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ABSTRACT
This paper presents a two-step clustering and optimizing pixel prediction method for reversible 
data hiding, which exploits self-similarities and group structural information of non-local image 
patches. Pixel predictors play an important role for current prediction-error expansion (PEE) based 
reversible data hiding schemes. Instead of using a fixed or a content- adaptive predictor for each 
pixel independently, the authors first employ pixel clustering according to the structural similarities 
of image patches, and then for all the pixels assigned to each cluster, an optimized pixel predictor 
is estimated from the group context. Experimental results demonstrate that the proposed method 
outperforms state-of-art counterparts such as the simple rhombus neighborhood, the median edge 
detector, and the gradient-adjusted predictor et al.
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INTRODUCTION

As a technique that embeds messages 
into cover signals, information hiding 
has been widely applied in areas such 

as convert communication, copyright 
protection and media annotation. Re-
versible data hiding (RDH), as a special 
type of information hiding technique, 
has received much attention from the 
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information community (Shi, Ni, Zou, 
Liang, & Xuan, 2004; Shi, 2004; Calde-
lli, Filippini, & Becarelli, 2010) in the 
last decade. Specifically, RDH ensures 
not only the embedded messages shall 
be extracted precisely, but also the cover 
itself should be restored losslessly. This 
property is important in some special 
scenarios such as medical imagery (Bao 
et al., 2005), military imagery and law 
forensics. In these applications, the cover 
is too precious or too important to be 
damaged (Feng et al., 2006). Moreover, 
it has been found recently that revers-
ible data hiding can be quite helpful in 
video error-concealment coding (Chung 
et al., 2010).

A plenty of reversible data hiding 
algorithms have been proposed in the 
past decade. Classical RDH methods 
roughly fall into three categories. 
The first class of algorithms follows 
the idea of compression-embedding 
framework, which was first introduced 
by Fridrich, Goljan, and Du (2002). In 
these algorithms, a two-value feature 
is calculated for each pixel group, the 
sequence is compressible and messages 
can be embedded in the extra space left 
by lossless compression. The send class 
of techniques is based on difference 
expansion (DE) (Tian, 2003; Thodi & 
Rodriguez, 2007), in which the differ-
ences of each pixel groups are expanded, 
e.g., multiplied by 2, and thus the least 
significant bits (LSBs) of the differences 
are all-zeros and can be used for embed-
ding messages. The last RDH schemes 
are based on histogram shift (HS) (Ni, 
Shi, Ansari, & Wei, 2006). The histogram 

of one special feature (for example, 
gray-scale value) of the nature image 
is quite uneven, which implies that the 
histogram can be modified for embed-
ding data. For instance some space can 
be saved for watermarks by shifting the 
bins of histogram.

In fact, by applying DE of HS to the 
residual part of nature images instead, 
e.g., the prediction errors (PE) (Tsai, Hu, 
& Yeh, 2009; Luo et al., 2010; Peng, Li, 
& Yang, 2012; Li, Yang, & Zeng, 2011), 
better performance can be achieved. This 
extended method is called prediction-
error expansion (PEE), which is currently 
a research hotspot and the most powerful 
technique of RDH. Unlike in DE where 
only the correlation of two adjacent pix-
els is considered, the local correlation 
of larger neighborhood is exploited in 
PEE. Most recently proposed RDH works 
are based on PEE by incorporating some 
strategies such as better prediction algo-
rithm utilization (Sachnev, Kim, Nam, 
Suresh, & Shi, 2009; Fallahpour, 2008; 
Yang, Chung, Liao, & Yu, 2013; Ou, 
Li, Zhao, & Ni, 2013), double-layered 
embedding (Luo et al., 2010; Sachnev et 
al., 2009), embedding position selection 
(Li et al., 2011), context modification 
(Coltuc, 2011), optimal bins selection 
(Wang, Li, & Yang, 2010; Wu & Huang, 
2012), etc.

Almost all recent PEE based meth-
ods consist of two steps. The first step 
generates a host sequence with small 
entropy, i.e., the host has a sharp histo-
gram, which usually can be realized by 
using PE combined with better prediction 
strategies. The second step reversibly 
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embeds messages into the host sequence 
by modifying its histogram with method 
like HS and DE. The performance of the 
overall embedding scheme is directly 
influenced by the accuracy of predic-
tion, the steeper the prediction errors 
histogram is, the better the embedding 
performance can be achieved. Typical 
prediction methods either use a fixed 
neighborhood average model (Sachnev 
et al., 2009), or a content adaptive pre-
dictor such as the median edge detector 
(MED) predictor (Thodi & Rodriguez, 
2007) and the gradient-adjusted pre-
dictor (GAP) (Fallahpour, 2008). They 
treat each pixel independently while 
structural self-similarities of non-local 
image patches are rarely considered.

In this paper, we proposed to first 
divide all pixels into several clusters 
according to the patch-level structural 
similarities of their prediction context by 
means of clustering, as shown in Figure 1. 
Afterwards, for all the pixels assigned to 

each cluster, an optimized pixel predic-
tor is estimated from the group context. 
Each pixel is predicted by a weighted 
linear combination of its nearest eight 
neighbors, and a quad- layered embed-
ding scheme is proposed to traverse all 
the pixels in the cover image.

The rest of the paper is organized as 
follows. Section II gives a brief review 
to the PEE method. The proposed two-
step clustering and optimizing scheme 
is presented in Section III. Experimental 
results compared to other pixel predic-
tors are demonstrated in Section IV. And 
finally, Section V concludes this paper 
and discusses future research directions.

PREDICTION-ERROR 
EXPANSION (PEE)

Typical PEE based schemes divide 
cover image pixels into different parts, 
while a pixel of one part is predicted 
by its neighboring pixels in other parts. 

Figure 1. Pixel clustering based on structural self-similarities of image patches
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Take the rhombus pattern in Sachnev et 
al.’s double-layered embedding method 
(2009) for instance, in which all pixels 
are divided into two sets: the Cross set 
and the Dot set (see Figure 2). In the 
first round, the Cross set is used for em-
bedding data and Dot set for computing 
predictions, while in the second round, 
the Dot set is used for embedding and 
Cross set for computing predictions. 
Since the two layers’ embedding pro-
cesses are similar in nature, we only take 
the Cross layer for illustration.

As shown in Figure 2, the Cross 
pixels u

i j,
 in the cover image are col-

lected into a sequence u = ( , , , )u u u
n1 2

�  
from left to right and from top to bottom. 
For each Cross pixel u

i j,
, the rhombus 

predicted value ui j� ,  is computed using 
its four nearest Dot pixels:

u
v v v v
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i j i j i j i j�
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Then, by subtracting the predicted 
value ui j� ,  from the original pixel value 
u
i j,

, we obtain the prediction-error se-
quence e = ( , , , )e e e

n1 2
� . Afterwards, 

secret data are embedded into the pre-
diction-error sequence e  through ex-
panding and shifting. Specifically, for 
each e

i
, it is expanded or shifted as:
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where T
n
< 0  and T

p
≥ 0  are capacity-

dependent integer valued parameter, and 

Figure 2. Rhombus prediction pattern. The pixel value of u of the Cross set can be pre-
dicted by using the four neighboring pixel values of the Dot set and expanded to hide 
one bit of data
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m ∈ { , }0 1  is a to-be-embedded message 
bit. Here, the bins in [ , ]T T

n p
 are ex-

panded to embed data, and those in 
( ) ( ), ,−∞ +∞∪ T T

n p
 are shifted outwards 

to create vacancies. Finally, each pixel 
value u

i
 is modified to u u e

i i i
' '= +�  to 

obtain the marked image.
In PEE extraction procedure, the 

original prediction-error e
i
 is recovered 

from the marked prediction-error e
i
'  as:

e

e e T T

e T e T
i

i i n p

i p i p
=





 ∈ +

− − ∈ +

' '

' '

/ , [ , ]

, (

2 2 2 1

1 2

  if 

  if 11

2

, )

, ( , )' '

+∞

− ∈ −∞










e T e T
i n i n

       if 

 

(3)

and the embedded message bits are ex-
tracted as the LSBs of those prediction-
errors e T T

i n p
' [ , ]∈ +2 2 1 . Finally, the 

cover image is restored using the recov-
ered prediction errors. Notice that, to 
guarantee the reversibility, the key point 
is that the prediction values used in 
extraction should be the same as that in 
embedding.

QUAD-LAYERED 
EMBEDDING SCHEME

For each pixel b  in the cover image, 
instead of predicted by averaging its four 
nearest neighbors as shown in Figure 2, 
we compute its predicted value b�  through 
the linear combinations of its eight near-
est neighbors a = ( , , , )a a a

1 2 8
� :

b a a a
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where x = ( , , , )x x x
1 2 8
�  is the coeffi-

cients vector satisfies:

x

x q

q
q

q

=
∑ =

≤ ≤ =
1

8

1

0 1 1 2 8, , , ,�
 (5)

As depicted in Figure 3, all the 
pixels in the cover image are divided 
into four sets: the Square set, the Star 
set, the Triangle set, and the Circle set. 
A pixel in each set is predicted by its 
eight neighbors from the other three sets. 
And in order to traverse all the pixels, 
a consecutive quad-layered embedding 
scheme is developed, while each layer 
covers a type of set. Without loss of 
generality, we take the Square layer for 
instance to elaborate our embedding 
scheme.

Two-Step Patch-
Level Clustering

F i r s t l y,  a l l  t h e  im ag e  p a t c h es 
b i N
i s
, , , , = 1 2�  in the Square set are 

roughly divided into two categories ac-
cording to the smoothness of their pre-
diction context vectors a

i i i i
a a a= ( , , )

1 2 8
� . 

Here N
s
 is the total number of pixels in 

the Square set. The smoothness crite-
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rion v
i
 is defined by the variance of 

elements in a
i
:

v a m
i ij i

j

= −
=
∑1

8
2

1

8

( )  (6)

where m a
i ij

j

=
=
∑1

8 1

8

 is the average value 

of all the prediction context pixels. If 
the smoothness criterion v

i
 is less than 

a predefined threshold T
v

, we classify 
the pixel b

i
 into the smooth category. 

Otherwise, the pixel b
i
 is classified into 

the complex category.
We can treat the above coarse clas-

sification as the first-step clustering, 
which results in two upper level clusters. 
Secondly, all the pixels b

i
 in the complex 

category are further subdivided into K  
clusters using the K-means clustering 

algorithm. In one way, the upper level 
smooth category can be treated as the 
0-th  cluster in the second-step cluster-
ing, so finally we get K +1  clusters 
together for all the pixels in the Square 
set.

Specifically, in the second-step 
clustering procedure, for each pixel b

i
 

in the complex category, a patch-level 
structural feature f

i
 is calculated from 

i t s  p r e d i c t i o n  c o n t e x t  v e c t o r 
a
i i i i
a a a= ( , , )

1 2 8
�  as:

f
a a a

i i
i i i= −
+ + +

 a 1 2 8

8

�
 (7)

According to the extracted features 
f
i
, we use the K-means clustering algo-

rithm to subdivide all the pixels b
i
 in 

the complex category into K  clusters 

Figure 3. Quad-layered prediction pattern. All pixels in the cover image are divided 
into four sets, and a pixel in each set is predicted by its nearest eight neighboring pixels 
from the other three set.
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as depicted in Figure 1. Here K  is a 
predefined parameter for the K-means 
algorithm. Note that the initial cluster 
centroid pixel indexes for the K-means 
algorithm are selected every S  pixels 
starting from the S th-  pixel, namely 
S S KS, , ,2 � . And the interval parameter 
S  is transmitted to the receiver side for 
the sake of repeating the K-means algo-
rithm.

Optimizing Non-Local 
Pixel Predictors

In the two-step clustering procedure 
d e s c r i b e d  a b o v e ,  a l l  p i x e l s 
b i N
i s
, , , , = 1 2�  in the Square set are 

classified into K +1  clusters. After that, 
for all the pixels b j c c c

j Nk
, , , ,=

1 2
�  as-

signed to a specified cluster, a content 
adaptive pixel predictor is estimated by 
optimizing the following problem:
minimize   

subject to   

                  

A

x

x

q
q

q

x b−

=

≤
=
∑

1

8

1

0 ≤≤ =1 1 2 8, , , ,q �

 

(8)

where N k K
k
, , , , , = 0 1 2�  is the total 

number of pixels dispatched to the clus-
ter, and matrix A  and vector b  is given 
by:

A

a a a

a a a
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b
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c c c
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(9)

In (8), the l1-norm is used rather 
than the l2-norm due to the fact that we 
aims to optimize the eight coefficients 

x = ( , , )x x x
1 2 8
�  according to most of the 

pixels in the cluster, while the l1-norm 
is more robust to outliers. Another ad-
vantage of the l1-norm is that embedding 
modifications on the vector b  result 
little changes for the optimized coeffi-
cients, this benefits us to reduce the 
overhead information for transmitting 
the optimized coefficients to the re-
ceiver side, which will be elaborated 
later.

When  the  e igh t  coeff ic ien t s 
x = ( , , )x x x

1 2 8
�  are estimated by solving 

(8), the prediction-error e
j
 is calculated 

as:

e b
j j j

T= − 

a x  (10)

Then we embedded messages by 
modifying e

j
 to e

j
' using the expanding 

and shifting techniques described in (2), 
as a result the corresponding pixels 
values b j c c c

j Nk
, , , ,=

1 2
�  are modified 

to:

b e
j j j

T' '= + 

a x  (11)

Compression of the 
Optimized Coefficients

For the receiver to calculate the modified 
prediction error e

j
'  correctly, the opti-

mized coefficient x = ( , , )x x x
1 2 8
�  has 

to be recorded and transmitted to the 
receiver side. As mentioned in Section 
III-A, modifications on the vector b  in 
(8) result little changes for the optimized 
coefficients x = ( , , )x x x

1 2 8
� . Using the 
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modified vector b'  after embedding, we 
can optimize (8) again and get a revised 
coefficients vector x ' ( , , )' ' '= x x x

1 2 8
� . If 

we restrain the precision of the coeffi-
cients to d  decimal places, a coefficients 
residual vector r  can be derived as:

r
x x
=

= ×

 − ×




( , , )

'

r r r
d d

1 2 8

10 10

�
 (12)

Next, we use a variable-length cod-
ing scheme to record the coefficients 
residual vector for each cluster. Spe-
cifically, we first check that the maxi-
mum absolute value of r  is less than 
2M , otherwise we don’t embed mes-
sages for this cluster. Here M  is a pre-
defined bit length. Then for each coef-
ficient residual r

i
, if r

i
 equals zero, we 

just add a bit “0” to the coding stream, 
or else we add M + 2  bits to the coding 
stream. The M + 2  bits consists of a bit 
“1”, a sign indicator bit to record the 
sign of r

i
, and M  bits to record the 

absolute value of r
i
. And finally, the 

coded coefficients residual bit streams 
for all the K +1  clusters are concate-
nated together to be transmitted to the 
receiver side.

Embedding and Extracting

This section describes the proposed 
quad-layered embedding process in de-
tail and used ideas all discussed above. 
Figure 4 presents a simple block diagram 
representing the embedding and extract-
ing processes. Before data embedding, 
all pixels are divided into four sets: 
Square set, Star set, Triangle set, and 
Circle set, each layer’s embedding and 
extracting processes cover all pixels in 
one set.

Since each layer’s embedding and 
extracting processes are similar in 
nature, we discuss the Square layer to 
elaborate the procedures.

Embedding Process

The Square layer embedding process is 
designed as follows:

1.  First-step clustering, divide all the 
pixels b i N

i s
, , , , = 1 2�  in the Square 

set into the smooth category or the 
complex category;

2.  Second-step clustering, extract fea-
tures f

i
 from all the pixels b

i
 in the 

complex category, then select K  
pixel indexes every S spaced as 

Figure 4. Framework of quad-layered embedding and extracting scheme



Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Digital Crime and Forensics, 6(3), 1-15, July-September 2014   9

initial cluster centroids to run the 
K-means algorithm on the features 
space to subdivide all complex cat-
egory pixels into K  clusters;

3.  For k K= 0 : :
a.  Collect all pixels 
b j c c c
j Nk
, , , ,=

1 2
�  and predic-

tion context vectors a
j
 to form 

matrix A  and vector b  in (9);
b.  Estimate the optimal pixel 

predictor coefficients 
x = ( , , )x x x

1 2 8
�  by solving (8), 

and then calculate the corre-
sponding prediction errors e

j
 

using (10);
c.  Embed messages into the predic-

tion errors e
j
 using expanding 

and shifting techniques de-
scribed in (2), then calculate the 
coefficients residual vector r

k
 

by (12) and generate the coded 
residual bit stream r

sk
 as dis-

cussed in Section III-C;
4.  Finally, concatenate all the coded 

residual bit streams r
sk
k K, , , , = 0 1 2�  

together and embedded them into 
the  LSBs of  some preserved 
pixels.

Extracting Process

The Square layer extracting process is 
designed as follows:

1.  Extract all the coded residual bit 
streams r

sk
k K, , , , = 0 1 2�  from the 

LSBs of some preserved pixels;

2.  First-step clustering, divide all the 
pixels b i N

i s
, , , , = 1 2�  in the Square 

set into the smooth category or the 
complex category;

3.  Second-step clustering, extract fea-
tures f

i
 from all the pixels b

i
 in the 

complex category, then select K  
pixel indexes every S spaced as 
initial cluster centroids run the K-
means algorithm on the features 
space to subdivide all complex cat-
egory pixels into K  clusters;

4.  For k K= 0 : :
a.  Collect all pixels
b j c c c
j Nk

' , , , ,=
1 2
�  and predic-

tion context vectors a
j
 to form 

matrix A  and vector b '  in (9);
b.  Estimate the optimal pixel 

predictor coefficients 
x ' ( , , )' ' '= x x x

1 2 8
�  by solving 

(8), and together with the 
coded residual bit stream r

sk
, 

recover the original optimal 
pixel predictor coefficients 
x = ( , , )x x x

1 2 8
� ;

c.  Calculate prediction errors e
j
'  

using (11), then extract messages 
using expanding and shifting 
techniques described in (3), at 
the same time recover the origi-
nal prediction errors e

j
;

d.  Using the recovered prediction 
errors e

j
, the original pixel val-

ues b
j
 can be restored losslessly 

through (10).
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SIMULATIONS

First, the proposed two-step clustering 
and optimizing scheme is compared to 
other four prediction methods consid-
ered, namely, MED (Thodi & Rodriguez, 
2007), Sachnev et al.’s method (2009), 
the simplified gradient-adjusted pre-
dictor (SGAP) (Coltuc, 2011), and the 
checkerboard based prediction (CBP) 
(R.M, W, & Guo, 2014), using typical 
512 × 512 gray scale images as shown in 
Figure 6. Table 1 records the comparison 
results of prediction accuracy in terms 
of MAE (mean absolute error), which 
is defined by:

MAE
n

b b
i i

i

n

= × −
=
∑1

1

ˆ  (13)

Here for simplicity, we only process 
the Square set pixels for comparison, 
mean only a quarter of pixels are pre-
dicted in the cover image. It can be 
observed from Table 1 that our cluster-
ing and optimizing scheme provides the 
best prediction accuracy among all the 
competitors for all the four test images.

For better visualization, the predic-
tion error histograms for all the five pre-
diction methods on the test Lena image 
are presented in Figure 5, from which 

Figure 5. The prediction error histograms for all the five prediction methods on Lena 
image
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we can see that our proposed prediction 
method offers the sharpest prediction er-
ror histogram in comparison with other 
prediction methods.

Generally speaking, for the PEE 
based RDH schemes, a sharper predic-
tion error histogram will lead to a better 
rate distortion embedding performance. 

Figure 6. Test images

Table 1. Prediction accuracy (mean absolute error) comparison 

Image Lena Barbara Goldhill Pepper

MED 4.4168 9.2978 5.5387 5.3624

SGAP 4.0362 8.8888 5.6568 4.8651

Sachnev et al. 3.2330 7.4485 4.5441 4.1278

CBP 3.1837 7.0533 4.5579 3.9778

Proposed 2.7294 4.3582 3.8348 3.5356
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By observing (2), we can see that the 
embedding capacity is determined by 
the total number of prediction errors 
falling in the interval [ , ]T T

n p
, so the 

sharper the prediction error histogram 
is, the higher the embedding capacity 
can be achieved. And vice versa, for a 
given embedding payload, the sharper 
the histogram, the less the number of 
pixels falling out the interval [ , ]T T

n p
, 

which will result in less shifting distor-
tion.

For our proposed two-step clustering 
and optimizing scheme, the main weak-
ness is the extra bits to record the coded 
residual bit streams r

sk
k K, , , , = 0 1 2�  

introduced in Section III-C. Next, to 
demonstrate that prediction accuracy 
directly influence the embedding per-
formance of PEE based RDH methods. 
We compare our proposed quad-layered 
embedding scheme with the CBP meth-
od (R.M et al., 2014) to process all the 
pixels in the cover image. Both predic-
tion methods are combined with the PEE 
scheme in Section II to embed mes-
sages. For our proposed scheme, the 
smooth threshold T

v
 is set to 25, the 

cluster parameter K  is set to 25, the 
decimal place parameter d and bit length 
parameter M  in Section III-B are set 
with d = 2  and M = 3 . Embedding 
performance comparison results for 
various embedding rates are demon-
strated by Figure 7.

Observing from Figure 7, for the 
Lena image and the Goldhill image, our 
proposed scheme earns 1.0dB higher 
PSNR than the CBP method (R.M et al., 
2014) on average. And for the Barbara 
image and especially the Peppers image, 
the gains of PSNR increase to 2dB on 
average. As we can see in Figure 6, the 
Barbara image and the Peppers image 
exploit better structural self-similarities 
than the other two images, and this 
is why our clustering and optimizing 
scheme performs much better than the 
CBP method (R.M et al., 2014) method.

CONCLUSION

This paper presents a two-step clustering 
and optimizing pixel prediction method 
for prediction-error expansion (PEE) 
based reversible data hiding, which ex-
ploits self-similarities and group struc-
tural information of non-local image 
patches. And in order to traverse all the 
pixels in the cover image, a quad-layered 
embedding scheme is proposed accord-
ingly. Compared to other fixed or con-
tent adaptive pixel predictors that treat 
each pixel independently, our proposed 
method offers the best prediction ac-
curacy. Experimental results imply that 
structural self-similarities of intra non-
local image patches is a good property 
to benefit pixel prediction, so structural 
self-similarities across multiple images 
or even between a dataset of images 
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could be more helpful to reversible data 
hiding methods. This may be our future 
research direction to work on.
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