
 978-1-4799-2761-6/13/$31.00 ©2013 IEEE 484

2013 6th International Conference on Biomedical Engineering and Informatics (BMEI 2013)

Tamper Restoration on DNA Sequences
Based on Reversible Data Hiding

Guoli Ma, Qi Tang, Weiming Zhang*, Nenghai Yu
School of Information Science and Technology
University of Science and Technology of China

Hefei 230027, Anhui, P.R. China
Email: {magl, tq910413}@mail.ustc.edu.cn

{zhangwm, ynh}@ustc.edu.cn

Abstract—Nowadays more and more DNA sequences are dis-
covered and most of them are stored in databases of NCBI or
other organizations. Once tampered, restoring the entire database
usually cost much and researches based on these tampered se-
quences will cause disastrous consequences. This paper proposes
a reversible data hiding method on DNA sequences and a fragile
watermarking scheme that is based on that method. By using
these methods, tampered area(s) in a DNA sequence can easily be
localized. Even further, if the tampering rate is low, the original
sequence can be exactly retrieved. Then by sending the retrieved
sequence back, the tampered database will be restored. Our
method can be applied to an online database. When the client
downloads a certain DNA sequence, which may be tampered
during transmission, the proposed method can help to check if
the sequence is tampered and recover the tampered region.

I. INTRODUCTION

DNA, an abbreviation of Deoxyribonucleic Acid, is a kind
of biological macromolecules that contain “genetic codes”. A
DNA sequence is arranged as a string of 4 nitrogenous bases:
adenine (A), thymine (T), guanine (G), and cytosine (C). Each
3 bases in DNA constitute a “Codon” and via a complex
process, these codons are translated into chains of amino acids,
which eventually form a protein. As the blueprint of vital
activities of most living things on earth and the common
intellectual property of human beings, DNA has important
status and must be protected perfectly. In recent days, however,
most discovered DNA sequences are stored in databases of
NCBI [6] and other organizations. And researchers usually
download sequences from those databases for research and
pharmacy. Once the sequence is tampered by evil attackers,
the consequences will be disastrous. So a method that can
detect the tamper or even restore the entire sequence, at any
time users are downloading these sequences, is of much help.

In digital data field, researchers have established powerful
reversible watermark tools to protect data, software and other
intellectual properties. Using reversible data hiding method,
authentication information can be embedded into these digital
hosts themselves. When tampered, modified area(s) can be
detected and even restored using these embedded information.
If no tamper occurs, the digital hosts can be losslessly restored
after extracting the embedding information.

In general, there are three types of watermark: fragile water-
mark, semi-fragile watermark and robust watermark. Fragile

watermark fails to be detectable after modification so it is
widely used for tamper detection while a semi-fragile one,
which resists benign transformations, can detect malignant
transformations. As its name indicates, a robust watermark
can tolerate a designated transformation and therefore, copy
protection applications always choose this kind of watermark.

Driven by the desire to introduce traditionally used wa-
termarking techniques into DNA sequence protection field,
some scholars proposed their data hiding and watermarking
methods. In [1], Shimanovsky et al. firstly proposed a method
in which the redundancy of codon to amino acid mapping
is utilized. There are 43 = 64 different codon combinations
while the types of amino acid are only about 20. So a codon in
a sequence can be substituted by its peer codons that will be
translated into the same amino acid as the original one does.
Hence, several bits can be embedded into each codon. Chang
et al. [2] also provide two methods based on software DNA
sequences, which means that a DNA sequence, regardless
of its biological properties, is treated as a four-units-coded
data. One of them is using lossless compressing techniques
to compress the DNA sequence and append the secret data
to the end of the result. Another one adopted the difference
expansion way to hide data. In [3], Shiu et al. proposed
three methods: the insertion method, the complementary pair
method and the substitution method. Unfortunately, however,
in order to restore the original content, all three methods have
to make sure that a reference DNA sequence is transmitted
to the client. With this premise, all three methods cannot be
denoted as reversible data hiding methods. After that, Guo et
al. [4] improved the substitution method. But the reference
DNA sequence is still needed.

In this paper, we propose a reversible data hiding method
on DNA sequences, in which no reference DNA sequence
are needed. Based on that, a fragile watermark scheme is
presented, in which the watermark to be embedded can be
used to detect tampered area(s) in DNA sequences and even
further, if tampered area(s) takes up only little portion of the
entire sequence, the original content can be exactly retrieved.

II. PROPOSED REVERSIBLE DATA HIDING METHOD

In this section, we will discuss our reversible data hiding
method in detail. This method is called Repeated Segment

 485

Substitution method (RSS). Before we dive into it, we need
more background knowledge about the so-called degenerate
base symbols (or mixed base symbols). “Degenerate base
symbols in biochemistry are an IUPAC[7] representation for a
position on a DNA sequence that can have multiple possible
alternatives.[8]” Despite of commonly used five bases, IUPAC
system also includes eleven ambiguity characters associated
with every possible combination of the four DNA bases.
The ambiguity characters were designed to encode positional
variations found among families of related genes. All symbols
of IUPAC system and bases they represent are listed in Table
I.

Based on degenerate bases, we define a base adding (+)
and subtracting (−) operation. For adding, every operand and
result is the same as Table I. shows except for N, which is the
result of a three operands adding operation that two operands
are the same bases. For subtracting, it is an inverse operation
of adding and we won’t give it out here. In the following
discussion, we will call the result of adding as mixed-base and
correspondingly, the result is mixed by two or three bases.

TABLE I
DEGENERATE BASE SYMBOLS

Symbol Bases Represented Symbol Bases Represented
A A K G+T

C C R A+G

G G Y C+T

T T B C+G+T

U U D A+G+T

W A+T H A+C+T

S C+G V A+C+G

M A+C N A+C+G+T

A. Data Embedding Method
In natural DNA sequences, there exists an interesting

redundancy. That is, bases usually appear repeatedly. The
following is a piece of sequence we take from AC002126.1:
TTTTTTTGTTTGGGTTTTTTTGTTTTGTTTTGTTTCTTTG
TTTTTGAGACGGAGTGTTGCTCTTTTT. The bolded
characters are those repeated bases. All repeated bases, except
for the beginning of the repeating, can be used to embed
data once the positions of those repeated-base segments are
known. So when embedding, a DNA sequence is divided
into embeddable segments and nonembeddable segments
according to repeated base. A segment is embeddable only
when the length of the repeated bases is longer than 1, like
TT or AAAA.

1) Segment Label Construction: In order to extract the data
in all embeddable segments, the starting and ending position
of those segments must be known to the client. So for each
embeddable segment, we will construct two labels to mark the
positions using the adding operation defined above. Denote
the numbers of segments as N and all segments as Segi, i =
1, 2, . . . , N . While constructing the starting and ending labels
of Segi, generally four situations will come:

a) Segi+1 is nonembeddable: Just add the repeated base of
Segi to the beginning of Segi+1 to set the ending label of Segi.

For example CCCAT where Segi = CCC and Segi+1 = A, add
C to A and then we get CCCMT. The ending label is M.

b) Segi−1 is nonembeddable: Just add the repeated base
of Segi−1 to the beginning of Segi to set the beginning label
of Segi. For example TACCC where Segi−1 = A and Segi =
CCC, add A to C and then we get TAMCC. The beginning
label is M.

c) Segi+1 is embeddable: In this case, the ending label of
Segi and the beginning label of Segi+1 overlaps. In order to
distinguish this with situation a), we use three operands adding
to add the repeated base of Segi−1 and Segi to the beginning of
Segi+1. For example ATTCCC where Segi−1 = A, Segi = TT
and Segi+1 = CCC. Add A and T to C and then we get
ATTHCC. The ending label is H.

d) Segi−1 is embeddable: This situation equals to situation
c) if we see Segi−1 as Segi.

Using this label construction method, the client will know
the beginning and ending position of each embeddable seg-
ment and bases between labels can be substituted to embed
data.

2) Base Substitution and Data Embedding: To embed 2
bits per repeated base, we use the base substitution method
that is first proposed in [4]. This method utilized a com-
plementary rule to establish a one-to-one mapping. That is,
each base x is assigned with a complement base, denoted
as C(x). An example of such complementary rule is like:
(A T)(T C)(C G)(G A). All available rules must obey the
property that for each DNA base x, x, C(x), C(C(x)) and
C(C(C(x))) are not the same. With this property, a one-to-
one mapping is established between 2 bits data and a repeated
base.

For example, let’s say that the complementary rule is as
listed above and the repeated base is A. If the 2 bits data is
00, then A stay unchanged. If the data is 01, 10 or 11, then A
is respectively substituted by C(A) = T, C(C(A)) = C and
C(C(C(A))) = G.

3) Location Map: Although rare, some DNA sequences
in databases have already contains degenerate bases. In this
situation, a location map LM must be used to record these
bases. LM is a bit sequence whose length equals to the length
of DNA sequence. Each bit of LM indicates whether the
base in the corresponding position of DNA sequence is a
degenerate base. If so, set the bit to 1 and otherwise 0. Since
degenerate bases in the original DNA sequence are rare, LM
can be lossless-compressed with high compression ratio. The
compressed bitstream is denoted as L. An end of message
symbol is at the end of L. After generating the location map,
all existed degenerate bases are collected to form a recording
R and replaced by any normal bases. In order to reconstruct
the original sequence, the data to be embedded are like:

M = L || R || P (1)

where M is the message to be embedded, L is the compressed
location map, R is the recorded string of degenerate bases, P
is the payload data, and || means concatenation.

 486

The entire embedding procedure is like this: When get
payload data and a DNA sequence, first generate the data to be
embedded (that is, M); Then for each segment between Seg2

and SegN−1, if it is nonembeddable, do nothing and skip to
the next segment; If it is embeddable, construct the beginning
and ending labels and then embed several bits of M into bases
between these labels.

B. Data Extraction and Reconstruction Method

The data extraction and reconstruction method is easy.
When receiving a sequence, the client will need to find two
mixed bases to locate the first embeddable segment. Via a
two operands subtraction, the starting label will be restored.
Since the base substitution method is a one-to-one mapping,
extracting those embedded data can easily be done by the
inverse mapping. As for the ending label, if it is mixed by two
bases, we know that the following segment is nonembeddable.
Thus a two operands subtraction will restore the ending
label. However, if the ending label is mixed by three bases,
simply restoring the ending label by subtraction will lose the
beginning label of the next embeddable segment. Therefore,
the beginning label of next segment should be reconstructed.
Re-add the repeated base of current segment to the beginning
of the next segment would accomplish that. After extracting
and reconstructing the first embeddable segment, the second
embeddable segment now becomes the first one. So repeating
the steps above till no mixed bases are found will finish data
extracting. Now we get extracted data:

M = L || R || P (2)

As the bit stream has an end of message symbol at its end,
L can be exactly separated. Decompress L we will get the
location map. From location map, all positions and the number
of the original degenerate bases will both be known. Separate
R from M via the number of degenerate bases. Restore the
original sequence by replacing R to its original position. Now
the DNA sequence has been exactly restored and the payload
data have been extracted.

III. PROPOSED WATERMARKING METHOD

In this section we propose an algorithm for the client to
localize and reconstruction the tampered DNA bases. We use
a set of random matrices to compute the reference data and
reconstruct the tampered bases by solving the linear equation
set created by the reference data and the matrices. The
proposed algorithm can fully reconstruct the origin sequence
when the tampered region is not too large; when the tampering
rate is too high that not all tampered bases can be retrieved,
our algorithm can still retrieve the majority of the tamper,
which can reduce transmission overhead of the communication
channel.

A. Watermark Embedding Procedure

We divide the sequence into blocks and do irreversible
compression on each block to get the reference bits. Then
the original block and the reference bits are fed into a hash

function to create the hash bits, after that the hash bits and
the reference bits are embedded into the DNA sequence.

1) Preprocessing Step: Before we start our work, we need
to transform the DNA sequence into digital sequence, we
use number {0,1,2,3} to represent base {A, G, C, T}. For
example, sequence ATGGTCA is represented by 0311320, or
00110101111000 in binary system. In the rest of the article,
we use the word “base” to represent an integer between 0 and
3.

2) Reference Data Generation: Denote the origin sequence
sized as N× L, where N and L are integers and L is divisible
by 4. We permute and divide the sequence into N blocks each
sized L by a key-dependent method. Denote the ith block as
bi and the bases in bi as bi(1), bi(2), . . . , bi(L). For each
block the reference data sized L / 4 bases are generated in the
following way:

ri(1)
ri(2)

...
ri(L/4)

 = Mi ×


bi(1)
bi(2)

...
bi(L)

 (3)

where ri(1), ri(2),. . . ,ri(L/4) represent the L/4 bases in the
ith reference block and Mi is a key-dependent matrix sized
(L/4)× L. Then we concatenate the all N reference blocks to
create the reference data R as:

R = r1 || r2 || . . . || rN (4)

where ri represents the ith reference block. These reference
bases can be used to reconstruct the origin sequence.

3) Hash Data Generation: We permute R and divide it
into N blocks the same way as we do to the origin sequence.
Denote the ith block of the reference data after permutation
as r

′

i. The hash data is generated in the following way:

hi = hash(r
′

i || ai) (5)

where ai represents the ith block of the origin sequence
without permutation, hi represents the hash of the ith block
which will be used in integrity authentication, and any hash
function with enough security can be used as hash().

4) Watermark Embedding: To fit the feature of our infor-
mation hiding method, we put all the information we want to
embed together to make the watermark as the following way:

Wi = r
′

i || hi (6)

For those applications in which tamper localization is of
most importance and sequence restoration is not cared, we
suggest the watermark as the following way:

Wi = hi (7)

Then we convert Wi into binary and embed it into ai with
our information hiding method. We do the same thing to all
the blocks and a watermarked DNA sequence is generated.

 487

5) Key-Dependent Permutation and Matrix Generation:
We have involved some key-dependent permutation and matrix
generation in the procedures above. Actually, any system with
enough security which is related to a secret key can be used
to do the work. For example, we put the key of the client and
the ID of the block into a feedback shift register (FSR), which
is shared by server and client. It can produce pseudo-random
numbers one by one and we can use them to do permutation
and matrix generation. Any reversible permutation method can
be used as long as it is based on pseudo-random numbers. For
example, if we wants to do permutation to a sequence sized
L, for each number X, we concatenate the first X

′
bases to the

end of the sequence:

X
′
= X mod L (8)

a(1) . . . a(X
′
)||a(X

′
+ 1) . . . a(L)

→ a(X
′
+ 1) . . . a(L)||a(1) . . . a(X

′
)

(9)

where a(1) . . . a(L) represent the L bases in the group. (8) is
to ensure that X

′
is between 0 and L. For security, we repeat

these two steps at least 2L times and the permutation is done.
In the first step, if L equals 4, then we will get a set of

pseudo-random numbers between 0 and 3, which can be used
in matrix generation. In reference data generation, we need
a matrix sized (L/4) × L. We can just produce (L/4) × L
numbers to create a matrix but the rows may not be linear
independent, which is useless in reconstruction. The matrix
generation procedure we apply is as following:

a) Input the key and ID and create L numbers as the first
row.

b) Create L numbers and check if it is linear independent
of all the rows above, if not repeat this step.

c) Check if the row number is L/4, if not goto step b).
Through these steps a matrix we need is created. If the

client repeats the whole procedure he will get exactly the same
matrix so it is not necessary to share the matrix online. We
must state that although we can increase the probability of re-
construction by making the rows mutually linear independent,
it will bring overhead creating the matrix, but when L is not
too big, it is not a heavy burden.

B. Content Reconstruction Procedure

The sequence maybe tampered so not all the reference
blocks are usable. We first locate the tampered blocks by
checking the hash and then we use the intact reference data to
recover the tamper blocks. On the receiving side, the client can
check the hash to know whether the sequence is tampered and
the reference data is used to reconstruct the original sequence
by means of linear independent equation set.

1) Tampered Block Localization: When the client receives
a sequence from the database, for every block, he extracts
watermark from it. As the length of hash and watermark is
public, he can separate the hash and the reference data. Then
he put the DNA block and the reference block into the hash
function and check if the result is the same as the hash data

he received. If so, the block is marked as “reserved”; if not,
the block is marked as “tampered”.

The attacker cannot know which group a base belong to
without the key, since the number of permutation is (N× L)!,
it is impossible to perform a brute force attack. Even if
the attacker knows the key, what he can do is extract the
watermark and recover the origin sequence. The attacker
cannot do tamper to the sequence without being noticed by
the client as far as the hash data is long enough. In fact, 32-bit
hash data can ensure that the probability of a tampered block
being marked as “reserved” is 2−32, which is extremely low,
so we can trust the hash data to localize the tamper. For higher
security, we can add the ID of DNA he wants to download
into the input of the FSR so different DNA sequences will
have different permutations and matrices. If the attacker gets
to know the permutation of a specific sequence by luck, it
won’t help when he wants to attack other sequences.

2) Content Reconstruction: After extracting the “reserved”
reference data, we change the bits into bases and start recon-
struction. The client can use the key to rebuild bi and ri, but
they may not be intact due to the attack. Denote the number of
the intact bases in bi as ubi and that in ri as uri . The missing
reference bases cannot be recovered, so we use the left uri
bases to do the reconstruction. We rewrite (3) as

ri,e(1)
ri,e(2)

...
ri,e(uri)

 = Mi,e ×


bi(1)
bi(2)

...
bi(L)

 (10)

where Mi,e is a matrix sized uri × L, whose rows are taken
from Mi corresponding to the “reserved” reference data and
bi(1), bi(2),. . . , bi(L) represent the bases in bi.

And the right side of (10) can be rewrote as

Mi,e×


bi(1)
bi(2)

...
bi(L)

 = Mi,e,r×Ci,ubi
+Mi,e,t×Ci,L−ubi

(11)

where Ci,ubi
and Ci,L−ubi

represent the two column vectors
consisting of the “reserved” and “tampered” bases in bi, Mi,e,r

and Mi,e,t are matrices with columns corresponding to bases
in Ci,ubi

and Ci,L−ubi
. What we want to recover is Ci,L−ubi

so we transform (10) and (11) into


ri,e(1)
ri,e(2)

...
ri,e(uri)

−Mi,e,r × Ci,ubi
= Mi,e,t × Ci,L−ubi

(12)

(12) is a linear equation set with L − ubi unknowns and
uri equations, since we have ensured the rows mutually linear
independent, the equation set has a unique solution as long as
L − ubi is not bigger than uri . Obviously the missing bases
must be one solution, so we can retrieve the original block

 488

when L−ubi is not bigger than uri . We know that ubi and uri
both grow when the tampering rate grows, so if the tampered
region is not too large, the intact reference data can provide
enough information to recover the missing bases.

IV. EXPERIMENTAL RESULTS

The proposed reversible data hiding method and the tamper
localization and reconstruction algorithm for reversible water-
marking was implemented in C++ and tested on a set of test
sequences collected from the NCBI genbank database [6]. For
the reversible data hiding method, our test mainly focuses on
the embedding capacity. That is, how many bits of data can be
embedded into each base on average. As for the watermarking
algorithm, our test is mainly based on two aspects: 1) the
probability of the algorithm reconstructing all tampered bases
and localization accuracy; 2) the percentage of tamper our
algorithm can retrieve when the tampering rate is too high for
it to reconstruct all tampered bases.

A. Capacity of Reversible Data Hiding Method

Several terminologies are defined in [3], but they are not
compatible to those terminologies defined in traditional image
data hiding field, so we re-define these in Table II.

TABLE II
THE DEFINITION OF SOME TERMINOLOGIES

Terminology Definition
Capacity The total length of data a DNA sequence can hold

Payload The length of useful payload data

bpn The payload data each base can hold

In order to conduct the reversible data hiding test, about
1054 DNA sequences are downloaded and examined. The
length of these sequences ranges from 5358 bases to 12849792
bases. The bpn of these sequences ranged from 0.51 bit / base
to 0.67 bit / base. The average bpn is 0.588 bit / base.

For the generally used eight DNA sequences, the result is
presented in Table III.

TABLE III
THE EXPERIMENTAL RESULT

Locus
Number of
nucleotides

Capacity
(bits)

Payload
(bits)

bpn
(bits/base)

AC153526 200118 114896 114896 0.574

AC166252 149885 86560 86560 0.578

AC167221 204842 115212 115212 0.562

AC168874 205188 121376 121376 0.588

AC168897 195017 112376 112376 0.561

AC168901 191206 111154 111154 0.580

AC168907 193417 114182 114182 0.588

AC168908 217110 127376 127376 0.584

In Table IV, we compare our method with current proposed
method based on several standards. As we can see, all methods
in [3] have to utilize reference sequences to achieve the re-
versibility. So essentially they cannot be called reversible data
hiding methods and should not be used to hide watermarks.
Compression method in [2] has high embedding capacity and

need no reference sequences. But the DNA sequence must be
long enough to make it easy to compress. For that the DNA
sequence is divided into short segments in order to localize
tampered areas, the compression ratio of each segment is not
as high as that of the whole sequence. So the embedding
capacity of each segment is not large enough to hide the
hashes and reference data. Difference Expansion method in [2]
has low average bpn. It can be used to embed authentication
information for tamper detecting but not suitable for sequence
restoring.

TABLE IV
COMPARASONS AMONG CURRENT METHODS

Method
Average

bpn
Reversible Expansion(1)

Reference
Sequence
Needed

Compression
Method in [2] 0.78 Yes No No

Difference
Expansion

Method in [2]
0.11 Yes No No

Insertion
Method in [3] 0.58 Yes Yes Yes

Complementary
Pair Method in

[3]
0.07 Yes Yes Yes

Substitution
Method in [3] 0.82 Yes No Yes

Our Method 0.59 Yes No No
(1): Expansion means that whether the method expands the length of the
original DNA sequence.

B. Fully-recovered Probability and Localization Accuracy

During watermarking test, we used DNA sequence sized
3× 217 bases with L = 768 and 32-bit hash. The reason why
we chose 768 as the size of a block will be discussed later.
The results are shown in Fig.1 and Fig.2:

0

0.2

0.4

0.6

0.8

1.0

0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240

β
 (

%
)

α (%)

probability

Fig. 1. Probability of reconstructing all tampered bases

In Fig.1, abscissa represents the attack ratio which is defined
as following:

α =
N
M

(13)

where N represents the number of times that we do the
“random attack” to the length of DNA where only one base can
be tampered each time and M represents the number of base
the whole DNA sequence has. Although this “based on ratio”
pattern of attack is harder for us to do the statistical work, we
still choose it because it can better characterize the feature of

 489

tamper attack the DNA will encounter during the transmission.
And ordinate shows the fully-reconstructed probability which
can be defined as following:

β =
Ts

Tw
(14)

where Tw represents the number of times we do the test on
one specific sequence and during our test Tw equals 100, Ts

represents the number of times we can reconstruct the whole
sequence. During the test we found that when the “attack ratio”
was below 0.19, the fully-reconstructed probability was always
100% and when it rose over 0.24, the probability dropped to
0%. So we paid more attention to the interval between 0.19
and 0.24.

Before analyzing the test results, we want to discuss the
block size we chose during the test. We all know that a host
block must be capable to embed a reference block and a 32-
bit hash. During the capacity test, the average bpn is 0.588 bit
per base, so theoretically, the requirement that the host block
size must meet is as following:

L / 2 + 32

L
≤ 0.588 (15)

where 32 means the length of hash, L represents the block size
and since we embed a reference block sized L/4 bases and one
base must be represented by 2 bits so overall there are L/2+32
bits to embed. Obviously, when localizing the tampered region,
smaller block size means we can do the localization more
precisely so we need to make it as small as possible. After
solving the inequality we found the best solution seemed to
be 364, but during the test, we found that the capacity differed
between blocks, even when we tried 512 as the block size we
still cannot ensure that all blocks can embed the watermark,
finally we chose 768 as the block size because almost all
sequences can succeed the embedding procedure without one
block failing to embed the watermark. In rare case, if a block
cannot afford the capacity, we suggest to embed a part of the
reference and a 32-bit hash, it may diminish the probability
of recovery but we can make full use of the capacity through
this way.

According to the figure, the probability can be kept to a
high level when the attack ratio is less than 0.21. As the
ratio growing, the probability drops rapidly. When the ratio is
over 0.23, our algorithm can hardly recover all the tampered
bases. It quite conforms to our assuming: we embed 25%
of the information into the DNA sequence, according to the
information theory, we can recover 25% of the sequence at
best. Actually, we are not able to make the attack completely
random and the pigeonhole principle tells us that when more
than 25% of the sequence is tampered the proposed algorithm
can never recover all the tampered bases. But when the ratio
is not too extensive (below 20%), the proposed algorithm can
reconstruct the whole sequence in a high probability.

When we focus only on localization accuracy we merely
embed the hash data into the host sequence as (7). In this
case, we found that a host block sized 128 bases is adequate

to embed the 32-bit hash for most sequences. That means
the accuracy of locating the position of tampering in DNA
sequence is 128 bases.

C. Percentage of Tamper Retrieved

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39

T
am

p
er

in
g

 r
at

e
(%

)

α (%)

before reconstruction

after reconstruction

Fig. 2. Tampering rate before and after reconstruction

According to the figure, when attack ratio is below 0.33,
the tampering rate after recovering is evidently lower than that
before. Even though the proposed algorithm cannot recover all
the bases, it can still reduce the loss of the DNA, especially
when the ratio is between 0.25 and 0.30. Limited by the
amount of information we embedded, the percentage decreases
when the ratio grows. We can see when the ratio is over 0.35,
the proposed algorithm cannot recover even one group, which
means its ability of recovering is lost.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sci-
ence Foundation of China under Grant 61170234 and Grant
60803155, by the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant XDA06030601,
and by the Funding of Science and Technology on Information
Assurance Laboratory under Grant KJ-13-003.

REFERENCES

[1] Shimanovsky, Boris, Jessica Feng, and Miodrag Potkonjak. “Hiding data
in DNA” Information Hiding. pp. 373–386, January 2003.

[2] C. C. Chang, T. C. Lu, Y. F. Chang, R. C. T. Lee. “Reversible data
hiding schemes for deoxyribonucleic acid (DNA) medium” International
Journal of Innovative Computing, Information and Control. vol. 3(5), pp.
1145–1160, 2007.

[3] H. J. Shiu, K. L. Ng, J. F. Fang, R. C. T. Lee and C. H. Huang. “Data
hiding methods based upon DNA sequences” Information Sciences. vol.
180, pp. 2196–2208, June 2010.

[4] C. Guo, C. C. Chang and Z. H. Wang. “A new data hiding scheme
based on DNA sequence” International Journal of Innovative Computing,
Information and Control. vol. 8, pp 139–149, January 2012.

[5] Naskar, Ruchira, and Rajat Subhra Chakraborty. “A generalized tamper lo-
calization approach for reversible watermarking algorithms” ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMCCAP). vol. 9, June 2013.

[6] NCBI Database: National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov/

[7] IUPAC: International Union of Pure and Applied Chemistry,
http://en.wikipedia.org/wiki/International Union of Pure and Applied

Chemistry
[8] Degenerate base symbols: A Nucleic Acid Notation,

http://en.wikipedia.org/wiki/Nucleic acid notation

