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In aggregation applications, individual privacy is a crucial factor to determine the effec-

tiveness, for which the noise-addition method (i.e., a random noise value is added to the

true value) is a simple yet powerful approach. However, improper additive noise could

result in bias for the aggregate result. It demands an optimal noise distribution to reduce

the deviation. In this paper, we develop a mathematical framework to derive the optimal

noise distribution that provides privacy protection under the constraint of a limited value

deviation. Specifically, we first derive a generic system dynamic function that the optimal

noise distribution must satisfy, and further investigate the special case that the original

values obey Gaussian distribution. Then we detailedly investigate the general cases that

the original values obey arbitrary continuous distribution, which can be expressed by

Gaussian Mixture Model (GMM). Our theoretical analysis suggests that for the Gaussian

input Gaussian distribution is the optimal solution, and for the general input, the optimal

solution is composed of infinite number of Gaussian components. We further find the

general term formula of the components, which reduces the number of unknowns from

infinite to three, i.e. the parameters of the first component (variance, expectation, weight).

Based on it, we investigate the properties and propose an algorithm in order to calculate

the asymptotically optimal solution composed of finite Gaussian components. The nu-

merical evaluation shows that the results has little deviation to the optimal solutions.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With the advance of information age, data aggregation has

been widely used in daily life and commercial applications.

Even some companies such as Canalys make a living by

providing all kinds of statistics. In aggregation applications

the server wishes to distill valuable aggregate statistics from a

mass of individual data. For example, CarTel (Hull et al., 2006)
.cn (H. Zhang), ynh@ustc.

rved.
learns the traffic condition from the road information

collected by using mobile phones. BikeNet (Eisenman et al.,

2009) measures air and road condition to guide cyclists,

where all the data is contributed by users' devices.
However, the individual privacymay be violated during the

aggregation. The server is able to obtain the individual data of

participants from inputs. Nevertheless, much of this infor-

mation is private for individuals, such as health condition,
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income, etc., especially in the presence of curious server or

data abuse. Actually the server only need to know the aggre-

gate result without knowing the individual data. Thus in ag-

gregation applications, calculate the aggregate statistics

without compromising individual privacy is an important

challenge.

Some methods are proposed to solve this problem. Secure

Multiparty Computation (SMC) is a good choice to calculate

the statistics. It uses cryptographicmethods, doing operations

on ciphertext domain. However, it also has its limitations.

Firstly, because of the huge overhead, SMC is not suitable for

large-scale systems. Secondly, both encryption/decryption

and communication are high power consumption operations,

which limit SMC deployed in energy-sensitive devices (e.g.

sensor, phone). Therefore, SMC is not suitable for the large-

scale energy-constraint environments such as large-scale

mobile survey applications. On the contrary, noise addition,

which prevents the adversary from getting the accurate indi-

vidual data values, is a simple but effective method.

Compared to SMC, it is much simpler and efficient, especially

in this environment. Without collaboration with others, each

participant only adds noise into his data independently before

updating. However, in this method, how to choose the noise

distribution is a headache. Improper additive noise could

result in bias for the aggregate result. It demands an optimal

noise distribution which provides the best protection to indi-

vidual privacy while the aggregate result has tolerable bias.

However, the optimal noise distribution is not evident. Usu-

ally the noise distribution (usually homogeneous noise or

Gaussian noise) is proposed directly without any explanation.

In aggregation applications the accuracy of result and the

privacy of individuals are twomain concerned issues. Our goal

is to find out the optimal noise distribution in noise addition

method, where the individual privacy is protected best under

the given accuracy requirement. In this paper, wemeasure the

accuracy by expectation and variance of the noise distribu-

tion, and the privacy by conditional entropy. Based on the

metrics, we develop a mathematical framework to derive the

optimal noise distribution that provides privacy protection

under the constraint of a limited value deviation, deriving a

generic system dynamic function that the optimal noise dis-

tribution must satisfy, with the original data distribution as

input. Based on the function, we first investigate the special

case for Gaussian input, then the arbitrary input is considered

and analyzed intensively. The contributions of this paper are

summarized as follows:

1. Based on the accuracy and privacy metrics, we develop a

mathematical framework to derive the optimal noise

distribution.

2. We get the generic system dynamic function that the

optimal noise distribution must satisfy, where the input is

the distribution of original individual data. Based on the

function, we find Gaussian distribution is the optimal noise

distribution for the Gaussian input.

3. We deeply investigate the general case that the input is

arbitrary continuous distribution. We propose a general

method to calculate the optimal noise distribution.

4. We investigate the properties of the optimal noise distri-

bution, which is composed of infinite Gaussian
components, and find the periodic structure so that it can

be approximated by finite components.

5. We propose an algorithm calculating the optimal distri-

bution. For some special cases, the complexity of the al-

gorithm is reduced greatly, and the approximation

matches the theoretic analysis well.

The rest of the paper are organized as follows. Relatedwork

is introduced in Section 2. We formulate the problem in Sec-

tion 3. In Section 4we give the general solution and investigate

the Gaussian input. Arbitrary continuous distribution input is

explored in Section 5, and we find out that output consists of

infinite Gaussian components, all of which are fixed by the

first component. In Section 6 we investigate the properties of

the component sequence. In Section 7 we propose an algo-

rithm to express the approximate optimal distribution, and

reducing the algorithm complexity in two special cases. Sec-

tion 8 shows some simulation results. At last we conclude the

paper and the future work in Section 9.
2. Related work

SMC enables parties to calculate the result by collaboration

based on their own data without compromising others' pri-
vacy. However it has lots of limitations. In Clifton et al. (2002) a

secure sum protocol was depicted, where the summation is

calculated serially whichwould spend toomuch time in large-

scale systems. Another protocol (Shi et al., 2011) was pro-

posed, which allows the untrusted server to calculate the

summation. It requires that the sum of the keys of parties is 0.

If one of the party leaves in the process, which is a common

case in large-scale systems, the summation cannot be calcu-

lated. Jung et al. (2013) proposed a linear time protocol without

secure channel, but it still needs lots of communications

among parties. Meanwhile, in these methods each party has

to communicate with others and do lots of mathematical

operations, both of which are high power consumption op-

erations. So SMC is not suitable for energy-constrained

devices.

Noise addition has been studied for many years in secure

data mining (Adam and Worthmann, 1989). It prevents the

adversary from getting the accurate individual data values.

Plenty of schemes are proposed to preserve the privacy of

individual records, but they all do not solve the problem as

ours. Most of them such as Oliveira and Zaiane (2003); Su et al.

(2008) are not claimed whether their methods are optimal.

Furthermore, they utilize the covariance of data in the data-

base, which needs the party who adds the noise to know the

global information of data. In some schemes the noise is

added without concerning the covariance of the data, but the

uniform distribution or Gaussian distribution is directly

declared (Agrawal and Srikant, 2000; Domingo-Ferrer et al.,

2004). In Zhu and Liu (2004) the authors considered the

optimal randomization given the bias of results, but they did

not solve it. Traub et al. (1984) analyzed the tradeoff of the

magnitude of the perturbations and the error Chebyshevs

inequality, but the metrics are rough. Different from many

other researches, Dwork et al. (2006) proposed a method that

the bias of summation obeys specified distribution. It adds
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noise into the summation directly, which is different from

other works focussing on adding noises into individual values.

Meanwhile, some researchers (Agrawal and Srikant, 2000;

Agrawal and Aggarwal, 2001) found the original data distri-

bution can be restructured by perturbed values, but the indi-

vidual privacy is not violated yet.

To protect the privacy of individual data, the privacymetric

is necessary and has greatly influence on the protection

scheme. There are several different measures of privacy. In

Agrawal and Srikant (2000) the privacy is measured by “con-

fidence interval”. If the data concerned x is in the interval I(x)

with at least certain probability c%, the length of interval jI(x)j
is treated as a privacy measure. However, this measure is not

accurate. Mutual information or differential entropy in

Shannon's information theory is another much more popular

privacy metric (Agrawal and Aggarwal, 2001). It indicates the

average privacy supporting by mathematical theory. Renyi

entropy (an extension of Shannon entropy) is also used to

measure privacy (Rachlin et al., 2009), but it is too complex and

does not have obvious physical meaning. Besides, some pri-

vacy metrics for single record are proposed in Bezzi (2010),

which are also based on Shannon entropy.

Recent years differential privacy (Dwork, 2006) is a hot

noise addition technology protecting individual's privacy in

data mining. It guarantees the accuracy of statistical result

while avoiding individual record disclosure. Ghosh et al. (2009,

2011) find out the optimized noise distribution that provides

most accurate result under the given privacy requirement.

However, differential privacy is against the adversary that

obtains individual record from different statistic results. For

example, if A is the sum of 50 records, B is the sum of 49 re-

cords from the former 50 ones. One record is disclosed by

A � B. In our situation, the adversary can get the individual

records directly, and we only focus on one aggregation

process.
3. Problem formulation

In this section, firstly we introduce some aggregation applica-

tions where the violation of individual privacy potentially ex-

ists and noise addition method is appropriate. Then we

quantify theaccuracyandprivacy requirements. Finally, based

on the measurements the optimization problem is presented.

3.1. Applications

The individual privacy is potentially threatened in statistics

aggregation applications. There are many examples,

including:

� Sensor network aggregation. In sensor network applica-

tions, many energy-constrained sensors are widely

deployed to monitor the surrounding environment and

send data to the central server for aggregation. However,

the data from individual sensor may contain privacy-

sensitive information. So energy-efficient privacy protec-

tion in aggregation is an important issue.

� Mobile survey applications. In these applications, tens of

thousands of participants exist and the phones are energy-
constrained. The overall results are distilled from a large

amount of individual information collected by mobile

phones. However, the individual privacy may be violated

during information collection.

In these large-scale energy-constrained applications, the

server should know is the aggregate results, which are

distilled from the information of individuals. However, the

individual privacymay be violated during the collection. Noise

addition technology is a simple but efficient method in these

applications, which protects the individual privacy by adding

noise into the individual data. To describe the problem more

accurately, in the following we formulate the problem in the

mathematical way.
3.2. Accuracy and privacy measurement

Suppose there are n users with values xi, i ¼ 1, 2, …, n, and a

server calculating aggregate statistics. In this paper, we

mainly focus on a simple but common statistic problem called

summation. The server processes the aggregation function

sumðvÞ ¼Pn
i¼1xi. Of course there are several other aggregation

types. Besides summation, Popa et al. (2011) list other classes:

average, standard deviation, count and others. All of them can

be constructed by summation.

To protect the individual privacy in the process of aggre-

gating statistics, user ui adds random noise zi into his/her true

value xi. Instead of xi, ui contributes the perturbed value

yi ¼ xi þ zi to the server. The information that the attacker

knows most is all the perturbed values and the scheme by

which the noise is generated. So we suppose the attacker

knows yi and the distributions of yi and zi. He tries to get xi
based on the information he knows. The aim of the noise is to

prevent the attacker from getting the accurate true value.

Obviously different noise distributions have different pri-

vacy protection capability. To protect the true value, how to

choose a good noise distribution is the key issue. Noise Zi is a

random variable with the probability density function (pdf) fZi
.

To meet the requirements of accuracy and privacy, fZi
should

satisfy:

1. accuracy requirement: the difference of
P

Yi and
P

Xi is

small.

2. privacy requirement: the confusion of the true value is

evident.

The first requirement guarantees that the aggregate result

does not deviate from the true result too much. The second

one guarantees the individual privacy is not violated. If the

attacker gets the user's value, he still doubts about it because

of the existence of noise.

3.2.1. Accuracy measurement
For accuracy requirement, we define the difference

Mn ¼
Xn
i¼1

Yi �
Xn
i¼1

Xi ¼
Xn
i¼1

Zi; (1)

where n is the number of participants. Due to Z1, …, Zn are

random variables, Mn also is a random variable, with the

http://dx.doi.org/10.1016/j.cose.2014.05.009
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expectation E(Mn) and the variance D(Mn). Z1, Z2, …, Zn are

independent, where Zi has the expectation mZi
and the vari-

ance s2
Zi

respectively. If they satisfy Lindeberg's condition

(Lindeberg), Mn obeys Gaussian distribution regardless of the

distributions of individual noise. It is only decided by the

expectation and the variance, i.e. EðMnÞ ¼
Pn

i¼1mZi
,

DðMnÞ ¼
Pn

i¼1s
2
Zi
. We try to keepMn small with high probability.

It requires E(Mn)¼ 0 and D(Mn) is small. Therefore, we quantify

the accuracy requirement U as

U ¼ DðMnÞ
n

¼ 1
n

Xn
i¼1

s2
Zi

(2)

with an additional condition E(Mn) ¼ 0. It measures the

average deviation tolerance of the perturbed result from

the true result. Suppose Z1, …, Zn are independent and

identically distributed random variables with the expectation

mZ and the variance s2
Z. The accuracy requirement U is

simplified as

U ¼ s2
Z (3)

with mZ ¼ 0.

U measures the average deviation tolerance of the per-

turbed result from the true result by the variance of the noise

distribution. If two zero-mean noise distribution fZi
and fZj

satisfy Ui < Uj, it means fZi
guarantees the accuracy of result

better.

3.2.2. Privacy measurement
For privacy requirement, we should enlarge the uncertainty of

the individual's value. Suppose Z1, …, Zn are independent and

identically distributed random variables, denoted as Z.

Consider

Y ¼ Xþ Z (4)

where Y, X and Z are random variables which delegate in-

dividual's perturbed value, true value and noise respectively,

and Z is independent from X. Suppose the adversary knows

the distribution of Z. It is reasonable that any user knows it to

generate noise, including malicious user compromised by the

adversary. For user ui, because of the perturbation of noise zi,

the adversary is uncertain about xi when he gets yi. We use

Shannon's information entropy to measure the uncertainty.

Suppose the adversary gets yi, the uncertainty of X is

measured byHðXjY ¼ yiÞ ¼ �P
x
PXjYðxjyÞlog PXjYðxjyÞ. The larger

H(XjY¼ yi) is, the better the privacy protection is provided at yi.

For different yi, H(XjY ¼ yi) is different. we use the average

H(XjY ¼ yi) to quantify the privacy protection strength (denoted

by V) of the noise, i.e.

V ¼
X
yi

H
�
XjY ¼ yi

�
PYðyÞ ¼ HðXjYÞ: (5)

H(XjY) denotes the average uncertainty of the true value

when the perturbed value is captured. The larger V is, the

higher the average uncertainty is.

Generally speaking, for noise addition technology, the ac-

curacy and the privacy are in contradiction. High accuracy

leads to low privacy protection strength, and vice versa.
However, for a given accuracy level, different fZ usually has

different privacy protection capability. Thus how to optimize

the noise distribution that provides the best privacy protec-

tion under the accuracy constraint is the key problem.

3.3. Optimization problem formulation

For convenience, in the following we consider the contin-

uous distributions. The discrete distribution can be regarded

as the approximation of the corresponding continuous dis-

tribution. Consider the formulation Y ¼ X þ Z, where X, Z are

random variables with pdf fx(x) and fZ(z) respectively. We

will find the optimal fZ providing the best privacy protection

while guaranteeing that the result has an acceptable devi-

ation, i.e.

max
fZðzÞ

V ¼ HðXjYÞ

s:t: U ¼ s2
Z � s2

m

EðZÞ ¼ 0

(6)

where s2
m is the accuracy requirement bound required by

applications.

Consider

HðXjYÞ ¼ HðXÞ � IðX;YÞ: (7)

Since fx(x) is deterministic, H(X) is a constant. Thus the

optimization problem is translated to

min
fZðzÞ

IðX;YÞ

s:t:
Z

fZðzÞz2 dz � s2
mZ

fZðzÞz dz ¼ 0Z
fZðzÞ dz ¼ 1:

(8)

4. Problem solution

4.1. General solution

Consider the problem (8), for any pdf of X, we have the

following theorem:

Theorem 1. Given the accuracy requirement bound s2m, the noise

providing the best privacy protection has the pdf

fZðzÞ ¼ CfYðzÞe�lz2�uz; (9)

where fY(z) ¼ !fx(x)fZ(z � x) dx, and l, u, C are related to the

constraints
R
fZðzÞz2 dz ¼ s2

m, !fZ(z)z dz ¼ 0, and !fZ(z) dz ¼ 1

respectively.

The proof is given in Appendix A.

Fig. 1 shows the corresponding system diagram, where fx is

the input and fZ is the output. The system contains two op-

erations. One is convolution of the input and the output. The

other is multiplication of the convolution result and the factor

“C e�lz2�uz
”.

The problem (8) is a convex optimization problem (Cover

and Thomas, 2006). The constraints satisfy the sufficient

http://dx.doi.org/10.1016/j.cose.2014.05.009
http://dx.doi.org/10.1016/j.cose.2014.05.009


Fig. 1 e The system diagram.
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conditions of KKT approach (inequality constraint is a

continuously differentiable convex function, the equality

constraints are affine functions (Hanson, 1999)). If we

find one fZ satisfying Eq. (9), it is the global optimal

solution.

Here we have to know the distribution of the original data

fx as the input of the system. In practice, fx can be estimated in

several ways. The fist one is assuming fx is a common distri-

bution (e.g. Gaussian distribution). The second one is asking

some statistics institutions the probable data distribution

based on the similar application. The third one is sampling by

adding specific noise such as Gaussian noise. Moreover, there

may bemany other bettermethods. Here we suppose fx can be

estimated. How to estimate fx is beyond the scope of this

paper.

4.2. Gaussian distribution input

Generally for different input fx(x), the output fZ(z) is different.

We consider a special but popular case that X follows

Gaussian distribution.

When XeNðmX;s
2
XÞ, ZeNð0;s2mÞ is a solution of Eq. (9), where

l ¼ 1
2

�
1
s2
m

� 1

s2
m þ s2

X

�
; (10)

u ¼ mX

s2
m þ s2

X

(11)

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
m

s2
m þ s2

X

s
$e

� m2
X

2ðs2mþs2
XÞ (12)

Thus fZ(z) ¼ 1/smf(z/sm) is the solution of the problem (8),

where fðxÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
e�x2=2. Therefore we have the theorem:

Theorem 2. When X obeys Gaussian distribution, the noise which

obeys Gaussian distribution with the expectation 0 and the variance

s2m protects the individual privacy best.
5. Gaussian mixture model input

For arbitrary fx, the optimal fZ satisfies Eq. (9). In the following,

we formulate arbitrary fx by Gaussian Mixture Model (GMM),
and investigate the corresponding optimal noise distribution

fZ (in the following we denote the optimal noise distribution

by fZ).

5.1. Solution translation

From GMM, any continuous distribution can be approximated

by the mixture of weighted Gaussian distributions, i.e. any

continuous distribution f can be represented as

fðxÞ ¼
XM�1

i¼0

pigiðxÞ; (13)

where pi, i¼ 0,…,M� 1 (M2 ℕþ), are the nonnegativemixture

weights, and gi(x), i ¼ 0, …, M � 1, are the Gaussian densities

with expectation mi and expectation s2
i . The mixture weights

satisfies
PM�1

i¼0 pi ¼ 1. Here we call pigi(x) Gaussian component,

which is the product of Gaussian pdf and the weight. So the

component is decided by three parameters ðpi;mi;s
2
i Þ. f is the

merger of M Gaussian components, expressed as f ¼ (p0g0(x),

p1g1(x), …, pM�1gM�1(x)).

Based on GMM, suppose fx and fZ consist of M Gaussian

components and N ones respectively. They can be expressed

by the merger of multiple Gaussian components, i.e.

fXðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
XM�1

i¼0

pXi

sXi

e
�ðx�mXi Þ2

2s2
Xi (14)

fZðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
XN�1

j¼0

pZj

sZj

e
�

�
x�mZj

�2

2s2
Zj : (15)

A simpler expression is fx ¼ (x0, x1, …, xM�1), where xi, i ¼ 0,

…,M� 1, is decided by the parameters ðpXi
;mXi

;s2
Xi
Þ (denoted by

xi ¼ ðpXi
;mXi

; s2
Xi
Þ), and fZ ¼ (z0, z1, …, zN�1) where zj, j ¼ 0, …,

N � 1, is decided by ðpZj
;mZj

;s2
Zj
Þðzj ¼ ðpZj

;mZj
;s2

Zj
ÞÞ. In the

following we consider the two operations of the system in

Fig. 1.

5.1.1. Convolution
fY is the convolution of fx and fZ. According to the properties of

convolution of Gaussian function,

fYðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
XM�1

i¼0

XN�1

j¼0

pXi
pZjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
Xi
þ s2

Zj

q e

�

�
x�mXi

�mZj

�2

2

�
s2
Xi

þs2
Zj

�
; (16)

or fY¼ (y00, y01,…, yji,…, y(N�1)(M�1))where yji¼ zj*xi is aGaussian

component decided by ðpYji
;mYji

; s2
Yji
Þðyji ¼ ðpYji

;mYji
;s2

Yji
ÞÞ, and

mYji
¼ mZj

þ mXi
, s2

Yji
¼ s2

Zj
þ s2

Xi
, pYji

¼ pZj
pXi

. Each component of fZ

generates M component of fY. If fZ is composed of N compo-

nents, fY is composed of M$N components.

5.1.2. Multiplication
From the former operation, we get the expression of fY from fZ.

Conversely, by the multiplication operation, fZ is generated by

http://dx.doi.org/10.1016/j.cose.2014.05.009
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Fig. 2 e Multiplication: each component of fY refers to one

component of fZ in multiplication operation, where

k ¼ i·M þ j, M is the number of Gaussian component of fx.
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fY that multiplying all the Gaussian components of fY by the

same multiplier. Fig. 2 illustrates the operation, where all the

components of fY is multiplied by the same factor “C e�lx2�ux
”.

Each components of fY is transformed into one of fZ. We call

the corresponding two components component pair or pair. For

example, z0 is the product of y00 and the factor, so z0 and y00
are a pair. zk (k ¼ i,M þ j) is the product of yij and the factor, so

zk and yij are a pair.

Suppose there are two pairs: yi1 j1 and zi1$Mþj1 , yi2 j2 and

zi2$Mþj2 . Since yi1j1 and yi2j2 are multiplied by the same factor, if

yi1j1 and yi2j2 are different, zi1$Mþj1 and zi2$Mþj2 are different too.

So it is a one-to-one mapping between components of fZ and

fY. fZ and fY have the same number of components, i.e.

N ¼ M$N, where the left part of the equation delegates the

number of the Gaussian components of fZ, the right one del-

egates the number of the Gaussian components of fY. This

equation holds in two situations:

� M¼ 1,N¼ 1. Although for anyN > 0 the equation holds, it is

easily checked that all the N components of fZ have the

same s2Z and mZ by the method in Section 5.3. So it is equal

to the situation N ¼ 1.

� M > 1, N / ∞. Thus when M > 1, fZ is composed of infinite

number of Gaussian components.

Consider yij and zk which form a component pair, where

k ¼ i$M þ j. From the geometric point of view, zk stems from

yij by narrowing ðe�lx2 Þ, translating (e�ux) and normalizing (C)

the curve of yij. From the algebraic point of view, the three

operations are visualized as Eqs. (17)e(19) respectively,

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

e

� x2

2

�
s2
Xi

þ s2
Zj

��lx2

¼ e

� x2

2s2
Zk ð17Þ

e

�
mXi

þ mZj

�
x

s2
Xi

þ s2
Zj

�ux

¼ e

mZk
x

s2
Zk ð18Þ

C
pXi

pZjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Xi

þ s2
Zj

q e

�

�
mXi

þ mZj

�2
2

�
s2
Xi

þ s2
Zj

�
¼

pZk

sZk

e

�
m2
Zk

2s2
Zk ð19Þ
and the constraints for fZ are

8>>>>><>>>>>:

P
j

pZj

�
s2
Zj

þ m2
Zj

�
¼ s2

m ð20ÞP
j

pZj
mZj

¼ 0 ð21ÞP
j

pZj
¼ 1: ð22Þ

In these equations pXi
;mXi

;sXi
are known, pZj

;mZj
;sZj

and l, u,

C are unknown. Thus the solution is transformed to how to

determine the parameters ðpZj
;mZj

; s2
Zj
Þ of zj(j ¼ 0, …, N � 1) by

Eqs. (17)e(19) and constraints (20)e(22). In the following sub-

sections we try to calculate the three parameters of Gaussian

components of fZ when fx is composed of one, two and more

than two Gaussian components.
5.2. fx with one component

In this situation M ¼ 1. fx is a normal distribution. From Sec-

tion 4.2 fZ is a normal distribution too, i.e.N¼ 1, s2Z0
¼ s2m, pZ0 ¼

1 and mZ0
¼ 0. Actually, if we choose N > 1, by the method

proposed in Section 5.3, we would get s2Z0
¼ s2Z1

¼ / ¼ s2ZN�1

and mZ0
¼ mZ1

¼ / ¼ mZN�1
, i.e. fZ is a Gaussian distribution.
5.3. fx with two components

In this situation M ¼ 2, fx ¼ (x0, x1). fZ has infinite Gaussian

components, i.e. N / ∞. In the following we would calculate

all the components of fZ.

5.3.1. Calculate s2Z
For all the component pairs of fY and fZ, the variances are

controlled by the same l. Thus in the same pair the co-

efficients of “x2” (the exponent of “e”) in Eq. (17) are equal.

Suppose s2X0
� s2X1

, and s2Z0
¼ maxfs2Zj

			j2ℕg. If s2Z0
is fixed, all

the variances of fZ and fY are determined by the following

method.

Step 1 (Fix the first pair). Since s2Z0
is fixed, we get the

variances of two components of fY denoted by y00 and

y01 (with variances s2Y00
¼ s2Z0

þ s2X0
and s2Y01

¼ s2Z0
þ s2X1

)

shown in Fig. 3(a). Since s2Z0
and s2X0

are all the largest

one in the variances of components of fZ and fx respec-

tively, s2Y00
is the largest one in all the variances of

components of fY. y00 and z0 construct a pair, otherwise

no yji pairs z0.

Step 2 (Fix l). All the component pairs are generated by the

same l, u and C, so from any pair the three parameters are

fixed. y00 and z0 form a pair, i.e. by narrowing of l, s2Y00

would become s2Z0
. So we get

2l ¼ 1
2 � 1

2 2 ¼ s2
X0� �> 0: (23)
sZ0
sZ0

þ sX0 s2
Z0

s2
Z0

þ s2
X0
Step 3 (Fix second pair). From s2Y01
and l, we get s2Z1

(Eq. (24))

shown in Fig. 3(b). So s2Y01
and s2Z1

are a pair.

http://dx.doi.org/10.1016/j.cose.2014.05.009
http://dx.doi.org/10.1016/j.cose.2014.05.009


c om p u t e r s & s e c u r i t y 4 5 ( 2 0 1 4 ) 2 1 0e2 3 0216
Z Y
2 2 2
z0 :
1

s2
Z0

y00 : sY00
¼ sZ0

þ sX0

y01 : s
2
Y01

¼ s2
Z0

þ s2
X1

z1 :
1

s2
Z1

¼ 1

s2
y01

þ 2l
y10 : s

2
Y10

¼ s2
Z1

þ s2
X0

y11 : s
2
Y11

¼ s2
Z1

þ s2
X1

z2 :
1

s2
Z2

¼ 1

s2
y10

þ 2l
y20 : s

2
Y20

¼ s2
Z2

þ s2
X0

y21 : s
2
Y21

¼ s2
Z2

þ s2
X1

/ /

z2j :
1

s2
Z2j

¼ 1

s2
yj0

þ 2l
yð2jÞ0 : s

2
Yð2jÞ0

¼ s2
Z2j

þ s2
X0

yð2jÞ1 : s
2
Yð2jÞ1

¼ s2
Z2j

þ s2
X1

z2jþ1 :
1

s2
Z2jþ1

¼ 1

s2
yj1

þ 2l
yð2jþ1Þ0 : s

2
Yð2jþ1Þ0

¼ s2
Z2jþ1

þ s2
X0

yð2jþ1Þ1 : s
2
Yð2jþ1Þ1

¼ s2
Z2jþ1

þ s2
X1

(24)

Step 4 (Fix other pairs). When s2Z1
is fixed, combing l, the

other two s2Y (denoted by s2Y10
and s2Y11

) are fixed (Fig. 3(c)).

Then the corresponding pair members s2Z2
and s2Z3

can be

calculated (Fig. 3(d))/. In this way we can get the pairs

(z2jþi, yji), j ¼ 0, 1, 2, … and i ¼ 0, 1, and the variances

(Fig. 3(e)). Eq. (24) shows the process of calculating all the

variances. Thus given s2Z0
, all the s2Zj

are fixed.

We represent s2Zj
with one general term formula. Suppose

the binary form of j is (j0, j1, …, jt), s2Zj
has the general term

formula as
Fig. 3 e The generation of all s2Z and s2Y. The arrows show

the generating order of components of fZ and fY. The two

components in the same vertical line compose a pair.
s2
Zðj0 ;j1 ;…;jtÞ

¼ 1

2lþ 1
s2
Xjt

þs2
Zðj0 ;j1 ;…;jt�1Þ

(25)

5.3.2. Calculate mZ
In the above we fix the coefficients of “x2” of Eq. (17) and find

out the component pairs (z2$jþi, yji), j ¼ 0, 1, 2, … and i ¼ 0, 1.

The method of calculating mZ is the same as the method of

generating s2Z. Based on Eq. (18) we can fix the coefficients of

“x”. Since (z0, y00) is a pair,

u ¼ mZ0
þ mX0

s2
Z0

þ s2
X0

� mZ0

s2
Z0

: (26)

Then mZ1
is fixed by mY01

and u (all the components of fY
translate the same distance under the normalized variances).

From mZ1
two expectations of fY, mY10

and mY11
, are generated.

Then mZ2
and mZ3

are fixed/. By the iterative method, if mZ0
is

fixed, all the mZj
are fixed. Eq. (27) shows the calculation

process.

Z Y

z0 :
mZ0

s2
Z0

y00 : mY00
¼ mZ0

þ mX0

y01 : mY01
¼ mZ0

þ mX1

z1 :
mZ1

s2
Z1

¼
mY01

s2
Z0

þ s2
X1

� u
y10 : mY10

¼ mZ1
þ mX0

y11 : mY11
¼ mZ1

þ mX1

z2 :
mZ2

s2
Z2

¼
mY10

s2
Z1

þ s2
X0

� u
y20 : mY20

¼ mZ2
þ mX0

y21 : mY21
¼ mZ2

þ mX1

/ /

z2j :
mZ2j

s2
Z2j

¼
mYj0

s2
Zj

þ s2
X0

� u

yð2jÞ0 : mYð2jÞ0 ¼ mZ2j
þ mX0

yð2jÞ1 : mYð2jÞ0 ¼ mZ2j
þ mX1

z2jþ1 :
mZ2jþ1

s2
Z2jþ1

¼
mYj1

s2
Zj

þ s2
X1

� u

yð2jþ1Þ0 : mYð2jþ1Þ0 ¼ mZ2jþ1
þ mX0

yð2jþ1Þ1 : mYð2jþ1Þ0 ¼ mZ2jþ1
þ mX1

(27)

Suppose the binary form of j is (j0, j1, …, jt), mZj
has the

general term formula as

mZðj0 ;j1 ;…;jtÞ
¼ s2

Zðj0 ;j1 ;…;jtÞ
$

0@mZðj0 ;j1 ;…;jt�1Þ
þ mXjt

s2
Zðj0 ;j1 ;…;jt�1Þ

þ sX2
jt

� u

1A: (28)

5.3.3. Calculate pZ

The method of calculating pZ is the same as the method of

generating s2Z too. From Eq. (19) the constant term of each pair

have the same ratio C. Since (z0, y00) is a pair, if pZ0 is fixed,

C ¼ 1
pX0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

X0

s2
Z0

s
e

m2
X0

s2
Z0

þm2
Z0

s2
X0

þ2mX0
mZ0

s2
Z0

2s2
Z0

�
s2
X0

þs2
Z0

�
: (29)

Then pZ1
is fixed by pY01

and C (all the components of fY are

normalized with the same C). From pZ1
two coefficients of fY,

pY10
and pY11

, are generated. Then pZ2
and pZ3

are fixed/. By the

iterative method, if pZ0
is fixed, all the pZj

are fixed. Eq. (30)

shows the calculation process.

http://dx.doi.org/10.1016/j.cose.2014.05.009
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Z Y

z0 : pZ0

y00 : pY00
¼ pZ0

pX0

y01 : pY01
¼ pZ0

pX1

z1 : pZ1
¼ CpY01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Z1

s2
Z0

þ s2
X1

vuut e

m2
Z1

2s2
Z1

�

�
mX1

þ mZ0

�2
2

�
s2
X1

þ s2
Z0

�
y10 : pY10

¼ pZ1
pX0

y11 : pY11
¼ pZ1

pX1

z2 : pZ2
¼ CpY10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Z2

s2
Z1

þ s2
X0

vuut e

m2
Z2

2s2
Z2

�

�
mX0

þ mZ1

�2
2

�
s2
X0

þ s2
Z1

�
y20 : pY20

¼ pZ2
pX0

y21 : pY21
¼ pZ2

pX1

/ /

z2j : pZ2j
¼ CpYj0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Z2j

s2
Zj

þ s2
X0

vuuut e

m2
Z2j

2s2
Z2j

�

�
mX0

þ mZj

�2
2

�
s2
X0

þ s2
Zj

�
yð2jÞ0 : pYð2jÞ0 ¼ pZ2j

pX0

yð2jÞ1 : pYð2jÞ0 ¼ pZ2j
pX1

z2jþ1 : pZ2jþ1
¼ CpYj1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Z2jþ1

s2
Zj

þ s2
X1

vuuut e

m2
Z2jþ1

2s2
Z2jþ1

�

�
mX1

þ mZj

�2
2

�
s2
X1

þ s2
Zj

�
yð2jþ1Þ0 : pYð2jþ1Þ0 ¼ pZ2jþ1

pX0

yð2jþ1Þ1 : pYð2jþ1Þ0 ¼ pZ2jþ1
pX1

(30)
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Suppose the binary form of j is (j0, j1, …, jt), pZj
has the

general term formula as

pZðj0 ;j1 ;…;jtÞ ¼CsZðj0 ;j1 ;…;jtÞ$
pZðj0 ;j1 ;…;jt�1ÞpXjtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Zðj0 ;j1 ;…;jt�1Þ

þs2
Xjt

q $e

m2
Zðj0 ;j1 ;…;jtÞ

2s2
Zðj0 ;j1 ;…;jtÞ

�

�
mXjt

þmZðj0 ;j1 ;…;jt�1Þ

�2

2

�
s2
Xjt

þs2
Zðj0 ;j1 ;…jt�1Þ

�
:

(31)

Now for constructing fZ, the unknown numbers of Eq. (9)

only are s2
Z0
;mZ0

and pZ0
, which are determined by constraints

Eqs. (20)e(22).

5.4. fx with multiple components

When fx is composed of more than two Gaussian compo-

nents (M > 2), the calculation process is similar as the situ-

ation M ¼ 2. fZ consists of infinite number of Gaussian

components (N / ∞). Given one Gaussian component with

the largest variance, other components are calculated. A one

to one mapping between the components of fZ and fY is

constructed, i.e. yji and zM$jþi are a pair, where i ¼ 0, 1, …,

M � 1 and j ¼ 0, 1, …. Suppose the base-M form of j is (j0, j1,

…, jt), s2Zj
, mZj

and pZj
have the general term formula Eqs. (25),

(28), and (31) respectively. The formats are the same as the

situation M ¼ 2, but here t 2 {0, 1, …, M � 1}. Furthermore,

the equations fixing s2Z0
;mZ0

and pZ0 are the same as Eqs.

(20)e(22).

From above analysis, if one Gaussian component of fZ
which has the largest variance among all the components of fZ
is fixed, all other components of fZ can be calculated by Eqs.

(25), (28), and (31). Theoretically speaking, we greatly reduce

the number of unknown numbers in constructing fZ by Eq. (9)

from infinite ones to only three ones (s2Z0
, mZ0

and pZ0 ).
Moreover, we give the three Eqs. (20)e(22), which are the

constraints of the three parameters.
6. Properties of Gaussian components

Based on the investigation in the above section, we only need

to calculate the three parameters s2Z0
, mZ0

and pZ0 . However, it

is impossible to calculate infinite number of Gaussian com-

ponents of fZ. In this sectionwe explore the properties of these

components, by which fZ could be approximated by finite

number of Gaussian components with high accuracy. We

mainly consider the properties ofM ¼ 2. The situationM > 2 is

similar, which can be divided into M � 1 independent

situations.

By the generation order of Gaussian components, we

construct a tree of the components of fZ illustrated in Fig. 4,

which is another form of Fig. 3 ignoring the components of fY.

It is composed of the root z0 and its right subtree, where the

left child is generated by the parent and x0, and the right child

is generated by the parent and x1, where s2X0
� s2X1

. Specifically,

the tree also delegate the generation order of s2Z, mZ and pZ.

Based on the tree, in the following we investigate the prop-

erties of the three parameters respectively.
6.1. Properties of variance parameter

In this subsection we focus on the variances of all the com-

ponents. From this binary tree (Fig. 4), where z0 has the largest

variance s2Z0
, we have the following properties.

Lemma 1. For any j X ℕ, s2Z2j
� s2Z2jþ1

.

The proof is given in Appendix B.

http://dx.doi.org/10.1016/j.cose.2014.05.009
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Fig. 4 e Binary tree of Gaussian components of fZ.

Fig. 5 e The influence of s2X1
=s2X0

and s2Z0
=s2X0

to s2Z0
=s∞,

which is the ratio of maximum of the interval of variance

s2Zj
to minimum.
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From this lemma, the left child is larger than or equal to the

right child.

Lemma 2. For any j X ℕ, s2Z2j
� s2Zj

.

The proof is given in Appendix C.

From this lemma, the left child is larger than or equal to the

parent. Consider the condition of equation holds, if s2Zj
¼ s2Z0

for any j, s2X0
¼ s2X1

. Thus the equation of Lemma 2 holds under

the condition s2X0
¼ s2X1

too.

Theorem 3. For any j X ℕ,

s∞ � s2
Zj
� s2

Z0
;

where s∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2s4

X1
þ 2ls2

X1

q
� ls2

X1
=2l.

The proof is given in Appendix D.

This theorem shows the range of s2Z. Suppose s2Z0
=s2X0

¼ t0,

s2X1
=s2X0

¼ t1, where t1 � 1. The ratio of maximum of the in-

terval to minimum is

s2
Z0

s∞
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ 4t0ðt0 þ 1Þt1

p
þ t1

2ðt0 þ 1Þt1 : (32)

Shown in Fig. 5, when s2
X0

is not much larger than s2
X1
, the

interval is small (Z-axis delegates the ratio of maximum of the

interval to minimum). When t1 / 1, s2
Z0
=s∞/1, which means

when fx is composed of two Gaussian components with

almost the same variance, variances of all components of fZ
are almost equal.

Lemma 3. For any j X ℕ, s2Zj
� s2Z2jþ1

.

The proof is given in Appendix E.

From this lemma, the parent is larger than or equal to the

right child.

When s2Zj
¼ s∞, we have s2Z0

¼ s2Z1
¼ / ¼ s∞. From Theorem

3, s2X0
¼ s2X1

. Thus the equality in this lemma holds as the same

as the above lemmas.

Lemma 4. For any j 2 [2t, 2tþ1), t > 0 If j is even,

s2Z2t
� s2Zj

� s2Z2tþ1�2
. If j is odd, s2Z2tþ1

� s2Zj
� s2Z2tþ1�1

.

The proof is given in Appendix F.

From this lemma, both for variances with odd indices and

for variances with even indices, in the same level the largest

variance is the leftmost one, the smallest variance is the

rightmost one.

Lemma5. Forany jXℕþ, if j is even,s2Z0
� s2Zj

� 1=2lþ 1=s2X0
þ s∞.

If j is odd, s2Z1
� s2Zj

� s∞.

The proof is given in Appendix G.

This lemma shows the ranges of variances with odd

indices and even indices respectively. Suppose s2Z0
=s2X0

¼ t0,

s2X1
=s2X0

¼ t1 � 1 as before. We have the following theorem.

Theorem 4. All the s2Z with even orders and odd orders are located

in ½1=2lþ 1=s2X0
þ s∞;s2Z0

� and ½s∞; s2Z1
� respectively. If t1 / 1, the

length of the two intervals converge to 0.

The proof is given in Appendix H.

This property is more precise than Theorem 3 (shown in

Figs. 6 and 7). For example, under the condition that t0 ¼ 0.8,

if t1 ¼ 0.5, all the s2Z lie in [59.60, 74.76]. All the s2Z with

odd indices and even indices lie in [59.60, 63.82] and [71.84,

74.76] respectively. If t1 ¼ 0.8, all the s2Z lie in [70.31, 75.34]. All

the s2Z with odd indices and even indices lie in [70.31, 71.39]

and [74.39, 75.34] respectively. Thus from this theorem, when

s2X0
is not much larger than s2X1

, all the variances can be

replaced by two variances s2Z0
(even indices) and s2Z1

(odd

indices).

For M > 2, all the properties are similar to the situation

M ¼ 2. The binary tree is extended to an M-branches tree,

which also can be regarded as the mixture of M � 1 binary

trees (s2X0
and s2X1

, s2X0
and s2X2

,…, s2X0
and s2XM�1

). The properties

of the tree are the similar too. All the variances are divided

into M sets, each of which has a small range.

http://dx.doi.org/10.1016/j.cose.2014.05.009
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Fig. 6 e The influence of s2X1
=s2X0

and s2Z0
=s2X0

to s2Z1
=s∞,

which is the ratio of maximum of the interval of the

variance s2Zj
with odd indices to minimum.
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6.2. Properties of expectation parameter

Consider the situation that s2X1
is not much smaller than s2X0

(e.g. t1 � 0.5), where all the components with odd indices have

the variance s2Z1
and components with even indices have the

variance s2Z0
, i.e. for j 2 ℕ, s2Z2j

¼ s2Z0
and s2Z2jþ1

¼ s2Z1
. Based on

this approximation of s2Z, we investigate the properties of the

expectations of components. The general term formula of mZ
Eq. (28) can be refined as

mZ4j
¼ s2

Z4j

 
mZ2j

þ mX0

s2
Z2j

þ s2
X0

� u

!
¼ h0mZ2j

þH0 (33)

mZ4jþ1
¼ s2

Z4jþ1

 
mZ2j

þ mX1

s2
Z2j

þ s2
X1

� u

!
¼ h1mZ2j

þ H1 (34)

mZ4jþ2
¼ s2

Z4jþ2

 
mZ2jþ1

þ mX0

s2
Z2jþ1

þ s2
X0

� u

!
¼ h2mZ2jþ1

þH2 (35)
Fig. 7 e The influence of s2X1
=s2X0

and s2Z0
=s2X0

to

s2Z0
=ð1=2lþ 1=s2X0

þ s∞Þ,which is the ratioofmaximumof the

interval of the variance s2Zj
with even indices to minimum.
mZ4jþ3
¼ s2

Z4jþ3

 
mZ2jþ1

þ mX1

s2
Z2jþ1

þ s2
X1

� u

!
¼ h3mZ2jþ1

þH3; (36)

where

h0 ¼ t0
t0 þ 1

; H0 ¼ ð1� h0ÞmZ0
;

h1 ¼ t0ðt0 þ 1Þ
t20 þ 2t0 þ t1

;

H1 ¼ ð1� h1ÞmZ0
� t0ð1� h1ÞmX0

þ h1mX1
;

h2 ¼
t0
�
t20 þ 2t0 þ t1

�
t30 þ ðt1 þ 2Þt20 þ ðt1 þ 2Þt0 þ t1

;

H2 ¼ ð1� h0ÞmZ0
� t0ð1� h0ÞmX0

þ h2mX0
;

h3 ¼ t0ðt0 þ 1Þðt0 þ t1Þ
t30 þ ð2t1 þ 1Þt20 þ 3t1t0 þ t21

;

H3 ¼ ð1� h1ÞmZ0
� t0ð1� h1ÞmX0

þ h3mX1
:

Consider the tree in Fig. 4, suppose l is the l-th level of the

tree from the root. z0 is at the 0-th level. z2l�1 ; z2l�1þ1;…; z2l�1 are

at the l-th level. We have the following properties.

Lemma 6. When the level l / ∞,

mZ
2l
¼ mZ

2lþ1
¼ mZ0

; (37)

mZ
2lþ1�1

¼ mZ
2lþ2�1

¼ m∞; (38)

where m∞¼H3/1�h3.

The proof is given in Appendix I.

This lemma shows that with the increase of level of the

tree, the leftmost mZ converge to mZ0
, and the rightmost mZ

converge to m∞.

Lemma 7. When the level l /∞, the mZ at level l are not related to

the root of the tree. Approximately, when t0 is close to 0, a small l can

be chosen.

The proof is given in Appendix J.

From Eqs. (33)e(36), when t1 is close to 1, we have the

approximate relationship h0 ¼ h1 ¼ h2 ¼ h3. When t1 is fixed, hi
are the increasing functions of t0. Figs. 8 and 9 illustrate the

relationship.

Theorem 5. mZ can be regarded as a periodic sequence with the

period 2l, where l is large enough.

The proof is given in Appendix K.

This theorem shows the sequence of mZ can be regarded as

a periodic sequence with 2l. The larger l is, the more accurate

the approximation is. From Lemma 7 l is determined by t0.

When t0 is small, a small l can be chosen.

http://dx.doi.org/10.1016/j.cose.2014.05.009
http://dx.doi.org/10.1016/j.cose.2014.05.009
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Fig. 8 e The relationship between hi and t0, where t1 ¼ 0.9.
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6.3. Properties of weight parameter

6.3.1. General properties
Suppose 2l is the period of mZ. Consider the two sequencesn
pZ0

; pZ1 ;…;pZ
2l
0þ1�1

o
andn
pZ

2l
0þ1

; pZ
2l
0þ1þ1

;…;pZ
2l
0þ2�1

o
;

where l0 � l. Refer to Fig. 4, the former sequence contains all

the pZ at first l
0 þ 1 levels (pZ0

is at level 0). The latter one

contains all the pZ at level l0 þ 2. Obviously the number of el-

ements is the same. We have the following theorem for pZ:

Theorem 6. Consider the two sequences above, the ratio of the two

elements with the same order is equal to the ratio of their parents, i.e.
pZ

2l
0þ1þ2k

pZ2k

¼
pZ

2l
0þ1þ2kþ1

pZ2kþ1

¼
pZ

2l
0 þk

pZk

(39)
The proof is given in Appendix L.

From Theorem 6 the process can be iterated until all the

parent nodes are located at the first l levels. So the infinite

number of pZ can be replaced by the combination of the first

2lþ1 pZ.

Along the order of pZ, the sequence pZ is divided into

multiple subsequences, denoted by S0, S1, … , each of which

contains 2l elements. Define Sb ¼ Rab*Sa, where Rab is a

sequence containing 2l elements, “*” is the operation that the

i-th elements of Rab and Sa multiply each other. For example,

S0 ¼ R00*S0, where R00 ¼ [1, 1,…, 1]. If all the elements of Rab are

equal to rab, we simplify Sb ¼ Rab*Sa as Sb ¼ rabSa or Sa ¼ Sb/rab.

Fig. 10 shows an example of dividing pZ, where the period of mZ
is 21. Thus each subsequence contains 2 elements. Suppose

pZ
2lþi

=pZi
¼ ri, i¼ 0, 1,…, 2l � 1. The elements of Rab are relevant

to {riji ¼ 0, 1, …, 2l � 1}. From theorem 6 all the subsequences

can be calculated, where the process is shown in Eq. (40).
level

0el : S0 ¼ ½1; 1;1;/; 1��S0

lþ 1 : S1 ¼ ½r0; r1; r2;/; r
2l � 1

��S0

lþ 2 : S2 ¼ ½r0; r0; r1;/; r
2l�1 � 1

��S0

S2þ1 ¼ ½r
2l�1 ; r2l�1 ; r2l�1 þ 1

;/; r
2l � 1

��S1

lþ 3 : S22 ¼ ½r0; r0; r0;/; r
2l�2 � 1

��S0

S22 þ 1 ¼ ½r
2l�2 ; r2l�2 ; r2l�2 ;/; r

2l�1 � 1
��S1

S22 þ 2 ¼ ½r
2l�1 ; r2l�1 ; r2l�1 ;/; r

2l�1 þ 2l�2 � 1
��S2

S22 þ 3 ¼ ½r
2l�1 þ 2l�2 ; r2l�1 þ 2l�2 ; r2l�1 þ 2l�2 ;/; r

2l � 1
��S

/ /

lþ k : /

S
2k�1 þ i

¼

264rbi,2l�kþ1

;/; r

bi,2l�kþ1

þ � j

2k�1

�;/; r
bi,2l�kþ1


þ
/ /
Given pZ0 , the other pZj
are fixed. If we choose two different

pZ0 denoted by pZ0a and pZ0b respectively, from Eq. (31) the

corresponding j-th pZ pZja and pZjb have the relationship as

pZjb=pZja ¼ pZ0a=pZ0b. Thus the pZ0 can be calculated as

following: at first pZ0 is initialized with arbitrary non-zero

value (e.g. pZ0 ¼ 1), and all the other pZj
are fixed by Eq. (31).

Then by constraint Eq. (22), all the pZ are normalized by

dividing the sum of pZ, i.e.

pZj
¼ 1P∞

i¼0pZia
pZja: (41)

6.3.2. Special property
Here we focus on a special situation that the period of mZ is 2,

where mZ0
¼ mZ2

¼ / and mZ1
¼ mZ3

¼ /. Under this constraint,

we have either of the following results:
3

�
2l � 1

2k�1

�
375�Si

(40)
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Fig. 9 e The relationship between hi and t0, where t1 ¼ 0.6.
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1. t1 / 1, t0 / 0,

2. t1 / 1,
		mX1

� mX0

		/0.

In this situation, we have the following theorem.

Theorem 7. If the period of mZ is 2,

r0 ¼ r1: (42)

The proof is given in Appendix M.

From this theorem, when the period of mZ is 2, the

complexity of the optimization problem can be reduced

greatly.
7. Approximation of optimal distribution

In this section we consider how to approximate fZ by finite

Gaussian components. The approximate distribution is

denoted by fZap. From the properties of the Gaussian compo-

nents in the above section, fZap can be split into 2l weighted

Gaussian functions. In the following at first we consider the

general situation, and propose an algorithm for expressing

fZap. Then we investigate two special cases. The first is the
Fig. 10 e An example of dividing pZ, where l ¼ 1.
period of mZ is 2, where fZap contains two Gaussian compo-

nents. The second is
		mX0

� mX1

		[0, where the two compo-

nents are far away from each other.
7.1. General expression

Suppose fZap contains 2l weighted Gaussian functions, the

weight sequence is expressed by S, denoted by

S ¼ ∪
∞

i¼0
Si ¼

X∞
i¼0

R0i*WS0: (43)

Then by normalization, S is fixed. According to Eq. (40) R0i

can be calculated. Since the optimal fZ exists, when i is large

enough, the normalized S would be stable, the elements of

which are the Gaussian components of the optimal fZ.

Consider the constraints (20) and (21), which can be

expressed by the functions of s2Z0
and mZ0

, i.e.

f1
�
s2
Z0
;mZ0

�
¼
X2l�1

i¼0

cpZi

�
s2
Zi
þ m2

Zi

�
(44)

f2
�
mZ0

� ¼X2l�1

i¼0

cpZi
mZi

; (45)

where f2ðmZ0
Þ ¼ 0 and f1ðs2

Z0
;mZ0

Þ ¼ s2
m.

From Fig. 11 shows the relationship between mZ0
and f2.

f2ðmZ0
Þ is a monotone increasing functions of mZ0

. Similarly,

shown in Fig. 12 when m0 is fixed, f1 is a monotone increasing

functions of s2Z0
. Thus mZ0

and s2Z0
can be calculated by Newton

iteration method.

Based on the analysis above, we propose Algorithm 1 to

calculate the Gaussian components of fZap based on the ac-

curacy requirement bound s2m. In the algorithm fZap consists of

2l Gaussian components, L is chosen to satisfy L > l so that S is

stable. “maxNumber” and “minNumber” are two constants

which are large and small enough respectively. At line 20 the

function “sum()” calculate the summation of the elements in

the sequence. If l and L are infinite, fZap becomes fZ.

The complexity of the algorithm is O(2L), where L > l. When

l is large, it is hard to calculate the accurate S. In the next
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Fig. 11 e The relationship between mZ0
and f2.
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and f1.

c om p u t e r s & s e c u r i t y 4 5 ( 2 0 1 4 ) 2 1 0e2 3 0222
subsections, we focus on some special cases, where the al-

gorithm is much simplified (the complexity is O(1)).

Actually, this algorithm is equal to the algorithm using the

first 2L components to approximate the optimal distribution.

Since only 2l Gaussian distributions in fZap, The similar items

can be merged. The code from line 16 to 20 calculates the

weights of the first 2L components and merges them.
7.2. Case 1: the period of mZ is 2

Consider a special case that the period of mZ is 2, i.e. l ¼ 1,

where Theorem 7 holds. Thus from Eq. (40)

S ¼ rS0

where r is a constant related to r0(or r1). Therefore, by

normalization, S ¼ fpZ0
;pZ1g. From this conclusion, Algorithm

1 is simplified that getting stable S directly. So line 16 to 20 can

be replaced by “S ¼ S0” directly.

When t1 / 1,
		mX1

� mX0

		/0, fx converges to Gaussian dis-

tribution, so Gaussian distribution is a near-optimal solution.

In the next section, we could find this approximation is even

better than Gaussian distribution.
7.3. Case 2:
		mX0

� mX1

		[0

In this case, the two components of fx are far away from each

other. Consider the general solution (Eq. (9)), which is equiv-

alent to

fZðzÞ ¼ C0
�
fX0

*fZ þ fX1*fZ
�
e
�l

�
zþu

l

�2

; (46)

where fX0
and fX1

are the expression of x0 and x1 respectively.

The factor “e�lðzþu=lÞ2
” is like a filter, whichmakes all the values

satisfying jz þ u/lj > 0 close to 0. In another word, e�lðzþu=lÞ2

makes z ; [�L � u/l, L � u/l] be close to 0.
Since translation of fx does not have influence on the result,

at first we transmit fx to satisfy mX0
¼ �u=l. Suppose		mX0

� mX1

		> ð3pX1 ðs2X1
þ s2mÞ þ LÞ (Fig. 13). In interval [�L � u/l,

L� u/l], the values contributed by fX1*fZ is close to 0, so Eq. (46)

is approximated by

fZðzÞ ¼ C0
�
fX0

*fZ
�
e
�l

�
xþu

l

�2

; (47)

which is transmitted to the one Gaussian component problem

as Section 4.2. Thus Gaussian distribution converges to the

optimal solution.
8. Simulation

In this section, we inspect the performance of our methods

constructing fZap to approximate the optimal noise addition

distribution fZ, especially the two special cases. min I(X; Xþ Z)

can be calculated directly by optimization problem (8). I(X;

X þ Zf) and I(X; X þ ZG) denote the results that the data dis-

tribution is fx, the noise distributions are fZap and Gaussian

distribution respectively.

http://dx.doi.org/10.1016/j.cose.2014.05.009
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Fig. 13 e Illustration of the solution in the situation of		mX1
� mX0

		[0.
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Fig. 15 e The performance of fZap, where

fX ¼ ð0:7;0;100Þð0:3;mX1
;80Þ, s2m ¼ 60, l ¼ 4, L ¼ 13.
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8.1. Arbitrary cases

Algorithm 1 calculates arbitrary fx consisting of two Gaussian

components. Three examples are shown in Figs. 14e16, where

we change s2X1
, mX1

and pX0 respectively (we choose l ¼ 4 and

L ¼ 13). The performance of approximation is good that only a

little difference to the optimal result, regardless of the change

of the parameters of fx. From Algorithm 1, the accuracy of

algorithm are based on two aspects. One is l, which is related

to the period of mZ. Strictly speaking, the period of mZ is infinite.

The periodicity is an approximative property. The other is L,

which converges to infinite to calculate the stable weights of 2l

Gaussian functions contained in fZap. The deviation exists

because of these two constraints. In Fig. 14, the maximum

deviation is 0.00073 at s2X1
¼ 60. The minimum deviation is

0.00052 at s2X1
¼ 100. That is because with the increase of s2X1

,

the period 24 is more accurate. In Fig. 15, the maximum de-

viation is 0.00062 at mX1
¼ 40. The minimum deviation is

0.0000003 at mX1
¼ 0. The reason is the approximation of

periodicity is more accurate when mX1
/0 (when mX1

/0, the

period of mZ can be regarded as 2, so l ¼ 4 is more accurate). In

Fig. 16, the maximum and minimum deviations do not have

the apparent rules as the former two examples. The
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Fig. 14 e The performance of fZap, where

fX ¼ ð0:7;0;100Þð0:3;40;s2X1
Þ, s2m ¼ 60, l ¼ 4, L ¼ 13.
maximum and minimum deviation are 0.00039 at pX0 ¼ 0:5

and 0.0000014 at pX0 ¼ 0:9 in our sample points. px is related to

ri (i¼ 0,… 2l� 1), which ismore accurate when L is larger. Next

we focus on two special cases, investigating the accuracy of

the approximation.

8.2. Case 1: the period of mZ is 2

In this case we can only use the first 2 components to

construct fZap. Fig. 17 shows the performance of fZap when

t1 / 1 and t0 / 0. From the figure, t1 is fixed (0.9), when t0 is

smaller and smaller, the deviation between fZap and the real

optimal distribution is decreasing.

Fig. 18 shows the performance of fZap when t1 / 1 and		mX1
� mX0

		/0. Under these two constraints, fZap can be

expressed by 2 Gaussian components too. fZ performs better

and better with the decrease of
		mX1

� mX0

		. Actually, in this

case fx converges to Gaussian distribution, so Gaussian dis-

tribution also performs good. Fig. 19 shows the comparison of

Gaussian distribution and fZap. When
		mX1

� mX0

		 � 15, fZap

performs better than Gaussian distribution. Particularly,

when
		mX1

� mX0

		 � 10, fZap and the real optimal distribution is

almost the same. When
		mX1

� mX0

		>15, the condition
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Fig. 16 e The performance of fZap, where

fX ¼ ðpX0 ;0;100Þð1� pX0 ;20;80Þ, s2m ¼ 60, l ¼ 4, L ¼ 13.
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Fig. 19 e The performance of fZap and Gaussian distribution

when t1 / 1 and
		mX1

� mX0

		/0, where fx consists of (0.3, 0,

100) and ð0:7;mX1
;90Þ, and s2Z0

¼ 60.

Fig. 17 e The performance of fZap when t1 / 1 and t0 / 0.
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		mX1
� mX0

		/0 is compromised, the deviation would be larger

and larger since the period of mZ is not 2 any more.

8.3. Case 2:
		mX1

� mX0

		[0

Fig. 20 shows the performance of fZap when
		mX1

� mX0

		[0. In

this case, Gaussian distribution is very close to the optimal

one. From the figure, when
		mX1

� mX0

		>50, I(X;

X þ ZG) � min I(X; X þ Z) decreases with the increase of		mX1
� mX0

		. It is because with the increase of
		mX1

� mX0

		, the
values of x1 in the range 2L (determined by “e�lx2�ux

”, shown in

Fig. 13) are smaller and smaller. From the figure, we also find

out when
		mX1

� mX0

		< 50, I(X; X þ ZG) � min I(X; X þ Z) in-

creases with the increase of
		mX1

� mX0

		. It is because fx is close

to Gaussian distribution when
		mX1

� mX0

		/0, where Gaussian

distribution is optimal noise addition distribution.

8.4. Comparison

In noise addition method, some noise distributions such as

Homogeneous distribution (e.g. Agrawal and Srikant, 2000)
Fig. 18 e The performance of fZap when t1 / 1 and		mX1
� mX0

		/0.
and Laplace distribution (e.g. Dwork, 2006) have been used.

Fig. 21 shows the privacy-preserving capabilities of these

three noise distributions, where fap is the approximation of

optimal noise distribution from our method. From the figure,

we could find that the mutual information of fap, which

measures the privacy protection strength, is the smallest in

these three distribution. It means that by adding the noise

following the distribution function fap, the attacker gets the

least information of the true value from the perturbed value.

Fig. 22 illustrates the privacy-preserving capabilities of fap,

Homogeneous distribution and Laplace distribution when fx

satisfies t1 / 1 and
		mX1

� mX0

		/0ð�30 � mX1
� 30Þ, and		mX1

� mX0

		[0ð40 � mX1
Þ. In the former situation, fap can be

expressed by 2 Gaussian components and be calculated inO(1)

times. In the letter situation, fap is Gaussian distribution. From

the figure, in the two situations fap is the best one to protect

the individual privacy among the three distributions.
Fig. 20 e The performance of fZap when
		mX1

� mX0

		[0.
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8.5. Performance

From Section 7.1, the complexity of Algorithm 1 is O(2L). Fig. 23

illustrates the time cost with different L. Here we calculate fap
by Algorithm 1, where fx ¼ (0.3, 0, 100)(0.7, �30, 60). The al-

gorithm is coded by MATLAB, which runs on the notebook

with Intel®Core™i5 CPU (2 � 2.40 GHZ) and 4 GB RAM. From

the figure, when the larger L is chosen, the time cost grows up

with exponential rate, which limits the application of the

algorithm.
9. Conclusion and future work

In this paper, we quantify the accuracy of result and the pri-

vacy of individuals. Based on the metrics, we propose the
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Fig. 22 e Compare the privacy-preserving capabilities of

fap, Homogeneous distribution and Laplace distribution,

where fX ¼ ð0:3;0;100Þð0:7;mX1
;90Þ, s2m ¼ 60.
optimization problem, and find out the optimal noise distri-

bution that provides best privacy protection while maintain-

ing the acceptable deviation from the accurate result. For the

special cases that the original data of individuals follows

Gaussian distribution, Gaussian distribution is the optimal

result. For the general case that the original data follows

arbitrary continuous distribution, the optimal solution con-

sists of infinite number of Gaussian components. We give a

way to calculate the components. By analyzing the properties

of the components, the optimal distribution can be approxi-

mated by finite components. By simulation the approximation

also performs good.

This paper is just the beginning. The complexity of Algo-

rithm 1 is O(2L), which limits the algorithm when a large L is

needed. That is because Algorithm 1 is based on Eq. (40),

which calculate S in an iterative way. Next a non-iterative

general formula is needed, which will break the shackle of L.

Furthermore, the extended algorithm of Algorithm 1, with the

fx composed of multiple Gaussian components as input and

the optimal noise distribution as output, is needed, which

could be applied for most of the aggregation applications in

practice.
Acknowledgments

The work was supported partly by National Natural Science

Foundation of China under Grant No. 61371192, National

Natural Science Foundation of China under Grant No.

61271271, 100 Talents Program of Chinese Academy of Sci-

ence, the Strategic Priority Research Program of the Chinese

Academy of Sciences under Grant XDA06030601, and the

Funding of Science and Technology on Information Assurance

Laboratory under Grant KJ-13-003.
Appendix A. The proof of Theorem 1

Proof. Firstly we consider a more general problem
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min
fYjXðyjxÞ

IðX;YÞ

s:t:

Z Z
fXðxÞfYjXðyjxÞðy� xÞ2 dx dy � s2

mZ
fYjXðyjxÞðy� xÞdy ¼ 0Z
fYjXðyjxÞdy ¼ 1;

(A.1)

where Y ¼ Zþ X. If Z is independent of X, we have

fYjXðyjxÞ ¼ fY�XjXðy� xjxÞ ¼ fZjXðzjxÞ ¼ fZðzÞ: (A.2)

The constraints become

Z Z
fXðxÞfYjXðyjxÞðy� xÞ2 dx dy ¼

Z
fZðzÞz2 dz (A.3)Z

fXðxÞfYjXðyjxÞðy� xÞdy ¼
Z

fZðzÞz dz (A.4)

Z
fYjXðyjxÞ dy ¼

Z
fZðzÞ dz: (A.5)

This problem is translated to the problem (8). In other

words, the problem (8) is a special case of the problem (A.1).

The mutual information I(X; Y) is

IðX;YÞ ¼
Z Z

fX;Yðx; yÞlog fX;Yðx; yÞ
fXðxÞfYðyÞdx dy

¼
Z Z

fXðxÞfYjXðyjxÞlog fYjXðyjxÞfYðyÞ dx dy:

(A.6)

where fYðyÞ ¼
R
X

fXðxÞfYjXðyjxÞdx.
We use the method of Lagrange multipliers to find the so-

lution. Set up the functional

J ¼
Z Z

fXðxÞfYjXðyjxÞlog fYjXðyjxÞfYðyÞ dydx

þ l

Z Z
fXðxÞfYjXðyjxÞðy� xÞ2 dy dx

þ
Z

uðxÞ
Z

fYjXðyjxÞðy� xÞdy dxþ
Z

vðxÞ
Z

fYjXðyjxÞdy dx:

(A.7)

Differentiating with respect to fYjx(yjx), we have

vJ
vfYjXðyjxÞ¼ fXðxÞlog fYjXðyjxÞfYðyÞ þ fXðxÞ�

Z
fXðx0ÞfYjXðyjx0Þ 1

fYðyÞfXðxÞdx
0

þlfXðxÞðy�xÞ2þuðxÞðy�xÞþvðxÞ

¼ fXðxÞlog fYjXðyjxÞfYðyÞ þlfXðxÞðy�xÞ2þuðxÞðy�xÞþvðxÞ

¼0:

(A.8)

Set u(x) ¼ u(x)/fx(x) and t(x) ¼ v(x)/fx(x),

fXðxÞ
"
log

fYjXðyjxÞ
fYðyÞ þ lðy� xÞ2 þ uðxÞðy� xÞ þ tðxÞ

#
¼ 0: (A.9)

Thus
fYjXðyjxÞ ¼ fYðyÞe�lðy�xÞ2�uðxÞðy�xÞ�tðxÞ: (A.10)

Here we get the expression of fYjx(yjx). In problem (8),

Y ¼ X þ Z and Z is independent of X. From Eq. (A.10),

fZðzÞ ¼ fYðxþ zÞe�lz2�uðxÞz�tðxÞ: (A.11)

Z and X are independent, for any x, fZ(z) is unchangeable.

fZ(z) can be calculated by fixing the x (e.g. x ¼ 0). So fZ(z) is

simplified as fZðzÞ ¼ fYðzÞe�lz2�uð0Þz�tð0Þ, where l, u(0) and t(0) are

constants for fixed fx. For convenience, u(0) and e�t(0) are

abbreviated as u and C. Therefore,

fZðzÞ ¼ CfYðzÞe�lz2�uz (A.12)

▫

Appendix B. The proof of Lemma 1

Proof. Since

s2
Yj1

¼ s2
Zj
þ s2

X1
� s2

Zj
þ s2

X0
¼ s2

Yj0
; (B.1)

we have

1

s2
Z2jþ1

¼ 1

s2
Yj1

þ 2l � 1

s2
Yj0

þ 2l ¼ 1

s2
Z2j

: (B.2)

So s2
Z2j

� s2
Z2jþ1

. The equation holds when s2
X0

¼ s2
X1
. ▫
Appendix C. The proof of Lemma 2

Proof. For j ¼ 0, s2Z2j
¼ s2Zj

.

For j 2 ℕþ, from Eq. (24) we have

s2
Zj

s2
Z2j

¼
s2
Zj

s2
Zj

þ s2
X0

þ 2ls2
Zj

¼ 1�
s2
X0

s2
Zj

þ s2
X0

þ
s2
X0

s2
Zj

s2
Z0

�
s2
Z0

þ s2
X0

�

¼ 1þ
s2
X0

�
s2
Zj

� s2
Z0

��
s2
Zj

þ s2
Z0

þ s2
X0

�
s2
Z0

�
s2
Z0

þ s2
X0

��
s2
Zj

þ s2
X0

� �
ða
1

(C.1)

where (a) follows from s2
Zj
� s2

Z0
. So s2

Z2j
� s2

Zj
. The equation

holds when s2
Zj
¼ s2

Z0
. ▫

Appendix D. The proof of Theorem 3

Proof. Consider the series0BBBB@ 1

2lþ 1
s2
X1

;
1

2lþ 1
s2
X1

þ 1
2lþ 1

s2
X1

;/

1CCCCA
denoted by (s1, s2, …). Since
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sk ¼ 1

2lþ 1
s2
X1

þ 1
/þ 1

s2
X1

(D.1)

and

skþ1 ¼ 1

2lþ 1
s2
X1

þ 1
/þ 1

s2
X1

þgk

(D.2)

where gk ¼ 1=2lþ 1=s2
X1

>0, we have skþ1 > sk. Since

skþ1 ¼ 1

2lþ 1
s2
X1

þsk

; (D.3)

we have

lim
k/þ∞

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2s4

X1
þ 2ls2

X1

q
� ls2

X1

2l
¼ 1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4
X1

þ 2
l
s2
X1

r
� s2

X1

!
;

(D.4)

denoted by s∞. Then we compare s∞ and s2
Z0
. Sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s4
X1

þ 2
l
s2
X1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4
X1

þ 4
s2
X1

s2
X0

s4
Z0

þ 4s2
X1

s2
Z0

vuut
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4
X1

þ 4s4
Z0

þ 4s2
X1

s2
Z0

q
¼ s2

X1
þ 2s2

Z0
;

(D.5)

we have

s∞ � s2
Z0
; (D.6)

where theequationholdswhens2
X0

¼ s2
X1
. Therefore, foranys2

Zj
,

s2
Zðj0 ;j1 ;/;jtÞ

¼ 1

2lþ 1
s2
Xjt

þ 1
/þ 1

s2
Xj0

þs2
Z0

� 1

2lþ 1
s2
X1

þ 1
/þ 1

s2
X1

þs∞

¼ s∞ (D.7)

Thus s∞ � s2
Zj
� s2

Z0
. When s2

X0
¼ s2

X1
, s∞ ¼ s2

Z0
. ▫
Appendix E. The proof of Lemma 3

Proof. From Eq. (24) for j 2 ℕ we have

s2
Zj

s2
Z2jþ1

¼
s2
Zj

s2
Zj

þ s2
X1

þ 2ls2
Zj

¼ 1þ
2ls2

Zj

�
s2
Zj

þ s2
X1

�
� s2

X1

s2
Zj

þ s2
X1

¼ 1þ
2l
�
s2
Zj

�2
þ 2ls2

Zj
s2
X1

� s2
X1

s2
Zj

þ s2
X1

:

(E.1)

Consider the quadratic function of s2
Zj

F
�
s2
Zj

�
¼ 2l

�
s2
Zj

�2
þ 2ls2

Zj
s2
X1

� s2
X1
; (E.2)

when s2
Zj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2s4

X1
þ 2ls2

X1

q
� ls2

X1
=2l ¼ s∞, Fðs2

Zj
Þ � 0. According

to Theorem 3, this relationship holds. Thus s2
Zj
� s2

Z2jþ1
. The

equation holds when s2
Zj
¼ s∞. ▫
Appendix F. The proof of Lemma 4

Proof. For any j2 [2t, 2tþ1), t > 0 j can be expressed as (j0, j1,…,

jt), where j0 ¼ 1.

s2
Zðj0; j1;/; jt

� ¼ 1

2lþ 1

s2
Xjt

þ 1

/þ 1

s2
Xj0

þ s2
Z0

� 1

2lþ 1

s2
X0

þ 1

/þ 1

s2
X1

þ s2
Z0

¼ s2
Zð1;0;0;/;0Þ

¼ s2
Z2t

:

(F.1)

If j is even, jt ¼ 0, we have

s2
Zðj0 ;j1 ;…;jtÞ

� s2
Zð1;1;…;1;0Þ ¼ s2

Z2tþ1�2
: (F.2)

Similarly,
s2
Zðj0 ;j1 ;…;jtÞ

� s2
Zð1;1;1;…;1Þ ¼ s2

Z2tþ1�1
: (F.3)

If j is add, jt ¼ 1, we have

s2
Zðj0 ;j1 ;…;jtÞ

� s2
Zð1;0;…;0;1Þ ¼ s2

Z2tþ1
: (F.4)

▫

Appendix G. The proof of Lemma 5

Proof. Suppose j is even, and j 2 ℕþ. From Lemma 2 and

Lemma 4 we know ðs2Z21
; s2Z22

;…;s2Z2t
;…Þ, each of which is the

largest variance with even indices in its level, is a non-

decreasing sequence. Thus the maxs2Zj
¼ limt/∞s

2
Z2t

, and

max s2
Zj
¼ 1

2lþ 1
s2
X0

þmax s2
Zj

; (G.1)

from which we have

max s2
Zj
¼ s2

Z0
: (G.2)

Consider the sequence ðs2
Z0
;s2

Z2
;…; s2

Z2tþ1�2
;…Þ, each of which

is the smallest variance with even indices in its level. Since

2lþ 1

s2
X0

þ s2
Z2tþ1�2

¼ 1

s2
Z2t�1

�
ða 1

s2
Z2tþ1�1

¼ 2lþ 1

s2
X0

þ s2
Z
2tþ2�2

; (G.3)

where (a) follows from Lemma 3, we have

s2
Z2tþ1�2

� s2
Z
2tþ2�2

(G.4)

for any j 2 ℕ. Thus the sequence is a non-increasing

sequence, from which we have mins2
Zj
¼ limt/∞s

2
Z2tþ1�2

. So

min s2
Zj
¼ lim

t/∞
s2
Z2tþ1�2

¼ 1

2lþ 1
s2
X0

þs∞

: (G.5)

Similarly, for any j 2 ℕþ, if j is odd, we have
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maxs2
Zj
¼ s2

Z1
(G.6)

mins2
Zj
¼ s∞ (G.7)

▫

Appendix H. The proof of Theorem 4

Proof. From Lemma 5 s2Z with odd indices are in one interval,

and s2Z with even indices are in another interval. The ratio of

maximum of the interval of variances with odd indices to

minimum is

s2
Z1

s∞
¼

ðt0 þ t1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 þ 4t0ðt0 þ 1Þt1
p

þ t1

�
2
�
t20 þ 2t0 þ t1

�
t1

: (H.1)

When t1 / 1, the ratio converges to 1. Shown in Fig. 6,

when s2
X0

is notmuch larger than s2
X1
, s2

Z1
=s∞ is close to 1, i.e. all

the variances with odd indices can be regarded as the same.

The ratio of maximum of the interval of variances with even

indices to minimum is
s2
Z0

1
2lþ 1

s2
X0

þs∞

¼ 1
t0 þ 1

þ 2t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ 4t0t1ðt0 þ 1Þ

p
� t1 þ 2

: (H.2)

When t1 / 1, the ratio converges to 1. The same result is

shown by Fig. 7 for the variances with even indices. ▫
Appendix I. The proof of Lemma 6

Proof. For l > 1, 2l ≡ 0mod 4, mZ
2l
and mZ

2lþ1
satisfy Eq. (33). Since

h0 < 1, when l/∞, mZ
2l
reaches a steady value, i.e. mZ

2l
¼ mZ

2lþ1
.

From Eq. (33) we have

mZ
2l
¼ h0mZ

2l
þ ð1� h0ÞmZ0

;

so

mZ
2l
¼ mZ

2lþ1
¼ mZ0 :

Similarly, from Eq. (36), we have

mZ
2lþ1�1

¼ mZ
2lþ2�1

¼ H3

1� h3
:

▫

Appendix J. The proof of Lemma 7

Proof. From Eqs. (33)e(36), any mZj
at level l, j2 [2l�1, 2l), can be

represented in the way as

mZj
¼ hi0hi1/hil�1

mZ0
þ Hj; (J.1)

where

Hj ¼
Xl�2

k¼0

Hik

Xl�1

t¼kþ1

hit þ Hil�1

and i0, i1, …, il 2 {0, 1, 2, 3}. Since 0 < h0, h1, h2, h3 < 1, we have
lim
l/∞

hi0hi1/hil ¼ 0;

whichmeanswhen l/∞, mZj
is only decided by hi andHi, i¼ 0,

1, 2, 3, not by mZ0
(there are two “mZ0

” in Eq. (J.1). This “mZ0
” is a

variable in “hi0hi1/hilmZ0
”, which is the root of the tree. Another

“mZ0
” is a constant in Hj, which actually is a part of u. If u is

fixed, the “mZ0
” in Hj are fixed). Thus no matter what the root

mZ0
is, mZj

at level l (l / ∞) is the same.

Specially, when t0 is close to 0, in Eq. (J.1) hi0hi1/hil�1
/∞

even when l is a small number. ▫
Appendix K. The proof of Theorem 5

Proof. Suppose l ¼ 2l1, where l1 is large enough to satisfy

Lemma 6 and Lemma 7. We will prove the two sequences

{mZ0
;mz1 ;…;mZ

2l�1
} and {mZ

2l
;mZ

2lþ1
;…;mZ

2lþ1�1
} are the same.

Each sequence has 2l elements. We divide the elements

into two parts, and consider each part respectively, where

d1 ¼ 2l1 � 1.

1) {mZ0
;…;mZd1

} and {mZ
2l
;…;mZ

2lþd1
}.

From Lemma 6 we have mZ
2l1

¼ mZ
2l1þ1

¼ / ¼ mZ
2l
¼ mZ0

, and

2l1≡2l1þ1≡/2l≡0mod4. Consider the right subtree of mZ0
, mZ1

is

the right child of mZ0
, mZ

2lþ1
is the right child of mZ

2l�1
. So

mZ1
¼ mZ

2lþ1
. mZ2

and mZ3
are the second level right children of

mZ0
. mZ

2lþ2
and mZ

2lþ3
are the second level right children of mZ

2l�2
.

So mZ2
¼ mZ

2lþ2
and mZ3

¼ mZ
2lþ3

. In this way we pair all the other

nodes which are at the level less than l1. So the two sub-

sequences are equal.

2) {mZd1þ1
;…;mZ

2l�1
} and {mZ

2lþd1þ1
;…;mZ

2lþ1�1
}.

mZd1þ1
;…;mZ

2l�1
are the right children at the level l1 to l of mZ0

.

Consider any level l2, where (l1 � l2 � l), the nodes are

{mZ
2l2�1

;…;mZ
2l2 �1

}, which are the l2-th level right children of mZ0
.

The corresponding sets {mZ
2lþ2l2�1

;…;mZ
2lþ2l2 �1

} are the l2-th level

right children of mZ
2l�l2

. Since l1 � l2, from Lemma 7 we know

{mZ
2l2�1

;…;mZ
2l2 �1

} equals to fmZ
2lþ2l2�1

;…;mZ
2lþ2l2 �1

g. So we can find

the two subsequences are equal.

From above it shows the two sequences are the same. So 2l

is the period of mZ. ▫
Appendix L. The proof of Theorem 6

Proof. For l0 ¼ l, consider the (2i þ b)-th elements pZ2iþb
and

pZ
2lþ1þ2iþb

in the two sequences respectively, where i ¼ 0, 1, …,

2l � 1, and b ¼ 0, 1. We have

pZ2iþb
¼ CsZ2iþb

pZi
pXbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
Zi
þ s2

Xb

q $e

m2
Z2iþb

2s2
Z2iþb

� ðmXb þmZi Þ2
2

�
s2
Xb

þs2
Zi

�
(L.1)
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pZ
2lþ1þ2iþb

¼ CsZ
2lþ1þ2iþb

pZ
2lþi

pXbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Z
2lþi

þ s2
Xb

q $e

m2
Z
2lþ1þ2iþb

2s2
Z
2lþ1þ2iþb

�

�
mXb

þmZ
2lþi

�2

2

�
s2
Xb

þs2
Z
2lþi

�
: (L.2)

So

pZ
2lþ1þ2iþb

pZ2iþb

¼
pZ

2lþi

pZi

; (L.3)

Similarly, for any l0 � l and i ¼ 0; 1;…; 2l0 � 1,

pZ
2l'þ1þ2iþb

pZ2iþb

¼
pZ

2l'þi

pZi

: (L.4)

▫

Appendix M. The proof of Theorem 7

Proof. From Eq. (L.1), r0 and r1 are

r0 ¼ pZ2

pZ0

¼ pZ1

pZ0

e

� ðmX0 þmZ1 Þ2
2

�
s2
X0

þs2
Z1

�þ ðmX0 þmZ0 Þ2
2

�
s2
X0

þs2
Z0

�
; (M.1)

r1 ¼ pZ3

pZ1

¼ pZ1

pZ0

e

� ðmX1 þmZ1 Þ2
2

�
s2
X1

þs2
Z1

�þ ðmX1 þmZ0 Þ2
2

�
s2
X1

þs2
Z0

�
: (M.2)

From Theorem 3, s2
X0

¼ s2
X1

and s2
Z0

¼ s2
Z1

¼ /, so

r0 ¼ pZ1

pZ0

e

ðmZ0 �mZ1 ÞðmZ0 þmZ1
þ2mX0 Þ

2

�
s2
X0

þs2
Z0

�
; (M.3)

r1 ¼ pZ1

pZ0

e

ðmZ0 �mZ1 ÞðmZ0 þmZ1
þ2mX1 Þ

2

�
s2
X0

þs2
Z0

�
: (M.4)

Thus

r0
r1

¼ e

ðmZ0 �mZ1 ÞðmX0 �mX1 Þ
s2
X0

þs2
Z0 : (M.5)

So if
		mX1

� mX0

		/0 or
		mZ1

� mZ0

		/0, r0 ¼ r1. ▫
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