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Abstract. Signal processing in the encrypted domain becomes a de-
sired technique to protect privacy of outsourced data in cloud. In this
paper we propose a double-cipher scheme to implement non-local means
denoising in encrypted images. In this scheme, one ciphertext is gener-
ated by Paillier scheme which enables the mean-filter, and the other is
obtained by a privacy-preserving transform which enables the non-local
searching. By the privacy-preserving transform, the cloud can search the
similar pixel blocks in the ciphertexts with the same speed as in the
plaintexts, so the proposed method can be fast executed. The experi-
mental results show that the quality of denoised images in the encrypted
domain is comparable to that obtained in plain domain.

Keywords: Paillier homomorphic encryption, Image denoising,
Non-Local Means, Johnson-Lindenstrauss Transform.

1 Introduction

Computable cloud is now prevalent in our daily life, by which customers can
remotely store their data so as to enjoy the convenient and effective services [9].
More and more sensitive information such as e-mails and finance data are pro-
fessionally maintained in data centers. Although outsourcing data storage and
processing are quite promising, it still faces a large number of basic challenges,
for which the first we need to consider about is security [11]. In fact, many cor-
porations and companies are still afraid of outsourcing their data to the cloud
server for the reason that their data may be leaked and cloud sever could abuse
their data. So it comes that sensitive data has to be encrypted prior for data
privacy and combating unsolicited access.

This leads to a need for techniques of signal processing on encrypted data,
which obviously is a difficult problem, because we must have a secure encryption
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scheme that allows computations in the encrypted domain. In 1978, Rivest et al.
[12] proposed to solve this problem by a scheme called homomorphic encryption
that keeps the algebraic relations between plaintexts and ciphertexts. After that,
several homomorphic encryption schemes [5], [10], [4] were presented, which pro-
cess encrypted data with only one homomorphic property, such as addition or
multiplication. For instance, the Paillier scheme [10] has additive homomorphism
that means one can realize the addition of two plaintext signals by some opera-
tions on the two corresponding encrypted signals. A scheme is called fully homo-
morphic encryption (FHE) if it enables additive and multiplicative homomor-
phisms at the same time. The first secure FHE scheme is proposed by Gentry [6]
in 2009, which, from a theoretical perspective, can solves any privacy-preserving
computation problem. However, due to the huge computational complexity and
cipher context expansion, FHE scheme is too inefficient to be applied in practice.
So far, additive homomorphic encryption is the most popular scheme used by pri-
vacy protection community. Based on additive homomorphic encryption, some
linear computations have been realized in the encrypted domain, such as discrete
fourier transform [2], discrete cosine transform[1], discrete wavelet transform [13]
[14] and Walsh-Hadamard transform [15].

An interesting and challenge problem is how to do nonlinear computations in
encrypted domain without FHE. In the present paper, we will present a frame-
work to solve a problem of encrypted image denoising that involves some non-
linear operations. Image denoising is one of the most popular image processings,
and there exists many classical image denoising algorithms, such as Gauss filter,
neighborhood filter, and non-local means (NLM) [3]. Among them NLM and its
extensions can reach better performance by exploiting the similarity between
the non-local pixel blocks with the current block. However, the Computational
complexity of NLM algorithm is very high because it needs to search for the
similar pixel blocks. Such hardness of computation is suitable for outsourcing
to cloud, but the user may hope to prevent the cloud server from getting the
content of the images. Therefore, the cloud should implement denoising in the
encrypted images.

In this paper, we try to implement the NLM in the encrypted domain, which
consists of two operations, i.e., non-local searching and mean-filter. Mean-filter in
encrypted domain can be realized based on additive homomorphic cryptosystem
such as Paillier scheme [10], while non-local searching is a nonlinear operation
that needs FHE. To avoid FHE, we proposed a double-cipher denoising scheme in
which we encrypt the image with two cryptosystems and thus outsource two ci-
phertexts to the cloud. One ciphertext is generated by Paillier scheme [10] which
enables the mean-filter, the other is obtained by a privacy-preserving transform
which enables the non-local searching. By the privacy-preserving transform, the
cloud can search the similar pixel blocks in the ciphertexts with the same speed
as in the plaintexts, so the proposed method can be fast executed.

The rest of the paper is organized as follows. In Section 2, we will give some
preliminaries about NLM, Paillier cryptosystem and Johnson-Lindenstrauss (JL)
transform. In Section 3, we will describe how to perform image denoising in the
encrypted domain in detail. Complexity analysis of our proposed scheme will
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be given in section 4. The experimental results are shown in Section 5 and the
paper is concluded with discussion in Section 6.

2 Preliminary

2.1 Non-local Means

The NLM method proposed by Buades et al. [3], was widely used in image
denoising. Unlike local smoothing methods which only use the local relativity
within pixels, NLM tries to exploit the relativity between the pixels that are not
close to each other. We briefly introduce NLM below.

We assume the noise is the additive Gaussian noise with mean zero and vari-
ance o2. So we can describe a discrete noisy image as follows:

v(i) = u(i) + n(3) (1)

where i is the pixel index in the set I, v(i) is the observed value, u(i) is the
original value, and n(4) is the i.i.d.Gaussian noise.
The denoised pixel value at position 4 is obtained by

NL(i) =Y w(i, j)v()) (2)

JjENR

where 2 is the searching window for the similar pixel. The weights {w(i, )},
are determined by the similarity between the pixel ¢ and j and satisfy 0 <
w < 1 and Zj w(i,j) = 1, and the similarity usually can be calculated by the
FEuclidean distance between the two blocks centered at the i-th and the j-th
pixels respectively, such that

1 llv(N;)—v(N;) 13
w(i,j) = N h2 . 3
@)= 0
Herein, N; denotes the pixel patch centered at the i-th pixel, || - |2 is the

Euclidean norm, and h is used to control the decay of the weights. Z(i) is nor-
malizing parameter which is defined as

llo(N;)—v(N;) I3
ZOED D (4)

JENR

2.2 Paillier Cryptosystem

Paillier homomorphic cryptosystem [10], is one of the well-known probabilistic
and homomorphic schemes with an additive homomorphic property, which is
realized as follows.

Initialization. Compute N = pq, which p, ¢ was selected as two large prime
numbers. Let A = lem(p—1,¢—1) and g € Z};, where the order of g is a multiple
of N. The public key is (N, g) and the private key is A.
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Encryption. Take a plaintext m € Zy, and a random number (blinding factor)
r € Z3;. The corresponding ciphertext is

¢ = Ep(m,r) = ¢™r" mod N? (5)
Decryption. Let the ciphertext c € Z32, so the plaintext m is

L(c* mod N?)

m = Dp(c) = L(g* mod N?)

mod N (6)

where L(¢) = (¢ — 1)/N.

Homomorphism. The additive homomorphism means that the sum of two
plaintexts m; and mso can be obtained by decrypting the product of correspond-
ing ciphertexts.

D(E(my,r1) - E(ma,r2)) = D(E(my + ma,r172)) = m1 + mo (7)

Moreover, let a be a constant and m be a plaintext, then am can be calculated
by decrypting the power of the ciphertext.

D(E(m,r)*) = D((g"r")*) = D(E(am,r*)) = am (8)

2.3 Johnson-Lindenstrauss Transform

Johnson-Lindenstrauss Transform (JL Transform) [7] is a dimension reduction
method preserving Euclidean distance, which comes from the following lemma.

Lemma 1. Given 0 < e < 1, a set Q of n points in R%, and k = Q(loﬁn), there
exits a linear map f : R® — RF, for any two vectors o, B € Q, there exits an
inequality below

(1 —e)lla =Bl < () = F(BN3 < (1 +e)lla— Bl 9)

Lemma 1 means that we can map some d-dimensional vectors to k-dimensional
vectors, and the Euclidean distance between these d-dimensional vectors can
be estimated by corresponding k-dimensional vectors. Usually f is defined by
f(a) = Pa where P € R**? is a random matrix. When k < d, one cannot recover
a from P, so JL Transform can be used to conceal the elements in vector a and
thus used for privacy protection. Kenthapadi et al. [8] analyzed the security of
JL Transform and proposed the following private projection (Algorithm 1) and
(Algorithm 2).

3 Image Denoising in the Encrypted Domain

In this section, we describe the double-cipher denoising method. Assume that
the owner of one image I wants to denoise I with the NLM method. The owner
hopes to outsource this work to a cloud server without leaking the content of I.
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Algorithm 1. JL Transform-based Private Projection

Input: d-dimensional vector X; k X d random matrix P; noise parameter (.
Output: The projected k-dimensional vector Z.

1. Y:=PX
2. Construct a random k-dimensional noise vector A based on the noise parameter (.
3. Z:=Y+A

Algorithm 2. JL. Transform-based distance recover

Input: two k-dimensional vector o and 8 published in a privacy-preserving manner;
Noise parameter (;
Output: Estimated squared distance between a and 3 in the original space.

1. Output dist? 5 = ||a — B3 — 2k¢>.

To do that, the owner encrypts I by JL Transform (Algorithm 1) and Paillier
cryptosystem, and gets two encrypted images denoted by E;(I) and Ep(I) re-
spectively. Then the owner sends E;(I) and Ep(I) to the cloud. With the help
of E;(I), the cloud executes a non-local filter on Ep(I) and yields a denoised
cipher-image E'%(I) that is sent back to the owner. The owner decrypts E'% (1)
and gets a plain denoised image I’. Next we elaborate the details of each step.

Encryption with JL Transform. When encrypting [ with Algorithm 1, the
owner takes the random matrix P and noise parameter ¢ as the key. For each
pixel v(i) of I, take a s x s block centered at v(i) and permute the block as a
s2-dimensional vector, denoted by N;. With Algorithm 1, the owner projects N;
into a k-dimensional vector E;(N;) which is just the ciphertext of v(¢). In other
words, by JL Transform, each pixel is encrypted into a k-dimensional vector. For
marginal pixels, some elements of the block matrix is blank, so we fill them with
the surrounding pixels.

Encryption with Paillier Cryptosystem. For each pixel v(i), take a random
number r; € Z% and encrypt v(i) by Eq. (5) as

Ep(v(i)) = Ep(v(i),r:) = ¢°DrY mod N2. (10)

Denosing in Encrypted Images. As shown in Eq. (2) and Eq. (3), to do
non-local filter, the cloud should first calculate the weights {w(i,j)}, that are
determined by the Euclidean distance between N; and IV;. Note that JL Trans-
form preserves Euclidean distance, so the cloud can estimate ||u(N;) — v(N;)]2
by the ciphertexts of v(¢) and v(j), i.e., E;(v(N;)) and Ej(v(N;)). Therefore
the weights are estimated by

1 I1E ;7 (v(N))—E 7 (v(N;)) 13
(i 3 = - h2 11
w'(i, ) 2()° : (11)
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where h is the decaying parameter and the normalizing parameter Z(i) is ob-
tained by

2(i) = Z e_||EJ<v(Ni));fJ(v<Nj))u%. 12)
jen
With weights {w’(¢,7)};, the cloud filters the other encrypted image Ep(I)
as follows. For each ciphertext Ep(v(i)), the filtered value E(v(7)) is

Eplo@)] = [ Erlo@)” (13)
jen
Collecting all E%(v(i)), the cloud yields a denoised encrypted image E»(I) that
is sent back to the owner of I.

Decryption. After receiving E%(I), the image owner decrypts it pixel by pixel.
According to the homomorphism Eq. (7) and Eq. (8), the pixel Ep(v(4)) is
decrypted as
NL'(i) = Dp[[] Eplo()] ) = 3 w'i. j)o(i) (14)
jeR jeR
Compare Eq. (2) with Eq. (14), we conclude that the denoising result ob-
tained in the encrypted image is similar with that obtained in the plain image
because JL Transform can preserve Euclidean distance and thus w'(4,7) is a
good estimation of w(i, 7).
Note that the wights {w’(4,j)}; are real numbers, but to calculate Eq. (13)

and Eq. (14) according to Paillier cryptosystem, the values {w’(7, j)}; have to
be quantified as integer numbers. The quantization process can be expressed as

W(i,j) = [Aw'(i, 5)] (15)
where |-] is the rounding function and A is the scaling factor. For simplicity, we
rewrite Eq. (15) as follow:

W (i, j) = Aw' (i, j) + €w, (16)

where |w'(4, )] < 1 and &, is the error caused by quantization with [e,,;| < 1/2.
Replacing w'(4, j) by W(i,j), the decrypted result Eq. (14) will be changed

to
NL'(i) =Y Wi, j)o(i) = Y (Aw'(i,5) + eu, Jo(j). (17)
JEN JjEN
From NL”(i), the owner of I can estimate NL'(i) by

NL" (i icoEw;U(J
NL/('L) — (Z) _ NL/('L) + ZJGQ w; (]) (].8)
A A
The last item E"E”Zw"v(j) is the error caused by quantization, which can

be controlled by selecting a large enough parameter A. Note that, to get the
accurate result of NL" (i) by decryption in the Paillier cryptosystem, we have to
limit NL" (i) < N. In other words, the value of A cannot be as large as possible,
and must be chosen properly according to the settings of Paillier cryptosystem.
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Table 1. Result of simulation

house parrot

Index d k PSNR before PSNR after Index d k PSNR before PSNR after
(¢) 25 - 22.09 32.39 (h) 25 - 22.09 29.03
- 2520 22.09 30.93 - 2520 22.09 27.93
- 2518 22.09 30.54 - 2518 22.09 27.76
(d) 2516 22.09 30.03 (i) 2516 22.09 27.51
- 2512 22.09 28.83 - 2512 22.09 26.86
(e) 259 22.09 28.08 G) 259 22.09 26.36

peppers cameraman

Index d k PSNR before PSNR after Index d k PSNR before PSNR after
(m) 25 - 22.09 30.15 (r) 25 - 22.09 29.48
- 2520 22.09 28.61 - 2520 22.09 28.45
- 2518 22.09 28.30 - 2518 22.09 28.24
(n) 2516 22.09 27.95 (s) 2516 22.09 27.94
- 2512 22.09 27.03 - 2512 22.09 27.29
(o) 259 22.09 26.40 (t) 259 22.09 26.82

The PSNR decreases with projection dimension k
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Fig. 1. The PSNR of denoised image decreases with the projection dimension k
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4 Complexity Analysis

Now we estimate the computational complexity of our proposed scheme. Our
scheme has two parts, first part is non-local searching, and second part is mean-
filter in the encrypted domain.

So, we analysis the computational complexity from the first part. Here we
refer to the literature [3]. If we use a similarity window of size s X s, so for a
image of size n x n, the computational complexity is n? x s x n? = s x n.
So the computational complexity of the original algorithm is O(n*). If we also
restrict the search of the similarity windows in the size of L x L. The entire
computational complexity of the algorithm is n? x s2 x L2.

Now we discuss computational complexity of the second part. In the second
part we only consider about the Eq. (14), there are only modular exponentiation
and modular multiplication operation in the encrypted domain. Hence, we can
use the number of modular exponentiation (mezp) and modular multiplication
(M) to evaluate the computational complexity. As we defined before, for a
n X n image, the similarity window size is s X s, and the size of the search window
is L x L. Hence for a single pixel, the number of modular exponentiation is
L?xW (i,j) = L*x Aw'(i, j), and the number of modular multiplication is L?—1.
For the whole image, the computation of modular exponentiation and modular
multiplication are n? x L? x Aw'(i,j) and n? x (L? — 1), respectively. When the
search window size is n x n, the total number of modular exponentiation is n? x
n? x Aw'(i,j) = n* x Aw'(i,j) and the total number of modular multiplication
is n? x (n? — 1) in encrypted domain.

5 Experiments

In our experiments, for security reason, the product of two primes (N = p X q)
for the Paillier cryptosystem is longer than 1024 bits. For A x NL'(i) < N,

we can get A < 21024/255 = 21016 For A = 239 the error Eje(zzwjv(j) can be
less than L?/223) so we set the size of searching window L x L = 21 x 21, the
size of similar block d = s x s = 5 x 5, Gaussian noise ¢ = 20, the decaying
parameter h = 0.750, the noise parameter ( = 1, and the images ”house, parrot,
peppers, cameraman” are used as an example. In Fig. 2, the first column is the
original image sized of 256 x 256, the second column is the images after adding
(0, 20?) Gaussian noise, the third column is the images denoised in the plaintext,
the fourth and fifth column are the images denoised in the encrypted domain
with projection dimension k = 16, 9, respectively. The peak signal-to-noise ratios
(PSNR) of the noisy images and the denoised images are listed in Table 1. It
can be seen from Fig. 2 and Table 1, the denoised images in encrypted domain
can achieve similar quality as done in plain domain.



394 X. Hu et al.
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Fig.2. (1) the first column is the original images; (2) the second column is the images
after adding (0, 20%) Gaussian noise; (3) the third column is the images denoised in
the plaintext; (4) the fourth column is the images denoised in the encrypted domain
with projection dimension k = 16; (5) the fifth column is the images denoised in the
encrypted domain with projection dimension k = 9.

6 Conclusion and Future Work

In this paper, we propose a double-cipher denosing method in encrypted images,
which enables the cloud to implement NLM with the ability of preserving privacy
of the image contents. This double-cipher scheme is a novel framework to deal
with nonlinear operations in the encrypted domain avoiding FHE. In the present
scheme, the nonlinear operation is searching for similar blocks which is realized
based on the privacy projection. As shown in Table 1 and Figure 1, the PSNR
of denosed image decreases with the projection dimension k. In fact, the secure
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level of the privacy projection increases with decreasing k. However, because of
the limits of pages, the security of the proposed scheme is not analyzed, which
will be studied in our further work.
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