solving a sequence of unconstrained minimization problems
(11) for increasing values of , using the last point found as
the starting point for the next unconstrained minimization
problem. The path-following algorithm to solve (10) is outlined
as Algorithm 2.

Algorithm 2 The path-following algorithm to estimate the
optimal marked-signal distribution (PF Algorithm)

Input: The cover signal distribution , a real number
, and the tolerance value .

Output: The estimated marked-signal distribution .

1. Initialize with any feasible points and
which satisfy

, and , .
2.While

1) Centering step: Minimizing (11) with initial point
, and denote the computed solution by .

2) Update: , .
3) Increase t: .

end While
3. Output: .

otherwise.
(7)
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TABLE I
COMPUTATIONAL TIME COMPARISON BETWEEN BFI AND PF OVER DIFFERENT

HOST SIGNAL DISTRIBUTIONS AND PROBLEM SCALES

Algorithm 3 Newton’s method to solve (11)

Input: Initial point .
Output: Computed point minimizing .

1. given Newton’s method tolerance .
2.While not converged

1) Form gradient vector and
Hessian matrix .

2) Compute step direction and decrement
value by: Note here the superscript stands for
vector or matrix transpose, turns a row vector into
a column vector.

3) Stop criterion: quit if .
4) Choose step size by backtracking line search.
5) Update: .

End While
3. Output: .

In PF Algorithm3, at each Centering step , we compute the
central point starting from the previously computed
central point, and then increase by a factor . The initial
point and is arbitrarily chosen as long as the condition

holds. From (6) we ini-
tialize with and
to let , corresponding to the uniform distribution.
For the penalty term, the general case is good. Faster con-
vergence can be gained by choosing to minimize the norm of
gradient , as explained in Section VI. Parameter
in the range is a good choice and our experiment shows
that performs well. Because the approaching accuracy
increases slightly when gets larger, we terminate the outer it-
eration with .

3Note here the superscript stands for vector or matrix transpose, turns
a row vector into a column vector.

The Newton’s method [20] solving the Centering step is de-
scribed by Algorithm 3. Newton’s method is a standard opti-
mization framework for unconstrained minimization problems
which is famous for its fast convergence rate. In each iteration
it first forms the gradient vector and the Hessian matrix ,
and according to these two terms, the step direction is com-
puted. Next along this step direction , a step size is chosen
to finally update the variable vector by .
The stop criterion for Newton’s method is set with tolerance

.

Algorithm 4 Backtracking line search method to calculate the
step size

Input: a step direction for at ,
.

Output: the step size .

1. Ensure the domain of the function :

2. Decrease the function value sufficiently:

3. Output: .

To decide how far we update the variable vector along the
step direction , we use the Backtracking line search method
[20] to estimate the step size , which is described by Algo-
rithm 4. The parameter is a reduce factor to update , and
the parameter measures the decrease degree for the func-
tion we accept. In our experiments,

are used. We first multiply by until
, which ensures the domain of the

function. And then we start to check whether the inequality
holds. Details of

the Newton’s method and backtracking line search can be found
in [20].
As explained in Section Section VI, the Hessian matrix

for Newton’s step exhibits special structures which
enable fast solving the corresponding step direction . Due
to the fast convergence rate of the Newton’s method, our PF
algorithm is quite efficient as experiments demonstrate.

B. Simulations

In this section, we compare our proposed PF algorithm with
BFI algorithm [16] (offered by Lin et al. ) using numerical sim-
ulations. The host sequences are drawn from discrete Laplace
distributions with different scale parameters . We take the case
of and test with incremental values for . We
range the input parameters and with 15 evenly spaced values
so that the corresponding embedding rate varies from minimal
to maximal, and the performances are averaged. All the simula-
tions in this paper are conducted and timed on the same PC with
an Intel Core i5 M 520 2.40 GHz CPU that has 4 GB memory,
running Windows 7 (64-bit) and Matlab (version R2011b).
Table I shows that our PF algorithm performs much faster

than BFI algorithm and almost 15 times faster on average for
. Our method exhibits a consistent convergent rate as
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Fig. 1. Performance comparison of PF and BFI algorithms for a Laplace host
sequence with , , and . (a) Rate-distortion curves.
(b) Computational time comparison with respect to variant embedding rates.

the problem size scales, while the main efforts are involved in
solving a set of linear equations per iteration as illustrated in
Section VI. Relatively, the BFI algorithm enjoys cheap compu-
tations per iteration but its convergence is slow when problem
scale gets large. For a specified problem scale, the BFI algo-
rithm actually favors low embedding rate and exhibits perfor-
mance reduction when the embedding rate increases as shown
in Fig. 1(b).
Fig. 1(a) depicts the rate-distortion curves of both algorithms

for a specific Laplace host signal : and
. It shows that the two curves coincide with each other

to the expected rate-distortion bound.

ALGORITHMS FOR DLS AND PLS PROBLEMS

C. PF Algorithm for DLS Problem

The PF algorithm stated in Section IV can be modified to
solve the DLS problem(2) directly for a given distortion con-
straint . By adding the penalty terms, the dual problem (5)

can be rewritten as the following unconstrained optimization
problem:

(12)

where is the optimization variable.
The corresponding optimal marked-signal distribution in
this case is given by (6). The PF algorithm for DLS problem is
described as Algorithm 5.

Algorithm 5 The path-following algorithm for DLS problem
to estimate the optimal marked-signal distribution
(DLS PF Algorithm).

Input: The cover signal distribution
, a distortion constraint , and the

tolerance value .
Output: The estimated marked-signal distribution .

1. Initialize with any feasible points and
which satisfy

, and , , .
2.While ( )

1) Centering step: Minimizing (12) with initial
point , and denote the computed solution by

.
2) Update: , , .
3) Increase t: .

end while
3. Output: .

Algorithm 6 The path-following algorithm for PLS problem
to estimate the optimal marked-signal distribution (PLS
PF Algorithm).

Input: The cover signal distribution , an expected
embedding rate , and the tolerance value .
Output: The estimated marked-signal distribution .

1. Initialize with any feasible points and
which satisfy

, and , , .
2.While ( )

1) Centering step: Minimizing (13) with initial
point , and denote the computed solution by

.
2) Update: , and .
3) Increase t: .

end while
3. Output: .
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TABLE II
COMPUTATIONAL TIME COMPARISON BETWEEN DLS_PF AND PF WITH

RESPECT TO DIFFERENT HOST SIGNAL DISTRIBUTIONS AND PROBLEM SCALES

D. PF Algorithm for PLS Problem

For their similar formulation, the PLS problem (3) for an ex-
pected embedding rate can also be solved by the path-fol-
lowing algorithm. The penalized unconstrained objective func-
tion for the dual problem (8) is:

(13)

where is the optimization variable.
The corresponding optimal marked-signal distribution in
this case is given by (9). The PF algorithm for PLS problem is
described by Algorithm 6.

E. Simulations

To evaluate the performance of our DLS_PF algorithm for
the practical DLS problem (2) for a given distortion constraint

, we compare it with the original PF algorithm for an input
parameter . Considering the case , we first run
the PF algorithm and then use its resulted as the input for
DLS_PF algorithm.We range the embedding rate frommaximal
to minimal with 15 trials and average the performance. Results
in Table II demonstrate that the time cost for the DLS_PF algo-
rithm nearly doubles that of PF algorithm on average.
Analogously, the performance of our PLS_PF algorithm for

the PLS problem (3) is nearly the same as the DLS_PF algo-
rithm, thus comparison details are omitted.

V. IMPLEMENTATION DETAILS AND DISCUSSIONS

A. Choice of

An important issue for path-following algorithm is the choice
of initial value of . If is too large, the first Centering step
will require too many iterations. If is too small, the algorithm
will require extra outer iterations, and possibly too many inner
iterations in the first Centering step. As suggested in [21], a
good choice of associated with the initial value is given
by minimizing the following problem:

which is a simple least-square problem, and can be solved
analytically.

B. Special Structure of Hessian Matrix

For the original PF algorithm, the most time-consuming part
is the computation for the step direction in the Centering
step (Newton’s method). It’s equivalent to solve the set of linear
equations:

According to (11), for the original PF Algorithm, the gradient
vector is given by (14), and the Hessian matrix is given by
(15) at the bottom of the next page. The Hessian matrix in this
case is highly structured, to be specific:

where and are both diagonal. So it is desirable to use
Schur complement4 [22] to solve the linear equations, and the
Schur complement matrix is formed by

(16)

which is symmetric and positive definite, thus make it efficient
to be inverted by using Cholesky factorization. The roughly
complexity of solving the linear equations is then

In our paper we assume , which means that the
time cost is dominated bymatrix multiplication to form the sym-
metric Schur complement matrix .
For the DLS_PF algorithm and PLS_PF Algorithm, the only

difference is that the matrix is an addition of a diagonal ma-
trix and a highly sparse matrix. By observing (16), this change
is negligible to form , so the complexity for each inner itera-
tion in Newton’s method is nearly the same.

4Available: http://en.wikipedia.org/wiki/Schur complement.
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Fig. 2. Context of a pixel.

C. PLS_PF Algorithm

In the PLS_PF Algorithm, when the input embedding rate ap-
proaches the upper bound of the entropy of the marked-signal,
i.e., , the Hessian matrix in Newton’s step
may become ill-conditioned (singular) while the solution vector
gets close to optimal. Therefore, we have to check this and

force quit the inner loop to avoid getting trapped, or alterna-
tively we can use modified Cholesky factorization to rectify the
positive definiteness of the Hessian matrix.

VI. APPLICATION IN CODE CONSTRUCTION FOR

REVERSIBLE DATA HIDING

Lin et al. [16] proposed a scalar code construction which
can approach the rate-distortion bound (1). This coding method
modifies the cover signals according to the optimal distribution
ofmarked-signals, , so both the encoder and decodermust
estimate the optimal distribution of marked-signals before exe-
cuting the encoding (decoding) process. We refer readers to [16]
for the details of the coding method.
To illustrate the power of the scalar code construction, Lin et

al. [16] also proposed a RDH scheme for gray-scale images by
applying their coding method to the prediction errors (PE) of
pixels. The embedding process first computes the PEs from left
to right, and from top to bottom. Fig. 2 depicts the four neigh-
boring pixels used for predicting the pixel . The predicted
value is defined as

(17)

For the pixels at left-most column and top line, we pick the
nearby pixel, i.e., or , as the predicted value. For the right-
most column we let and we omit the top-left corner
pixel. Then we have the PE defined as

(18)

Taking PEs as cover signals, the message is embedded in the
sequence of PEs by executing the codingmethod in [16] to result
a marked-sequence . The corresponding pixel
of the watermarked image is defined by

(19)

We call the above scheme as “Scalar code based RDH”, in
which we replace BFI algorithm with our DLS_PF algorithm to
estimate the optimal distribution of marked-signals . We
compare this new RDH scheme with the method proposed by
Thodi et al. [6]. Fig. 3(a) shows the test image Lena and Fig. 3(b)
draws the rate-distortion curves of both methods, which shows
that scalar code based RDH can increase the PSNR. Further-
more, the scalar code based method is capable of larger embed-
ding rates as shown in Fig. 3(c). In fact, from Fig. 3(b), we can
see that the scalar code based method significantly outperforms
Thodi et al.’s method when the embedding rate is larger than 1.
Although both BFI algorithm [16] and the proposed DLS_PF

(PLS_PF) algorithm can accurately estimate the optimal distri-
bution of marked-signals, DLS_PF (PLS_PF) algorithm is more
practical than BFI for applications. For instance, embedding
message into the cover for a given distortion constraints di-
rectly is generally appreciated. For the BFI algorithm, we need
to use binary search to find the optimal for the given
because no apparent translation between and is revealed.
We implemented scalar code based RDH based on binary search

(14)

...
. . .

...

...
. . .

... (15)
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Fig. 3. Scalar code construction applied to gray-scale images. (a) Host image
Lena (512 512). (b) Rate-distortion comparisons with Thodi’s method [6].
(c) Rate-distortion curve for high embedding rates.

TABLE III
TIME CONSUMED FOR THE EMBEDDING PROCESS OF

SCALAR CODE BASED RDH

BFI method and DLS_PF algorithm respectively, and compared
their embedding speeds over 29 increasing values for . For
the Lena image, the average time consumed for both methods
are illustrated in Table III.

Fig. 4. Computational time comparison of scalar code based RDH with dif-
ferent distribution estimating algorithms for given distortion constraints.

As shown in Table III, the latter coding stage costs less time
than the former optimizing stage in which the optimal marked-
signal distribution is estimated. This means that the total
time consumed by the embedding process is dominated by the
former process to find the optimal . From Fig. 4 we can
see that the binary searching BFI method performs poorly, and
our method is much more efficient in applications for reversible
information hiding.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a path-following algorithm
to estimate the optimal distribution of the marked-signal for
reversible data hiding. In comparison with the previous BFI
method, the proposed algorithm performs much better and is
efficient and scalable for practical applications.
Besides its simplicity for implementation, the proposed path-

following algorithm is of high accuracy to approach the optimal
solution as the penalty parameter increases, even though each
Centering step is not solved extremely accurately. The reason
is that the resulted minimizer of the Newton’s method is used to
good-initialize the next unconstrained optimization problem for
a larger , so an extremely accurate minimizer is not necessary.
This means we can choose a looser value for the parameter
in Algorithm 3. It will be valuable to explore gradient based or
quasi-Newton methods to solve the Centering step in our pro-
posed path-following algorithm in later work, which may make
the algorithm more suitable for very large cardinality .
To help readers to compare and use the proposed algorithms,

we have posted our Matlab implementation of the algorithms at
the following website: http://home.ustc.edu.cn/ hxc.
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