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Abstract—This paper presents a clustering and optimizing
pixel prediction method for reversible data hiding, which
exploits self-similarities and group structural information of
image patches. Pixel predictors plays an important role for
current prediction-error expansion (PEE) based reversible data
hiding schemes. Instead of using a fixed or a content-adaptive
predictor for each pixel independently, we first employ pixel
clustering according to the structural similarities of image
patches, and then for all the pixels assigned to each cluster,
an optimized pixel predictor is estimated from the group
context. Experimental results demonstrate that the proposed
method outperforms state-of-art counterparts such as the
simple rhombus neighborhood, the median edge detector, and
the gradient-adjusted predictor et al.

Keywords-reversible data hiding; pixel prediction; self-
similarities; clustering; l1-norm approximation

I. INTRODUCTION

Reversible data hiding (RDH), as a special type of in-
formation hiding technique, has received much attention
from the information community [1] in the last decade.
Specifically, RDH ensures not only the embedded messages
shall be extracted precisely, but also the cover itself should
be restored losslessly. This property is important in some
special scenarios such as medical imagery, military imagery
and law forensics. In these applications, the cover is too
precious or too important to be damaged [2].

Classical RDH methods roughly fall into three categories.
The first class follows the idea of compression-embedding
framework of Fridrich [3]. In these algorithms, a two-value
feature is calculated for each pixel group, the sequence is
losslessly compressible and messages can be embedded in
the extra space. The send class of techniques is based on
difference expansion (DE) [4], [5], in which the difference
of each pixel group are expanded, e.g., multiplied by 2, and
thus the least significant bits (LSBs) of the differences are
all-zeros and can be used for embedding. The last RDH
schemes use histogram shift (HS) [6]. The histogram of one
special feature(for example, gray-scale value) of the nature
image is quite uneven, which implies that the histogram can
be modified for embedding data.
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Fig. 1. Pixel clustering based on self-similarities of image patches.

In fact, by applying DE or HS to the residual parts of
images instead, e.g., the prediction errors (PE) [7], better
performance can be achieved. This extended method is
called prediction-error expansion (PEE), which is currently a
research hot spot and the most powerful technique of RDH.
Recent PEE schemes first generate a PE sequence with a
sharp histogram by using some prediction strategies, and
then messages are reversibly embedded into the PE sequence
by modifying its histogram with methods like HS or DE.

Typical prediction methods either use a fixed average
model [8]–[10], or a content adaptive predictor such as the
median edge detector (MED) [5], the simplified gradient-
adjusted predictor (SGAP) [11] and the global optimal
predictor [12]. They treats each pixel independently while
structural self-similarities of non-local image patches are
rarely considered. In this paper, we propose to first divide
all pixels into several clusters according to the structural
similarities of image patches, as shown in Fig. 1. Afterwards,
for all the pixels assigned to each cluster, an optimized
pixel predictor is estimated from the group context. Each
pixel is predicted by the linear combination of its nearest
eight neighbors, and a quad-layered embedding scheme is
proposed to traverse all the pixels in the cover image.

The rest of the paper is organized as follows. Section II
briefly reviews the PEE method. The proposed clustering and
optimizing scheme is presented in Section III. Experimental
comparison results are demonstrated in Section IV. And
finally, Section V concludes this paper.

2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-1-4799-5390-5/14 $31.00 © 2014 IEEE

DOI 10.1109/IIH-MSP.2014.126

481

2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-1-4799-5390-5/14 $31.00 © 2014 IEEE

DOI 10.1109/IIH-MSP.2014.126

481

2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-1-4799-5390-5/14 $31.00 © 2014 IEEE

DOI 10.1109/IIH-MSP.2014.126

481

2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-1-4799-5390-5/14 $31.00 © 2014 IEEE

DOI 10.1109/IIH-MSP.2014.126

481

2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-1-4799-5390-5/14 $31.00 © 2014 IEEE

DOI 10.1109/IIH-MSP.2014.126

481



II. PREDICTION-ERROR EXPANSION (PEE)

Typical PEE based schemes divide cover image pixels into
different parts, while a pixel of one part is predicted by its
neighboring pixels in other parts. In Sachnev et al.’s double-
layered embedding method [8], all pixels are divided into
two sets: the Cross set and the Dot set (see Fig. 2). Here we
consider the Cross layer to illustrate the procedures.
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Fig. 2. Rhombus prediction pattern. The pixel value of u of the Cross set
is predicted by using its four neighboring pixels in the Dot set.

As shown in Fig. 2, the Cross pixels ui,j in the cover
image are collected into a sequence u = (u1, u2, · · · , un)
from left to right and from top to bottom. For each
Cross pixel ui,j , the rhombus predicted value ûi,j is com-
puted by averaging its four nearest Dot pixels ûi,j =
�
vi,j−1+vi+1,j+vi,j+1+vi−1,j

4
�. Then, by subtracting the pre-

dicted value ûi,j from the original pixel value ui,j , we obtain
the prediction-error sequence e = (e1, e2, · · · , en). After-
wards, secret data are embedded into ei through expanding
and shifting as

e′i =

⎧⎨
⎩

2ei +m, if ei ∈ [Tn, Tp]
ei + Tp + 1, if ei ∈ (Tp,+∞)
ei + Tn, if ei ∈ (−∞, Tn)

(1)

where Tn < 0 and Tp ≥ 0 are threshold parameters, and
m ∈ {0, 1} is a to-be-embedded message bit. Here, the
bins in [Tn, Tp] are expanded to embed data, and those in
(−∞, Tn)∪ (Tp,+∞) are shifted outwards to create vacan-
cies. Finally, each pixel value ui is modified to u′

i = ûi+e′i.
In PEE extraction process, the original prediction-error ei

is recovered from the marked prediction-error e′i as

ei =

⎧⎨
⎩
�e′i/2�, if e′i ∈ [2Tn, 2Tp + 1]
e′i − Tp − 1, if e′i ∈ (2Tp + 1,+∞)
e′i − Tn, if e′i ∈ (−∞, 2Tn)

(2)

and the embedded message bits are extracted as the LSBs of
those prediction-errors e′i ∈ [2Tn, 2Tp+1]. Finally, the cover
image is restored using the recovered prediction-errors.

III. QUAD-LAYERED EMBEDDING SCHEME

For each pixel b in the cover image, instead of predicted
by averaging its four nearest neighbors, we propose to com-
pute its predicted value b̂ through the linear combinations of
its eight nearest neighbors a = (a1, a2, · · · , a8)

b̂ = ax
T (3)

where x = (x1, x2, · · · , x8) is the coefficients vector satis-

fies
8∑

i=1

xq = 1 and 0 ≤ xq ≤ 1, q = 1, 2, · · · , 8.

As depicted in Fig. 3, all the pixels in the cover image
are divided into four sets: the Square set, the Star set, the
Triangle set, and the Circle set. A pixel in each set is
predicted by its eight neighbors from the other three sets.
And in order to traverse all the pixels, a consecutive quad-
layered embedding scheme is developed, each layer covers
a type of set. Without loss of generality, we take the Square
layer for instance to elaborate our embedding scheme.
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Fig. 3. Quad-layered prediction pattern. A pixel in each set is predicted
by its nearest eight neighboring pixels from the other three set.

A. Optimizing pixel predictors with clustering

Firstly, for each pixel bi, i = 1, 2, · · · , Ns in the Square
set, a patch-level structural feature fi is calculated form its
prediction context vector ai = (ai1, ai2, · · · , ai8) as

fi = ai −
ai1+ai2+···+ai8

8
(4)

where Ns is the total number of pixels in the Square set.
According to the extracted features fi, i = 1, 2, · · · , Ns,

we use the K-means clustering algorithm to divide all the
pixels bi in the Square set into K clusters as depicted
in Fig. 1. Here K is a predefined parameter for the K-
means algorithm. Note that the initial cluster centroid pixel
indexes for the K-means algorithm are selected every S
pixels from the S-th pixel, namely S, 2S, · · · ,KS. And the
space parameter S is transmitted to the receiver side for the
sake of repeating the K-means algorithm.

After that, for all the pixels bj , j = c1, c2, · · · , cNc

assigned to a specified cluster, a content adaptive pixel
predictor is estimated by optimizing the following problem

minimize |Ax− b|1

subject to
8∑

q=1

xq = 1, 0 ≤ xq ≤ 1
(5)

here Nc is the total number of pixels dispatched to the
cluster, and the matrix A and vector b is given by

A =

∣∣∣∣∣∣∣∣∣

ac11 ac12 · · · ac18
ac21 ac22 · · · ac28

...
...

. . .
...

acNc1
acNc2

· · · acNc8

∣∣∣∣∣∣∣∣∣
b =

∣∣∣∣∣∣∣∣∣

bc1
bc2
...

bcNc

∣∣∣∣∣∣∣∣∣
(6)
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In (5), the l1-norm is used rather than the l2-norm due
to the fact that we aims to optimize the eight coefficients
x = (x1, x2, · · · , x8) according to most of the pixels in the
cluster, while the l1-norm is more robust to outliers.

When the coefficients vector x is estimated by solving
(5), the prediction-error ej is calculated as

ej = bj − �ajx
T� (7)

Then we embedded messages by modifying ej to e′j using
the expanding and shifting techniques described in (1), thus
the original pixels bj , j = c1, c2, · · · , cNc

are modified to

b′j = e′j + �ajx
T� (8)

B. Compression of the optimized coefficients

The optimized coefficients x = (x1, x2, · · · , x8) has to
be transmitted to the receiver side to recover the prediction
value b̂j . As the l1-norm used in (5), embedding modifi-
cations on vector b result slight changes for the optimized
coefficients x. Using the modified vector b′ after embedding,
we can optimize (5) again and get a revised coefficients
vector x′ = (x′

1, x
′

2, · · · , x
′

8). If we restrain the precision of
the coefficients to d decimal places, a coefficients residual
vector r can be derived as

r = (r1, r2, · · · , r8) = �x ∗ 10
d� − �x′ ∗ 10d� (9)

Next, we use a variable-length coding scheme to record
r for each cluster. Specifically, we first check that the
maximum absolute value of r is less then 2M , otherwise
we don’t embed messages for this cluster. Here M is a
predefined bit length. Then for each coefficient residual ri,
if ri == 0, we just add a bit “0” to the coded stream, or
else M + 2 bits are added. The M + 2 bits consists of a
bit “1”, a sign indicator bit to record the sign of ri, and
M bits to record the absolute value of ri. And finally, the
coded coefficients residual streams for all the K clusters are
concatenated together to be transmitted to the receiver side.

C. Embedding and extracting

This section describes the proposed quad-layered em-
bedding process in detail. The embedding and extraction
processes are nearly the same for the four sets: Square set,
Star set, Triangle set, and Circle set. Next we discuss the
Square layer to elaborate the procedures.

Embedding process

1) Extract features fi from all pixels bi in the Square set.
2) Select K pixel indexes every S spaced as initial cluster

centroids, run the K-means algorithm to divide all
pixels in the Square set into K clusters.

3) For k = 1 : K

a) Collect all pixels bj and vectors aj in the cluster
to form matrix A and vector b in (6).

b) Estimate the optimal coefficients x by solving
(5), then calculate prediction errors ej using (7).

c) Embed messages into the prediction errors ej by
(1), then calculate the coefficients residual vector
rk by (9) and generate the coded residual bit
stream rsk as discussed in Section III-B.

4) Finally, concatenate all the coded residual bit streams
rsk, k = 1, 2, · · · ,K together and embedded them
into the LSBs of some preserved pixels.

Extracting process

1) Extract all the coded residual bit streams rsk, k =
1, 2, · · · ,K from the LSBs of the preserved pixels.

2) Extract features fi from all pixels bi in the Square set.
3) Select K pixel indexes every S spaced as initial cluster

centroids, run the K-means algorithm to divide all
pixels in the Square set into K clusters.

4) For k = 1 : K

a) Collect all pixels b′j and vectors aj in the cluster
to form matrix A and vector b′ in (6).

b) Estimate the revised pixel predictor coefficients
x
′ = (x′

1, x
′

2, · · · , x
′

8) by solving (5), and to-
gether with the decoded residual vector rk, re-
cover the original optimal coefficients x.

c) Calculate prediction errors e′j using (8), then ex-
tract messages and recover the original prediction
errors ej through (2), then original pixel values
bj can be restored losslessly through (7).

IV. SIMULATIONS

First, the proposed clustering and optimizing scheme is
compared to other four prediction methods, namely, MED
[5], Sachnev et al.’s method [8], simplified gradient-adjusted
predictor (SGAP) [11], and checkerboard based prediction
(CBP) [10]. Test grayscale images are shown in Fig. 4. Table
I records the prediction comparison results in terms of MAE
(mean absolute error), which is defined by

MAE =
1

n
×

n∑
i=1

|bi − b̂i| (10)

Here we only predict the Square set pixels for comparison. It
can be seen from Table I that our proposed method provides
the best prediction accuracy among all the competitors.

Image Lena Barbara Goldhill Pepper
MED [5] 4.4168 9.2978 5.5387 5.3624

SGAP [11] 4.0362 8.8888 5.6568 4.8651
Sachnev et al. [8] 3.2330 7.4485 4.5441 4.1278

CBP [10] 3.1837 7.0533 4.5579 3.9778
Proposed 3.0041 5.2685 4.2508 3.6046

Table I
PREDICTION ACCURACY (MAE) COMPARISON RESULTS.
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Next, to demonstrate that prediction accuracy directly
influence the embedding performance of PEE based RDH
methods, we compare our proposed quad-layered embedding
scheme with Sachnev et al.’s method [8]. For our proposed
scheme, the cluster number K is set to 25, the decimal
place d and bit length M in Section III-B are set with
d = 2,M = 3. Embedding performance comparison results
for various embedding rates are demonstrated by Fig. 5.

(a) Lena (b) Barbara (c) Goldhill (d) Peppers

Fig. 4. Test images.
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(d) Peppers

Fig. 5. Comparisons in terms of rate-distortion performance.

Observing from Fig. 5, for the Lena and the Goldhill
image, our proposed scheme earns 0.5dB higher PSNR than
Sachnev et al.’s method on average. And for the Barbara and
especially the Peppers image, the gains of PSNR increase
to 2dB on average. As shown in Fig. 4, the Barbara and the
Peppers image exhibit better structural self-similarities, and
thus better embedding performance gains are obtained.

V. CONCLUSION

This paper presents a clustering and optimizing pre-
diction method for reversible data hiding, which exploits
self-similarities and group structural information of image
patches. And a quad-layered embedding scheme is proposed
accordingly to traverse all the pixels in the cover image.
Compared to other fixed or content adaptive pixel predictors,
our proposed method offers the best prediction accuracy.

Experimental results imply that structural self-similarities of
intra image patches undoubtedly benefits pixel prediction,
so structural self-similarities across multiple images or even
among a image dataset might be more helpful to reversible
data hiding. This could be our future direction to work on.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science
Foundation of China under Grant 61170234 and Grant
60803155, by the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant XDA06030601,
and by the Funding of Science and Technology on Informa-
tion Assurance Laboratory under Grant KJ-13-003.

REFERENCES

[1] R. Caldelli, F. Filippini, and R. Bacarelli, Reversible wa-
termarking techniques: An overview and a classification.
EURASIP J.Inf. Secur., 2010.

[2] J. Feng et al., Reversible watermarking: Current status and key
issues, Int. J. Netw. Security, vol. 2, no. 3, pp. 161-171, May
2006.

[3] J. Fridrich and M. Goljan, Lossless data embedding for all
image formats, In Proc. SPIE, vol. 4675, pp. 572-583, Jan.
2002.

[4] J. Tian, Reversible data embedding using a difference expan-
sion, IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8,
pp. 890-896, Aug. 2003.

[5] D. Thodi and J. Rodriguez, Expansion embedding techniques
for reversible watermarking, IEEE Trans. Image Process., vol.
16, no. 3, pp. 721-730, Mar. 2007.

[6] Z. Ni, Y. Shi, N. Ansari, and S. Wei, Reversible data hiding,
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp.
354-362, Mar. 2006.

[7] F. Peng, X. Li, and B. Yang, Adaptive reversible data hiding
scheme based on integer transform, Signal Process., vol. 92,
no. 1, pp. 54-62, Jan. 2012.

[8] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Shi, Re-
versible watermarking algorithm using sorting and prediction,
IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 7, pp.
989-999, Jul. 2009.

[9] H. C. Huang and F. C. Chang, Hierarchy-Based Reversible
Data Hiding,Expert Systems with Applications, vol. 40, no. 1,
pp. 34-43, Jan. 2013.

[10] R. R, X. Hu, X. Li, and J. Guo, A unified data embedding and
scrambling method, IEEE Trans. on Image Processing. Vol. 23,
no. 4, pp. 1463-1475, April 2014.

[11] D. Coltuc. Improved embedding for prediction-based re-
versible water- marking. IEEE Trans. Inf. Forens. Security,
6(3):873-882, Sep. 2011.

[12] S. L. Lin, C. F. Huang, M. H. Liou, and C. Y. Chen, Improving
Histogram-based Reversible Information Hiding by an Opti-
mal Weight-based Prediction Scheme, Journal of Information
Hiding and Multimedia Signal Processing, Vol. 4, No. 1, pp.
19-33, January 2013.

484484484484484


