
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013 2775

Recursive Histogram Modification: Establishing
Equivalency Between Reversible Data Hiding

and Lossless Data Compression
Weiming Zhang, Xiaocheng Hu, Xiaolong Li, and Nenghai Yu

Abstract— State-of-the-art schemes for reversible data hiding
(RDH) usually consist of two steps: first construct a host sequence
with a sharp histogram via prediction errors, and then embed
messages by modifying the histogram with methods, such as
difference expansion and histogram shift. In this paper, we
focus on the second stage, and propose a histogram modification
method for RDH, which embeds the message by recursively
utilizing the decompression and compression processes of an
entropy coder. We prove that, for independent identically dis-
tributed (i.i.d.) gray-scale host signals, the proposed method
asymptotically approaches the rate-distortion bound of RDH as
long as perfect compression can be realized, i.e., the entropy
coder can approach entropy. Therefore, this method establishes
the equivalency between reversible data hiding and lossless data
compression. Experiments show that this coding method can be
used to improve the performance of previous RDH schemes and
the improvements are more significant for larger images.

Index Terms— Reversible data hiding, histogram shift, differ-
ence expansion, recursive code construction, rate-distortion.

I. INTRODUCTION

AS A TECHNIQUE that embeds the secret message
into cover signals, information hiding has been widely

applied in areas such as covert communication, media anno-
tation and integrity authentication. Reversible data hiding
(RDH) is one kind of information hiding techniques with the
characteristics such that not only the secret message needs
to be precisely extracted, but also the cover itself should be
restored losslessly. This property is important in some special
scenarios such as medical imagery [1], military imagery and
law forensics. In these applications, the cover is too precious or
too important to be damaged [2]. Moreover, it has been found
that RDH can be quite helpful in video error-concealment
coding [3].

Manuscript received October 19, 2012; revised February 13, 2013; accepted
March 31, 2013. Date of publication April 12, 2013; date of current version
May 22, 2013. This work was supported in part by the Natural Science
Foundation of China under Grants 61170234 and 60803155, and by the
Strategic Priority Research Program of the Chinese Academy of Sciences
under Grant XDA06030601. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Vladimir Stankovic.

W. Zhang, X. Hu, and N. Yu are with the School of Information Science
and Technology, University of Science and Technology of China, Hefei
230026, China (e-mail: weimingzhang@yahoo.cn; hxc@mail.ustc.edu.cn;
ynh@ustc.edu.cn).

X. Li is with the Institute of Computer Science and Technology, Peking
University, Beijing 100871, China (e-mail: lixiaolong@icst.pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2257814

A plenty of RDH algorithms have been proposed in the
past decade. Classical RDH algorithms roughly fall into three
categories. The first class of algorithms follow the idea of
compression-embedding framework, which was first intro-
duced by Fridrich [4]. In these algorithms, a compressible
two-value feature is calculated from the cover, and the message
can be embedded in the extra space left by lossless compres-
sion. The second class of methods are based on difference
expansion (DE) [5], in which the differences of each pixel
groups are expanded, e.g., multiplied by 2, and thus the least
significant bits (LSBs) of the differences are all-zeros and can
be used for embedding the message. Another kind of RDH
is based on histogram shift (HS) [6]. The histogram of one
special feature (e.g., grayscale value) for natural image is
quite uneven, so some space can be saved for watermarks
by shifting the bins of histogram. In fact, better performance
can be achieved by applying DE or HS to the residual part
of images, e.g., the prediction errors (PE) [7]–[12]. Recently,
some improved method for RDH in PE have been presented.
Li et al. [13] proposed to adaptively embed 2 bits into each
expandable pixel of flat regions and 1 bit into that of rough
regions. Coltuc [14] proposed to change the value of PE by
modifying not only the predicted pixel but also its prediction
context.

Almost all recent RDH methods consist of two steps. The
first step generates a host sequence with small entropy, i.e.,
the host has a sharp histogram, which usually can be realized
by using PE combined with the sorting technique [11] or
pixel selection [13]. The second step reversibly embeds the
message into the host sequence by modifying its histogram
with methods like HS and DE. These are for the sake of
maximizing the payload for a given distortion constraint or
minimizing the overall distortion for a given payload. Many
PE techniques have been applied to RDH, such as JPEG-
LS prediction errors [7], rhombus prediction errors [11],
and interpolation errors [12]. The sorting technique [11]
and pixel selection [13] give priority to prediction errors in
smooth regions, so a sharper histogram can be obtained. After
generating a good histogram for RDH, the following two
problems are: 1) what is the maximum embedding rate for the
given histogram and distortion constraint; 2) how to realize
the optimal modification on the histogram for achieving the
maximum embedding rate? Herein, embedding rate is defined
as the average number of message bits carried by one host
signal.

1057-7149/$31.00 © 2013 IEEE

2776 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

For independent and identically distributed (i.i.d.) host sig-
nals, the first problem has been solved by Kalker and Willems
[15], who formulated the RDH as a rate-distortion problem,
and obtained the rate-distortion function, i.e., the upper bound
of the embedding rate under a given distortion constraint,
as follows:

ρrev (�) = maximize{H (Y)}− H (X) (1)

where X and Y denote the random variables of host signal
and stego signal respectively. Maximizing entropy is over
all transition probabilities PY |X (y|x) satisfying the distortion
constraint ∑

x,y

PX (x)PY |X (y|x)D(x, y) ≤ � (2)

where the distortion metric D(x, y) is usually defined as the
square error distortion, i.e., D(x, y) = (x − y)2.

In fact, the optimal solution PY |X (y|x) for (1) implies the
optimal modification manner on the histogram of the host
signal X . However, how to efficiently realize the optimal mod-
ification remains a problem. For a binary host sequence, i.e.,
x ∈ {0, 1}, Kalker and Willems [15] proposed a recursive code
construction and Zhang et al. [16], [17] improved the recursive
code construction to approach the rate-distortion bound (1).
Recently, Lin et al. [18] proposed a code construction for gray-
scale signals, i.e., x ∈ {0, 1, . . . , B − 1} where B is an integer
larger than 1. Although Lin et al.’s method is close to the
rate-distortion bound (1), it modifies the host sequence in a
signal by signal manner, which suffers from high complexity
of implementation and is not proved to approach the rate-
distortion bound.

In this paper, we extend the recursive code construction
from binary signals to gray-scale signals, which modifies the
histogram in a bin by bin manner according to the optimal
transition probability. This novel code can be easily imple-
mented by recursively applying the decompression process and
compression process of an entropy coder. We prove that the
proposed code can approach the rate-distortion bound (1) as
long as the entropy coder reaches entropy. In other words,
the proposed code is optimal for RDH if the entropy coder is
optimal for lossless data compression (LDC), which essentially
establishes the equivalency between RDH and LDC. Further-
more, to show the power of the proposed code, we improve
Luo et al.’s method [12] and Sachnev et al.’s method [11] by
applying the code to the sequence of PEs.

The rest of the paper is organized as follows. Section II
briefly introduces how to solve the optimal distribution for the
rate-distortion problem (1). The recursive code construction
for gray-scale signals with optimality proof is elaborated in
Section III. Furthermore, two application cases are given in
Section IV by exploiting the code construction to improve the
RDH schemes presented in [11], [12], and finally we conclude
this paper in Section V.

II. OPTIMAL TRANSITION PROBABILITY

Throughout this paper, we denote matrices and vectors by
boldface fonts, and use capital letters for the random variables
and small letters for their realizations. We denote the entropy

by H (X) and the conditional entropy by H (Y |X). Specially,
for the probability distribution (P(0), . . . , P(B −1)) such that
P(i) > 0 and �B−1

i=0 P(i) = 1, the B-ary entropy function is
defined as H (P(0), . . . , P(B − 1)) = −�B−1

i=0 P(i) log2 P(i).
To estimate the rate-distortion bound or construct codes

approaching the bound, we should first estimate the opti-
mal solution PY |X (y|x) for (1). Due to its convexity, many
convex optimization algorithms can be used to solve it,
like gradient projection or interior-point methods. However,
although interior-point methods take very few iterations to
converge, they have difficulty in handling problems with
large scale because the complexity of computing the step
direction is O((B × B)3), if both x and y belong to
{0, 1, . . . , B − 1}.

Fortunately, it has been proved both in [18] and [19]
that the optimal channel transition matrix of problem (1)
has a Non-Crossing-Edges property. To be specific, given
an optimal PY |X , for any two distinct possible transition
events PY |X (y1|x1) > 0 and PY |X (y2|x2) > 0, if x1 < x2,
then y1 ≤ y2 holds. Lin et al. [18] pointed out that, by
using this Non-Crossing-Edges property, the joint distribution
of X and Y can be expressed as PX,Y (x, y) = max{0,
min{PC X (x), PCY (y)}} − max{PC X (x − 1), PCY (y − 1)}.
Herein, PC X (x) and PCY (y) are cumulative probability dis-
tribution of X and Y defined by PC X (x) = ∑x

i=0 PX (i), x =
0, . . . , B − 1, and PCY (y) = ∑y

i=0 PY (i), y = 0, . . . , B − 1.
It is noted that PC X (−1) = PCY (−1) = 0, and PC X (B −1) =
PCY (B − 1) = 1.

So the problem (1) can be simplified to find the optimal
marginal distribution of the stego-signal PY (y). Lin et al. [18]
proposed a Backward and Forward Iterative (BFI) algorithm
to estimate PY (y). Recently, we proposed a fast algorithm to
estimate the optimal marginal distribution of the stego-signal
based on lagrangian duality [20].

Problem (1) is about a sender with a distortion constraint.
In practice, we may also consider a sender with a given
embedding rate R and minimize the average distortion, such
that

minimize
∑

x,y PX (x)PY |X (y|x)D(x, y)

subject to H (Y) = R + H (X).
(3)

Problem (3) is dual with problem (1), and the minimization
is over all transition probabilities PY |X (y|x). In [20], we also
proposed a fast algorithm to estimate the optimal solution
of problem (3). We provided the source codes for solving
problems (1) and (3) at the web site [21].

For problem (1) or (3), we denote the optimal transition
probability matrix from X to Y by QY |X , and the optimal
transition probability matrix from Y to X by QX |Y , such that

QY |X = (QY |0, QY |1, . . . , QY |B−1) (4)

QX |Y = (QX |0, QX |1, . . . , QX |B−1). (5)

The x th column of QY |X is the transition probability distrib-
ution under the condition X = x − 1 (1 ≤ x ≤ B), that is,

QY |x−1 = (
PY |X (0|x − 1), . . . , PY |X (B − 1|x − 1)

)T
. (6)

ZHANG et al.: RECURSIVE HISTOGRAM MODIFICATION 2777

The yth column of QX |Y is the transition probability distrib-
ution under the condition Y = y − 1 (1 ≤ y ≤ B), that is,

QX |y−1 = (
PX |Y (0|y − 1), . . . , PX |Y (B − 1|y − 1)

)T (7)

III. OPTIMAL HISTOGRAM MODIFICATION FOR RDH

In this section, we will present a histogram modification
method for RDH to approach the rate-distortion bound (1),
which has been motivated by the recursive code construction
[15], [17]. We will first present an analysis of the methodol-
ogy; then some implementation details are discussed; finally,
a thorough algorithm diagram is presented.

A. Recursive Histogram Modification

In this section, we propose a recursive histogram modifica-
tion (RHM) method for RDH, which divides the host sequence
into disjoint blocks and embeds the message by recursively
modifying the histogram of each block in a bin by bin manner.

Assume that a memoryless source produces the host
sequence x = (x1, x2, . . . , xN) with the identical distribution
PX (x) such that x ∈ {0, 1, . . . , B − 1}. The message is
usually encrypted before being embedded, so we assume that
the secret message m = (m1, m2, . . .) is a binary random
sequence with mi ∈ {0, 1}. To recursively embed the message,
we first divide the host sequence x into g disjoint blocks, in
which the first g − 1 blocks have the same length K , and the
last block has the length Llast , and thus N = K (g−1)+Llast .
To finish the embedding, we have to set Llast to be larger
than K , and we will discuss how to determine Llast in
Subsection III-C. The i th cover block is denoted by xi , and
the corresponding stego block is denoted by yi , i = 1, . . . , g.

We embed the message into each block by an embedding
function Emb(), such that (Mi+1, yi) = Emb(Mi , xi), with
i = 1, . . . , g and M1 = m. In other words, the embedding
process in the i th block outputs the message to be embedded
into the (i + 1)th block. Fig. 1 briefly depicts the data embed-
ding process, in which Mi+1 consists of the the rest message
bits and the overhead information, O(xi), for restoring xi . The
message extraction and cover reconstruction are processed in
a backward manner with an extraction function Ext (), such
that (Mi , xi) = Ext (Mi+1, yi), with i = g, . . . , 1.

Now we consider a sender with a distortion constraint �.
To maximize the embedding rate, we first use the method
in [20] to estimate the optimal transition probability matrix
QY |X of problem (1) according to � and the host distribution
PX , and then we can calculate the transition probability
matrix QX |Y . The embedding and extracting processes will be
realized by the decompression and compression algorithms of
an entropy coder (e.g., arithmetic coder) with QY |X and QX |Y
as parameters. We denote the compression and decompression
algorithms by Comp() and Decomp() respectively. For sim-
plicity, we assume that perfect compression can be realized,
i.e., the entropy coder can reach entropy.

In each host block xi , the embedding function Emb()
executes two tasks. One task is to embed some bits of the
message and generate the stego-block yi by decompressing
the message sequence according to QY |X . The other task is to

Fig. 1. Recursive blockwise data embedding.

Fig. 2. Example of the proposed code construction. Assume that the first
eight bits of M1 are decompressed into y′

1,0, and the following three bits of
M1 (bits in the shadow) are decompressed into y′

1,1.

produce the overhead information O(xi) for restoring the host
block xi by compressing it according to yi and QX |Y . The
overhead information will be embedded into the next block
xi+1 as a part of Mi+1 (see Fig. 1).

In each stego block yi , the extraction function Ext () also
executes two tasks. One task is to decompress the overhead
information extracted from yi+1 according to QX |Y and restore
the host block xi . The other task is to extract the message by
compressing yi according to xi and QY |X .

Next, we describe the embedding, extracting and restoring
processes in details.

1) Data Embedding Process: The embedding is done by
substituting signals of the cover with sequences obtained by
decompressing the message bits in accordance with the the
optimal transition probability matrix QY |X . In other words, for
each bin x , x ∈ {0, . . . , B − 1}, we decompress a part of the
message sequence according to the distribution QY |x , and then
substitute all host signals equal to x with the decompressed
sequence. Thus, the histogram of the cover block is modified
in a bin by bin manner.

Taking the first block as an example, we describe how
to do (M2, y1)=Emb(M1, x1). Denote the frequency of the
bin x , i.e., the number of x’s in x1, by hx , and sequentially
decompress the message sequence M1 by the decompression
algorithm Decomp() according to the distribution QY |x =(
PY |X (0|x), . . . , PY |X (B − 1|x)

)T until the length of decom-
pressed sequence is equal to hx for x = 0, 1, . . . , B − 1.
The decompression process is formulated by the following
equation.

(b1, y′
1,0, . . . , y′

1,B−1) = Decomp(M1, QY |X , h0, . . . , h B−1)
(8)

2778 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 105

(a)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12

14
x 104

(c)

Fig. 3. Histograms: (a) Histogram of the host sequence. (b) Modified histogram obtained by PEE. (c) Modified histogram obtained by the proposed code.

Eq. (8) means that the first b1 bits of M1, i.e., (m1, . . . , mb1),
are decompressed into a sequence consisting of B sub-
sequences, y′

1,x , 0 ≤ x ≤ B − 1. The x th sub-sequence, y′
1,x ,

has length hx and is obtained with the distribution QY |x .
After that, we substitute all symbols “x” of x1 with y′

1,x
for x = 0, 1, . . . , B − 1, by which we embed the first b1 bits
of M1 and generate the first stego block y1. In this process,
the cover signal x is modified to the stego signal y with
probability PY |X (y|x). At the receiver side, the embedded bits
can be extracted by compressing y′

1,x according to QY |x for
x = 0, 1, . . . , B − 1.

Because the expectation of hx is equal to K PX (x) and we
have assumed the compression algorithm can reach entropy,
the average number of message bits embedded into the bin x
is equal to

K PX (x)H (QY |x), x = 0, 1, . . . , B − 1. (9)

Therefore, the average message length embedded into the first
block, i.e., the expectation of b1, can be estimated by

K
B−1∑

x=0

PX (x)H
(
QY |x

)
. (10)

As our data embedding method is reversible, we should be
able to restore x1, which can be fulfilled by embedding some
overhead information of x1 into the subsequent blocks. Now,
the question is, what’s the overhead of x1? A natural strategy is
to take the compressed version of x1 as its overhead. Because
the receiver can restore x1 under the condition of known-
y1, we implement a conditional compression to cut down the
length of the overhead.

Denote the index set of all symbols “y” in y1 by IYy

and extract a sub-sequence x′
1,y from x1 according to IYy ,

such that x′
1,y = {xi |xi ∈ x1 and i ∈ IYy}. Thus, the

block x1 is divided into B disjointed sub-sequences x′
1,y for

y = 0, 1, . . . , B − 1. The probability distribution of the sub-
sequence x′

1,y can be estimated by QX |y , so we compress it
according to QX |y such that

O(x′
1,y) = Comp(x′

1,y, QX |y), y = 0, 1, . . . , B − 1. (11)

Fig. 4. The optimal transition probability matrix QY |X for Example 2, where
the empty elements mean zeros.

Because the average length of x′
1,y is equal to K PY (y) and

we assume that the compression algorithm can reach entropy,
the average length of O(x′

1,y) can be estimated by

K PY (y)H (QX |y). (12)

We concatenate these compressed sub-sequences and get the
overhead of x1, that is,

O(x1) = O(x′
1,0)||O(x′

1,1)|| · · · ||O(x′
1,B−1). (13)

The average length of O(x1) is given by

K
B−1∑

y=0

PY (y)H
(
QX |y

)
. (14)

We concatenate O(x1) at the front of the rest bits of M1
(i.e., except for the first b1 bits that have been embedded) to
generate M2. In the same manner as above, some bits at the
front of M2 are embedded into x2 and the overhead of x2 is
concatenated with the rest bits of M2 to generate M3, and then
some bits of which are embedded into x3 and so forth. This
process is implemented sequentially until the (g − 1)th block.

In the last host block xg , we embed Mg , that is just the
overhead of xg−1, by replacing the LSBs of xg . The LSBs of
xg can be embedded into the previous g − 1 blocks as a part
of the message. The parameters for the recipient, including

ZHANG et al.: RECURSIVE HISTOGRAM MODIFICATION 2779

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distortion

E
m

be
dd

in
g

ra
te

Upper bound
Proposed code

Fig. 5. Experiments on the performance of the proposed code construction.

the host distribution (PX (0), . . . , PX (B − 1)), the distortion
constraint �, and the block length K , are also embedded into
the last block by LSB replacement. For the last block, we set
the output Mg+1 to be empty, meaning that the embedding
process stops.

2) Data Extraction and Cover Restoration Processes: The
data extraction and cover restoration are processed in a back-
ward manner, such that (Mi , xi) = Ext (Mi+1, yi) for
i = g−1, . . . , 1. From the (i +1)th stego block, we can extract
the overhead O(xi), by which we reconstruct the i th cover
block xi . With the help of xi , we can extract the message from
yi by decompressing it according to the the optimal transition
probability matrix QY |X .

First, from the LSBs of the last stego block yg , we
extract (PX (0), . . . , PX (B − 1)), �, K , Mg . According to the
extracted parameters, we can calculate the optimal transition
probability matrices QY |X and QX |Y .

Next, we describe how to do (Mg−1, xg−1) =
Ext (Mg, yg−1). We denote the number of y in yg−1
by ly , and sequentially decompress the message sequence Mg

by the decompression algorithm Decomp() according to the
distribution QX |y until the length of decompressed sequence
is equal to ly for y = 0, 1, . . . , B − 1. The decompression
process is formulated by the following equation.

(cg, x′
g−1,0, . . . , x′

g−1,B−1)

= Decomp(Mg, QX |Y , l0, . . . , lB−1). (15)

Eq. (15) means that the first cg bits of Mg are decompressed
into a sequence consisting of B sub-sequences x′

g−1,y, 0 ≤
y ≤ B −1. The yth sub-sequence, x′

g−1,y, has length ly and is
obtained with the distribution QX |y . After that, we substitute
all symbols “y” of yg−1 with x′

g−1,y for y = 0, 1, . . . , B − 1,
by which we reconstruct the host block xg−1.

After that, we extract message bits from yg−1 with the
help of xg−1. For x = 0, . . . , B − 1, denote the index
set of all symbols “x” in xg−1 by IXx and extract the
sub-sequence y′

g−1,x from yg−1 according to IXx , such that
y′

g−1,x = {yi |yi ∈ yg−1 and i ∈ IXx }. We compress y′
g−1,x

(a) Lena.pgm (b) Baboon.pgm (c) Goldrill.pgm (d) Peppers.pgm

Fig. 6. Test images sized 512 × 512.

(a) Man.tiff (b) Grass.tiff

Fig. 7. Test images sized 1024 × 1024.

according to QY |x for x = 0, . . . , B − 1, and concatenate the
compressed sequences, which outputs the message embedded
in xg−1, denoted by M′

g−1. Finally, we generate the Mg−1 by
concatenating M′

g−1 at the front of the rest bits of Mg (i.e.
except for the cg bits that have been decompressed.)

In the same manner, we can do (Mi , xi) = Ext (Mi+1, yi),
for i = g − 2, . . . , 1, which will restore the first g − 1 host
blocks and finally output the message M1. From M1, we take
out the LSBs of the last block and restore the last block with
LSB replacement.

Now we use a simple example with only one block to
illustrate the coding and decoding processes of the method
described above.

Example 1: As shown in Fig. 2, the host is a ternary
sequence with distribution (PX (0), PX (1), PX (2)) = (0.7,
0.2, 0.1), and the block length K = 10. The first cover block
x1 consists of seven “0”, two “1” and one “2”. Assume that,
for the distortion constraint � = 0.6, the optimal transition
probability matrix

QY |X =
⎛
⎜⎝

5/
7 0 0

1/
7

1/
2 0

1/
7

1/
2 1

⎞
⎟⎠ (16)

and we can calculate the other transition probability matrix

QX |Y =
⎛
⎜⎝

1 1/
2

1/
3

0 1/
2

1/
3

0 0 1/
3

⎞
⎟⎠. (17)

Because the number of “0” in x1 is equal to 7 (i.e., h0 = 7),
we sequentially decompress the message bits into a 7-length
ternary sequence according to the distribution (5/7, 1/7, 1/7)
that is the first column of QY |X . Assume that1 the first 8 bits of
the message are decompressed into a 7-length sequence y′

1,0 =
1Because the sequences in this example are too short, the compressed or

decompressed sequences are artificial, which are only used to illustrate the
processes of embedding, extraction and restoration.

2780 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

0 0.2 0.4 0.6 0.8 1 1.2
25

30

35

40

45

50

55

Embedding Rate

P
S

N
R

Luo et al.
Proposed

(a) Lena

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

25

30

35

40

45

50

Embedding Rate

P
S

N
R

Luo et al.
Proposed

(b) Baboon

0 0.2 0.4 0.6 0.8 1 1.2
25

30

35

40

45

50

55

Embedding Rate

P
S

N
R

Luo et al.
Proposed

(c) Goldrill

0 0.2 0.4 0.6 0.8 1
30

35

40

45

50

55

Embedding Rate

P
S

N
R

Luo et al.
Proposed

(d) Peppers

Fig. 8. The experimental results on improving Luo et al.’s scheme [12].

(0, 0, 2, 0, 1, 0, 0). Next, assume that the following 3 message
bits are decompressed into a 2-length sequence y′

1,1 = (1, 2)
according to the second column of QY |X because the number
of “1” in x1 is equal to 2. No message is embedded in the bin
“2” by decompression, because the entropy of the last column
of QY |X is zero. In x1, replacing all “0” by y′

1,0 and all “1”
by y′

1,1, we get the stego block y1.
Next, we generate the overhead for restoring x1 according

to y1 and QX |Y . First, by recording the positions of “0”, “1”,
and “2” in y1, we get IY0 = {1, 3, 6, 9, 10}, IY1 = {4, 7},
and IY2 = {2, 5, 8}, respectively. Note that the first column
of QX |Y implies that we can directly interpret the “0” of
y1 as “0” of x1 and thus we do not need to compress the
five symbols of x1 at the index IY0. According to IY1 and
IY2, we extract elements from x1 and get x′

1,1 = (1, 0)
and x′

1,2 = (2, 0, 1). Assume that x′
1,1 is compressed into

O(x′
1,1) = (1, 0) according to the second column of QX |Y , and

x′
1,2 is compressed into O(x′

1,2) = (0, 1, 1, 0, 1) according to
the third column of QX |Y . Concatenating O(x′

1,1) and O(x′
1,2)

at the front of the rest bits of M1 (i.e., (0, 1, · · ·)), we get
M2 = (1, 0, 0, 1, 1, 0, 1, 0, 1, · · ·) that is embedded into the
next block.

To reconstruct the host block x1 and extract the message
from the stego block y1, we should first extract the message
M2 from the second stego block y2, and observe QX |Y and

y1. According to the first column of QX |Y , the five “0” of
y1 are directly interpreted as “0” of x1. Next, we count the
number of “1” in y1 that is equal to 2, and thus sequentially
decompress M2 according to the second column of QX |Y
until generating a 2-length sequence. As a result, the first 2
bits of M2 are decompressed into x′

1,1 = (1, 0). Similarly,
the following 5 bits of M2 are decompressed into a 3-length
sequence x′

1,2 = (2, 0, 1) according to the third column of
QX |Y because the number of “2” in y1 is 3. In y1, replacing
all “1” by x′

1,1 and “2” by x′
1,2, we restore x1. After that, the

rest bits of M2 are (0, 1, . . .).
To extract the message from y1, we record the positions of

“0”, “1” and “2” in x1 and get IX0 = {1, 3, 5, 6, 7, 9, 10},
IX1 = {4, 8} and IX2 = {2}, according to which we
extract elements from y1 and get y′

1,0 = (0, 0, 2, 0, 1, 0, 0),
y′

1,1 = (1, 2), and y′
1,2 = (2). According to the first column

of QY |X , y′
1,0 is compressed into (1, 0, 0, 1, 0, 1, 1, 0), and

according to the second column of QY |X , y′
1,1 is compressed

into (0, 1, 1). No message has been embedded into bin “2”
because the entropy of the last column of QY |X is equal to
zero. Concatenating the compressed sequences at the front of
the rest bits of M2 (i.e., (0, 1, . . .)), we get M1.

In the next example (Example 2), we compare the pro-
posed code with one popular method for modifying prediction
errors, called prediction-error expansion (PEE), which has

ZHANG et al.: RECURSIVE HISTOGRAM MODIFICATION 2781

0 0.2 0.4 0.6 0.8
36

38

40

42

44

46

48

50

52

54

56

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(a) Lena

0 0.2 0.4 0.6 0.8
28

30

32

34

36

38

40

42

44

46

48

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(b) Baboon

0 0.2 0.4 0.6 0.8
30

35

40

45

50

55

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(c) Goldrill

0 0.2 0.4 0.6 0.8
30

35

40

45

50

55

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(d) Peppers

Fig. 9. The experimental results on improving Sachnev et al.’s scheme [11].

been adopted in many RDH schemes such as those proposed
in [7], [8], [11]. In general, the prediction errors satisfy a
Laplacian distribution centered at zero, so PEE uses a set
around zero, [Tn, Tp], to carry the message, where Tn is the
negative threshold value, and Tp is the positive threshold
value. Predicted errors in [Tn, Tp] are expanded for embedding
message bits, and the prediction errors not belonging to
[Tn, Tp] will be shifted to make room for the expansion. PEE
modifies the prediction error e as follows.

e′ =
⎧
⎨

⎩

2e + b if e ∈ [Tn, Tp]
e + Tp + 1 if e > Tp

e + Tn if e < Tn

. (18)

The decoder extracts the embedded bit b and reconstructs
the prediction errors e in following manner:

b = e′ mod 2, e′ ∈ [2Tn, 2Tp + 1] (19)

e =
⎧
⎨

⎩

�e′/2� if e′ ∈ [2Tn, 2Tp + 1]
e′ − Tp − 1 if e′ > 2Tp + 1
e′ − Tn if e′ < 2Tn

. (20)

Example 2: In this example, the host sequence x =
(x1, . . . , xn) is drawn from a discrete Laplacian distribution
with mean μ = 0 and scale parameter δ = 2. The length
of host sequence N = 106, and the signal xi ∈ [− 5, 5] for
1 ≤ i ≤ N . The histogram of the host is shown in Fig. 3(a). We

embed the message with embedding rate, 0.3, into x by using
the proposed code and PEE respectively. When using PEE,
we should set Tn = −1 and Tp = 1 for the embedding rate
0.3. To use the proposed code, we first calculate the optimal
transition probability matrix QY |X , which is shown in Fig. 4.

According to the transition probability matrix in Fig. 4, the
maximum amplitude of modifications for the proposed code
is 1. For example, Fig. 4 means that “0” is modified to “1” and
“−1” with equal probability 0.195. However, to shift the bins
in PEE, we should add 2 to signals larger than 1. Consequently,
for the embedding rate 0.3, the average distortion introduced
by PEE is 0.77, while the average distortion of the proposed
code is only 0.63. The histograms of stego sequences obtained
by PEE and the proposed code are depicted in Fig. 3(b)
and 3(c) respectively, which show that the tails of the host’s
histogram are extended to −6 and 7 by PEE.

B. Optimality

In this subsection, we will prove that our method is opti-
mal in the sense that as long as the entropy coder reaches
entropy, the proposed code asymptotically approaches the rate-
distortion bound (1) when the number of blocks, g, tends to
infinity. In fact, when g tends to infinity, the influence of the
last block is negligible, and thus the average embedding rate

2782 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

and distortion of the code construction can be estimated within
one K -length block.

For simplicity, we assume Y is just a random variable satis-
fying the optimal marginal distribution PY that is determined
by QY |X and PX . Therefore, the rate-distortion bound (1) can
be rewritten as

ρrev (�) = maximize{H (Y)}− H (X)

= H (Y) − H (X)

= (H (X, Y) − H (X |Y)) − (H (X, Y) − H (Y |X))

= H (Y |X) − H (X |Y). (21)

On the other hand, in a K -length block of the code construc-
tion, we modify the host signal x to y according to the optimal
transition probability PY |X (y|x), so the average distortion d is
given by

d =
∑

x,y

PX (x)PY |X (y|x)D(x, y). (22)

Note that PY |X is the solution of (1) under the condition (2),
so we have d ≤ �.

In a K -length block, the average number of embedded
message bits is given by (10) and the average capacity cost for
reconstructing this block is given by (14), so the embedding
rate R in one block is given by ((10)–(14))/K , that is,

R =
B−1∑

x=0

PX (x)H
(
QY |x

) −
B−1∑

y=0

PY (y)H
(
QX |y

)

=
B−1∑

x=0

PX (x)H (Y |X = x) −
B−1∑

y=0

PY (y)H (X |Y = y)

= H (Y |X) − H (X |Y). (23)

Thus, we get R = ρrev (�).

C. Implementation Issues and Experimental Results

There are a few parameters that the recipient has to
know for successful decoding, including the host distribution
(PX (0), . . . , PX (B − 1)), the distortion constraint �, and the
block length K . The probability PX (i), (0 ≤ i ≤ B − 1), can
be calculated from the frequency fi of symbol i , so we only
need to communicate the vector of frequencies that can be
easily compressed, and denote the length of the compressed
frequency vector by L f . Usually 10 bits are enough for saving
�, and 13 bits are enough for K . We embed these parameters
into the LSBs of the last block xg by LSB replacement.

The last block should be long enough to accommodate these
parameters. We denote the length of the last block by Llast ,
and embed it into the LSBs of the 15 elements at the tail of
the host sequence. Note that, in the last block, we also should
embed the overhead O(xg−1), whose length can be estimated
by (14). Therefore, the last block must have a capacity for the
overhead O(xg−1), L f bits of the compressed frequencies,
10 bits of �, 13 bits of K , and 15 bits of Llast , so Llast must
satisfy

Llast > K
B−1∑

y=0

PY (y)H
(
QX |y

) + L f + 38. (24)

Algorithm 1 Recursive Histogram Modification (RHM)
Data Embedding

• 0. Input the cover sequence x with length N , the
message sequence m, and the distortion constraint �.

• 1. Calculate frequencies fi from x, and set PX (i) =
fi/N for 0 ≤ i ≤ B − 1. According to PX and
�, calculate the optimal marginal distribution PY and
optimal transition matrices QY |X and QX |Y .

• 2. Set block length K , the length of the last block Llast

and then determine the number of blocks g.
• 3. Embed the message and the LSBs of the last block

into the first g − 1 blocks with the coding method
described in Subsection III-A.

• 4. Embed the overhead O(xg−1) and parameters, includ-
ing compressed frequencies of host, �, K , and Llast ,
into the last block by LSB replacement.

• 5. If O(xg−1) and the parameters can be completely
embedded into the last block, output the stego sequence
y; otherwise, set Llast = Llast + K and g = g − 1, and
redo Step 3–Step 5.

Data Extraction and Host Restoration
• 0. Input the stego sequence y with length N .
• 1. Extract the length of the last block, Llast , from the

LSBs of the 15 elements at the tail.
• 2. From the last block, extract O(xg−1) and the parame-

ters, including compressed frequencies of host, �, and
K .

• 3. Decompress the frequencies, fi , and set PX (i) =
fi/N for 0 ≤ i ≤ B − 1. According to PX and �,
calculate the optimal transition matrices QY |X and QX |Y .

• 4. Implement the data extraction and host restoration
procedure as described in Subsection III-A. Output the
message m, the LSBs of the last block, and the first
g − 1 blocks of the host sequence x.

• 5. Reconstruct the last block by LSB replacement.

We use (24) to estimate the lower bound of Llast , and set a
somewhat larger Llast for enough capacity in the last block.

As a conclusion of above discussion, we present our code
construction within an algorithm diagram (Algorithm 1).

Algorithm 1 is for the sender with a distortion constraint.
A similar algorithm can be implemented for a sender with a
given embedding rate R, in which we should first calculate the
optimal distribution of problem (3) according to PX and R.

We implemented the proposed code construction with arith-
metic coder as the entropy coder. In the experiment, 106

8-bit gray-scale signals are drawn from a discrete Laplacian
distribution with mean μ = 127.5 and scale parameter δ = 5,
in which we delete signals whose frequencies are less than
100. Consequently, the rest host sequence includes 70 symbols,
i.e., B = 70, with length equal to 999076. We set the block
length K = 100 × B = 7000. In this example, 980 bits
are needed to communicate the 70 frequencies of host, i.e.,
L f = 980, and the length of last block is about 4000,
i.e., Llast ≈ 4000, which fluctuates with different distortion
constraints. The test was performed on Intel Core i7 running

ZHANG et al.: RECURSIVE HISTOGRAM MODIFICATION 2783

0 0.2 0.4 0.6 0.8
34

36

38

40

42

44

46

48

50

52

54

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(a) Man (512 × 512)

0 0.2 0.4 0.6 0.8
30

35

40

45

50

55

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(b) Man (1024 × 1024)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
26

28

30

32

34

36

38

40

42

44

46

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(c) Grass (512 × 512)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30

35

40

45

50

55

Embedding Rate

P
S

N
R

Sachnev et al.
Proposed

(d) Grass (1024 × 1024)

Fig. 10. Comparison on improving Sachnev et al.’s scheme [11] for images with different sizes.

at 2.0 GHz with 2 GB RAM. The algorithm was implemented
in Matlab R2008b. The average running time of one turn
data embedding is 9.58 s in this setting. As shown in Fig. 5,
the experimental results are quite close to the theoretic upper
bound. This also proves the asymptotically optimality of the
proposed code construction.

IV. APPLICATIONS

We take Luo et al.’s scheme [12] and Sachnev et al.’s
scheme [11] as examples to show how to improve previous
RDH schemes with the proposed code.

Luo et al.’s scheme [12] divides the image into three parts,
and predicts the pixel of one part with the pixels in the
other two parts by interpolation. For each pixel x , denote the
corresponding interpolation value by x ′, and then the predicted
error (PE) is obtained via e = x − x ′. Messages are embedded
into the three PE sequences by histogram shift.

Sachnev et al.’s scheme [11] divides the image into two
parts, and predicts one part with the other. The PEs are sorted
according to magnitude of its local variance, so the PEs in
smooth areas (i.e., PEs having values near to zero) are first
used to embed the message. The message is embedded with the
PEE method described in Example 2. The sorting technique
makes Sachnev et al.’s scheme outperform most state-of-the-
art methods.

We improve Luo et al.’s scheme and Sachnev et al.’s
scheme by replacing histogram shift and PEE with the pro-
posed code, respectively. When improving Sachnev et al.’s
scheme, we do not need to sort the PEs because the code
modifies host signals according to the optimal transition prob-
ability matrix which also gives priority to PEs with small
absolutes.

Note that the PEs usually have a Laplacian-like distribution,
in which the frequencies of errors having large absolute values
are very small. When applying the proposed code, we first
truncate the histogram of PEs according to a threshold T and
only keep errors such that fe > T , e ∈ [− el, er], where fe is
the frequency of e, and the bounds, −el and er , are determined
by T . We embed the message into the PEs with Algorithm 1.

The threshold T should be adjusted according to the needed
embedding rate (or distortion constraint). In fact, a smaller T
leads to a larger B , for which we have to set a larger block
length K in the coding process. Assume that the length of PEs
is N , and then the block number is determined by N/K . To
approach the rate-distortion bound with the proposed code, we
hope N/K is large enough, so the block length K should be
small for a finite N . However, when B is large, the distribution
of signals in a short block can not be accurately estimated
by the global distribution PX and the entropy coder can not
approach entropy, which means K should increase with B .

2784 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

TABLE I

THE IMPROVEMENT OF PSNR (dB) FOR

LUO et al.’S SCHEME [12]

Capacity Lena Baboon Goldrill Peppers Average
(bpp)

0.2 1.2 1.5 1.9 1.4 1.5

0.4 1.9 0.3 1.3 1.3 1.2

0.6 1.6 0.1 1.1 1.7 1.1

TABLE II

THE IMPROVEMENT OF PSNR (dB) FOR

SACHNEV et al.’S SCHEME [11]

Capacity Lena Baboon Goldrill Peppers Average
(bpp)

0.2 1.3 −0.1 1.3 2.4 1.2

0.4 1.3 −0.5 1.0 1.9 0.9

0.6 0.5 −0.3 0.3 1.4 0.5

On the other hand, the maximum achievable embedding rate
decreases with decreasing B . As a result, we set smaller values
of B for smaller embedding rates, which can be realized by
adjusting T . For Luo et al.’s scheme, which divides the image
into three parts and thus produces short PE sequences, we set
the threshold T according to the embedding rate R such that
T = max{400−300×R, 50}. Because Sachnev et al.’s scheme
produces longer PE sequences by dividing the image into two
parts, we can set the threshold T to be somewhat small with
T = max{400 − 800 × R, 10}.

In our experiments, four typical 8-bit gray-scale images [22]
sized 512 × 512 are used as covers (Fig. 6). The improved
results for three typical embedding rates are listed in Tables I
and II, where the embedding rate is defined as bits per pixel
(bpp). The proposed code improves Luo et al’s scheme by
1.5 dB on average at 0.2 bpp, 1.2 dB at 0.4 bpp, and 1.1 dB
at 0.6 bpp; and improves Sachnev et al.’s scheme by 1.2 dB
on average at 0.2 bpp, 0.9 dB at 0.4 bpp, and 0.5 dB at
0.6 bpp. More comparison results are shown in Figs. 8 and 9
respectively. On the image Baboon.pgm, the improvement for
Luo et al’s schemes is small, and the proposed method is even
worse than Sachnev et al.’s scheme. In fact, for the test image
“Baboon.pgm”, the histogram of the PEs is not that steep, so
we have to set a large B and thus a large block length K even
for a small embedding rate. Consequently, only few blocks are
available for the coding process, which will greatly decrease
the performance of the proposed code.

As proved in Section III-B, the proposed code can asymp-
totically approach the rate-distortion bound only when the
block number tends to infinity. Therefore, if the cover length
is short or the block number is small, the power of the
code will be severely limited. To illustrate this point, we
also do experiments on two large images [23] with size of
1024 × 1024 (Fig. 7). We first resize the images into
512 × 512, and then compare Sachnev et al.’s scheme with the
improved method in the large image and its reduced version
respectively. As shown in Fig. 10 the performances of the two
methods are similar on the small images, while the proposed

code can greatly improve Sachnev et al.’s scheme on the large
images.

V. CONCLUSION

In this paper, we proposed a recursive code construction for
RDH in gray-scale signals based on an entropy coder, and the
main contributions include.

• The code construction is proved to be asymptotically opti-
mal when the entropy coder is optimal, which establishes
equivalency between RDH and lossless data compression.

• Experiment results show that the proposed code can
improve previous RDH schemes, and the improvements
will be more significant for larger cover images.

Note that the present code construction is for memoryless
hosts. In fact, for RDH in a memory host, a higher rate-
distortion bound maybe exists. So the interesting problems
we will study in the future include: what is the rate-distortion
bound and how to efficiently approach the bound for a memory
host sequence?

REFERENCES

[1] F. Bao, R. H. Deng, B. C. Ooi, and Y. Yang, “Tailored reversible
watermarking schemes for authentication of electronic clinical atlas,”
IEEE Trans. Inf. Technol. Biomed., vol. 9, no. 4, pp. 554–563, Dec. 2005.

[2] J. Feng, I. Lin, C. Tsai, and Y. P. Chu, “Reversible watermarking:
Current status and key issues,” Int. J. Netw. Security, vol. 2, no. 3,
pp. 161–171, May 2006.

[3] K. Chung, Y. Huang, P. Chang, and H.-Y. M. Liao, “Reversible
data hiding-based approach for intra-frame error concealment in
H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11,
pp. 1643–1647, Nov. 2010.

[4] J. Fridrich and M. Goljan, “Lossless data embedding for all image
formats,” Proc. SPIE, vol. 4675, pp. 572–583, Jan. 2002.

[5] J. Tian, “Reversible data embedding using a difference expansion,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 890–896,
Aug. 2003.

[6] Z. Ni, Y. Shi, N. Ansari, and S. Wei, “Reversible data hiding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp. 354–362,
Mar. 2006.

[7] D. Thodi and J. Rodriguez, “Expansion embedding techniques for
reversible watermarking,” IEEE Trans. Image Process., vol. 16, no. 3,
pp. 721–730, Mar. 2007.

[8] Y. Hu, H. Lee, and J. Li, “DE-based reversible data hiding with improved
overflow location map,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 2, pp. 250–260, Feb. 2009.

[9] P. Tsai, Y. C. Hu, and H. L. Yeh, “Reversible image hiding scheme using
predictive coding and histogram shifting,” Signal Process., vol. 89, no. 6,
pp. 1129–1143, 2009.

[10] W. Hong, T.-S. Chen, and C.-W. Shiu, “Reversible data hiding for high
quality images using modification of prediction errors,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1833–1842, 2009.

[11] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Shi, “Reversible
watermarking algorithm using sorting and prediction,” IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 7, pp. 989–999, Jul. 2009.

[12] L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image
watermarking using interpolation technique,” IEEE Trans. Inf. Forensics
Security, vol. 5, no. 1, pp. 187–193, Mar. 2010.

[13] X. Li, B. Yang, and T. Zeng, “Efficient reversible watermarking based
on adaptive prediction-error expansion and pixel selection,” IEEE Trans.
Image Process., vol. 20, no. 12, pp. 3524–3533, Dec. 2011.

[14] D. Coltuc, “Low distortion transform for reversible watermarking,” IEEE
Trans. Image Process., vol. 21, no. 1, pp. 412–417, Jan. 2012.

[15] T. Kalker and F. M. Willems, “Capacity bounds and code constructions
for reversible data-hiding,” in Proc. 14th Int. Conf. Digital Signal
Process., 2002, pp. 71–76.

[16] W. Zhang, B. Chen, and N. Yu, “Capacity-approaching codes for
reversible data hiding,” in Proc. 13th Inf. Hiding Conf., LNCS 6958.
2011, pp. 255–269.

ZHANG et al.: RECURSIVE HISTOGRAM MODIFICATION 2785

[17] W. Zhang, B. Chen, and N. Yu, “Improving various reversible data
hiding schemes via optimal codes for binary covers,” IEEE Trans. Image
Process., vol. 21, no. 6, pp. 2991–3003, Jun. 2012.

[18] S.-J. Lin, and W.-H. Chung, “The scalar scheme for reversible
information-embedding in gray-scale signals: Capacity evaluation and
code constructions,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 4,
pp. 1155–1167, Apr. 2012.

[19] F. Willems, D. Maas, and T. Kalker, “Semantic lossless source cod-
ing,” in Proc. 42nd Annu. Allerton Conf. Commun., Control Comput.,
Monticello, IL, USA, 2004, pp. 1–8.

[20] X. Hu, W. Zhang, X. Hu, N. Yu, X. Zhao, and F. Li, “Fast estimation
of optimal marked-signal distribution for reversible data hiding,” IEEE
Trans. Inf. Forensics Security, vol. 8, no. 5, pp. 779–788, May 2013.

[21] (2013). Source Codes for Estimating the Rate-Distortion Bound of RDH
[Online]. Available: http://home.ustc.edu.cn/~hxc

[22] (2013). Miscelaneous Gray Level Images [Online]. Available:
http://decsai.ugr.es/cvg/dbimagenes/g512.php

[23] (2013). SIPI Images [Online]. Available: http://sipi.usc.edu/database/
database.php

Weiming Zhang received the M.S. degree and
Ph.D. degree in 2002 and 2005, respectively, from
the Zhengzhou Information Science and Technology
Institute, Zhengzhou, China. Currently, he is an
Associate Professor with the School of Information
Science and Technology, University of Science and
Technology of China, Hefei, China. His research
interests include multimedia security, information
hiding and cryptography.

Xiaocheng Hu received the B.S. degree in 2010
from the University of Science and Technology of
China, Hefei, China, where he is now pursuing the
Ph.D. degree. His research interests include multi-
media security, image and video processing, video
compression and information hiding.

Xiaolong Li received the B.S. degree from
Peking University, Beijing, China, the M.S. degree
from Ecole Polytechnique, Palaiseau, France, and
the Ph.D. degree in mathematics from ENS de
Cachan, Cachan, France, in 1999, 2002, and 2006,
respectively. Before joining Peking University as a
researcher, he worked as a postdoctoral fellow at
Peking University in 2007–2009. His research inter-
ests are image processing and information hiding.

Nenghai Yu received the B.S. degree in 1987 from
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, the M.E. degree in 1992
from Tsinghua University, Beijing, China, and the
Ph.D. degree in 2004 from the University of Sci-
ence and Technology of China, Hefei, China, where
he is currently a Professor. His research interests
include multimedia security, multimedia information
retrieval, video processing and information hiding.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

