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a b s t r a c t

Matrix embedding (ME) is a well-known steganographic method that can improve the em-

bedding efficiency. In ME, the sender and recipient agree in advance on a parity check matrix

(PCM) of a binary linear code and utilize the PCM for data embedding. At the decoder side, the

embedded message can be extracted by the recipient as the syndrome of the received stego

data. The PCM can be taken as any full-ranked matrix and its selection is actually crucial to the

embedding performance. In this paper, by extending some previous works, we propose a novel

scheme to further improve the embedding efficiency of large payloads ME. First, we utilize a

new and specifically designed matrix for ME. Then, instead of finding a coset leader as the

modification to the cover which is time consuming, we turn to finding a vector in the coset

with relatively small Hamming weight. By the proposed approach, effective and practically

feasible large payloads ME can be realized, and extensive experiments show that, a significant

increase of embedding efficiency is achieved compared with some state-of-the-art works.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Steganography is the art and science of covert communication, whose aim is to hide not only a secret message but also

the presence of communication [3,10,24]. Specifically, steganographic scheme embeds secret message into innocuous looking

cover data (e.g., digital images) by slightly modifying the cover content in such a way that the intended recipient can precisely

extract the embedded message. Unlike digital watermarking, steganography is a fragile data hiding technique, and the most

important requirement for a steganographic scheme is its security, i.e., the perceptual and statistical undetectability of the hidden

message [4,30,32,41]. Generally, there are mainly two ways to improve the stego-security. On one hand, less changes can be

made to the cover for the same embedding capacity, which can be realized by the so-called matrix embedding (ME) [5,6,14,38].

By ME, for a given embedding capacity, the embedding distortion can be significantly reduced compared with the classical

least-significant-bit (LSB) replacement steganography [2,37]. On the other hand, given an image-content adaptive distortion

measurement, more appropriate changes can be made by a well-designed embedding method. For example, it is obvious that

embedding modifications operated in rough regions of a natural image are less perceptible than that in flat regions. Moreover, the

slight modifications to rough regions cannot be easily perceived by analyzing usual image statistics since the embedding noise is

covered by the inherent noise. In this light, a common viewpoint is that the content adaptive approach for steganography has the

potential to provide a higher level of security. Up to now, many content adaptive steganographic methods are already proposed

[7,8,11,18–21,27–29,33,39,40,42].
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ME is an effective steganographic scheme which can improve the embedding efficiency and enhance the stego-security

[1,12,13,23,26,31]. The embedding efficiency is a commonly used stego-security measurement which is defined as the average

number of data bits embedded per one embedding change [12]. In general, when the embedding rate (data bits embedded

per pixel) is fixed, a steganographic scheme that has a higher embedding efficiency will be less detectable. In ME, it requires

the sender and recipient to agree in advance on a parity check matrix (PCM) of a binary linear code, and the message will be

embedded into the cover according to the PCM. At the decoder side, the embedded message can be extracted by the recipient

as the syndrome (with respect to the PCM) of the received stego data. This technique was first proposed by Crandall [5], and

made popular by the F5 algorithm of Westfeld [38]. Thereafter, the ME technique is systematically investigated by Fridrich et al.

[1,12,13]. Particulary, Fridrich et al. proved that the theoretical upper bound of embedding efficiency of LSB-based steganography

(i.e., only the LSB of cover pixel value can be changed in data embedding) can be achieved by using binary codes but with huge

computational complexity. Moreover, ME with high embedding efficiency is also very valuable for designing content adaptive

steganography [8,27].

To apply ME with feasible complexity, Fridrich and Soukal proposed using the PCM in systematic form by exploring random

linear codes of small dimensions [13]. This approach can lead to high embedding efficiency for large payloads ME. Notice that,

codes for large payloads embedding are important as efficient small payloads embedding can be generated from it [9,42]. More-

over, large payloads ME can also be exploited to design effective ±1 or ±2 embedding [43]. Therefore, in this paper, based on the

previous works [13,17,34], we give a further study of large payloads ME by improving the embedding efficiency.

In ME, how to reduce the computational complexity while keeping high embedding efficiency is a critical problem. The

methods proposed for this problem so far can be classified into two categories.

The essential idea of the first category is to construct specific matrix or code [13,15,16,22,25,34]. In [13], Fridrich and Soukal

exploited the systematic matrix constituted by an identity matrix and a random matrix. In [15], Gao et al. constructed a specific

matrix for ME such that the computational complexity is linear. In another work of Gao et al. [16], they studied the optimal matrix

which can provide the highest embedding efficiency at a fixed matrix dimension. In [25], Li et al. proposed a method to reduce

the embedding distortion via a tree structure of the cover. Li et al.’s method can be formulated as another specific matrix for ME,

which is improved by Hou et al. with the majority-vote parity check (MPC) [22]. In a recent work [34], Wang et al. proposed a fast

ME method by extending the systematic matrix with several referential columns. This method is experimentally verified better

than [15] and [22].

The other category of methods adopt a sub-optimal solution instead of the optimal one, i.e., find a trade-off between com-

putational complexity and embedding efficiency [17,35,36]. In [17], instead of finding a coset leader as the modification to the

cover (which is the most time consuming step in ME), Gao et al. turned to finding a vector in the coset which has relatively

small Hamming weight. Such a vector can be found at a reduced computational cost. Consequently, higher dimensional matrix

can be used for practically implementable ME, and it leads to an improved embedding efficiency. Later on, a similar approach

is proposed, in which a vector close to the coset leader is determined as the modification to the cover, and lower complexity is

reached merely at the cost of a small deal of embedding efficiency [35].

In this paper, to get practically feasible large payloads ME, we combine the key thoughts of the above two categories of

methods: matrix construction and sub-optimal search. The proposed method is an extension of the works of Fridrich and Soukal

[13], Gao et al. [17] and Wang et al. [34]. In brief, inspirited by [13] and [34], we propose a new and specific matrix construction for

ME. The new matrix is constituted by a diagonal-like matrix and a random matrix in which the diagonal-like matrix is constructed

by repeatedly placing a small dimensional sub-matrix along its main diagonal. Moreover, following the idea of our previous work

[17], instead of the coset leader, we simply find a vector in the coset which has relatively small Hamming weight. By the proposed

approach, practically efficient large payloads ME can be realized, and extensive experiments show that, a significant increase of

embedding efficiency is achieved compared with the previous works [13,17,34].

The rest of this paper is organized as follows. The ME using systematic matrix [13] and the related works [17,34] are introduced

in Section 2. The proposed method is presented in Section 3. The experimental results are shown in Section 4. Finally, our work

is concluded in the last section.

2. Related works

2.1. Matrix embedding using systematic matrix

The presentation of ME in this subsection is based on the work of Fridrich and Soukal [13].

Let H be a PCM of a binary [n, k] linear code C. The matrix H can be actually taken as any full-ranked (n − k) × n binary matrix.

Since different PCMs of a given linear code result in steganographic schemes with a same embedding efficiency, here we only

consider the PCM in systematic form as follows:

H = (In−k, R) (1)

where In−k is an (n − k) × (n − k) identity matrix and R is a random matrix of dimension (n − k) × k, i.e., each element of R is

randomly chosen from {0, 1}.

ME can be defined using H as follows. Let c ∈ F
n
2

be a cover sequence composed of LSBs of cover pixel values and m ∈ F
n−k
2

be

a to-be-embedded message. For convenience, we will use in the following context either row or column vectors depending on

the choice. To embed m into c, the key issue is to choose a vector denoted as f(c, m) from the coset
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CH(u) �
{

v ∈ F
n
2 : Hv = u

}
(2)

where u = m − Hc, i.e., finding a solution to Hv = u. We will see later that the vector f(c, m) is actually the modification to the

cover image. Therefore, to minimize the embedding distortion, f(c, m) will be taken as a coset leader, i.e., the vector in the coset

which has a minimum Hamming weight

f (c, m) = arg min
v ∈ CH(u)

w(v) (3)

where w(·) is the Hamming weight. To this end, we first precalculate and store in memory the 2k vectors of the coset

CH(0n−k) =
{

v ∈ F
n
2 : Hv = 0n−k

}
(4)

where 0t means the zero vector of length t. This preprocessing step is done before data embedding, and the required memory

space is n2k bits. Then for data embedding, by utilizing the relation that

CH(u) = (u, 0k) + CH(0n−k) (5)

the Hamming weight of each vector in CH(u) is computed based on the precalculated and stored vectors in CH(0n−k), and the

vector with the minimum Hamming weight is selected as f(c, m). Finally, take s = c + f (c, m) and replace LSBs of cover pixel

values by s to get the stego image.

By this embedding procedure, n − k bits are embedded into n cover pixels, and thus the embedding rate in bits per pixel (bpp)

is (n − k)/n. And, the embedding distortion can be computed as the average distortion for each message m ∈ F
n−k
2

, i.e.,∑
m∈Fn−k

2
w( f (c, m))

n2n−k
. (6)

Accordingly, the embedding efficiency is

embedding rate

embedding distortion
= (n − k)2n−k∑

m∈Fn−k
2

w( f (c, m))
. (7)

The embedding distortion and efficiency are in fact independent to the cover sequence c since one can verify that∑
m∈Fn−k

2

w( f (c1, m)) = ∑
m∈Fn−k

2

w( f (c2, m)) holds for every c1, c2 ∈ F
n
2
.

The data extraction procedure of ME is simple. We only need to compute the syndrome Hs where s is the LSBs of stego pixel

values. After data embedding, we have

Hs = H(c + f (c, m)) = Hc + (m − Hc) = m. (8)

It means that the embedded message can be exactly extracted from the stego image.

We give an example to further explain the above notations and data embedding/extraction procedures. Take (n, k) = (5, 2)
and a 3 × 5 systematic matrix H as(

1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

)
. (9)

Assume that c = (1, 0, 0, 1, 1) and m = (1, 0, 0) is a cover sequence and a to-be-embedded message, respectively. For data em-

bedding, first compute u = m − Hc = (0, 1, 1). Notice that

CH(0n−k) = {(0, 0, 0, 0, 0), (1, 0, 1, 0, 1), (1, 1, 0, 1, 0), (0, 1, 1, 1, 1)} (10)

one can then get, according to (5),

CH(u) = {(0, 1, 1, 0, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (0, 0, 0, 1, 1)}. (11)

In this case, there are two vectors (0, 1, 1, 0, 0) and (0, 0, 0, 1, 1) in CH(u) which has the minimum Hamming weight. Finally,

randomly take one between the two vectors as f(c, m), say, for example, (0, 1, 1, 0, 0), and determine the stego sequence as

s = c + f (c, m) = (1, 1, 1, 1, 1). Clearly, on the decoder side, one can get the embedded message as Hs = (1, 0, 0) in which it is

correctly extracted. By using this specific matrix, the embedding rate is 0.6, and one can verify that the embedding distortion is

1 · 0 + 5 · 1 + 2 · 2

5 · 23
= 0.225. (12)

And, the embedding efficiency is 0.6/0.225 = 8/3.

The above embedding procedure is implemented with O(n2k) computations. The computational complexity per pixel (CCPP)

of ME is thus O(2k), and it only depends on the code dimension. In practice, k will be taken as a small number such as 15 to keep

both low computational complexity and limited storage space, and n varies to provide different embedding rates. Large payloads

ME can be then derived by taking sufficientely large n.
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2.2. Gao et al.’s work

We now introduce the improved ME proposed by Gao et al. [17].

By the definitions of H and CH(u) in (1) and (2), any vector v in the coset CH(u) can be written in a form of (u −∑k
i=1 viri, v1, . . . , vk), where vi ∈ {0, 1} and ri is the i-th column vector of R. Recall here that finding a solution to Hv = u is

equivalent to expressing u as a linear combination of column vectors of H. Then, the sum
∑k

i=1 vi means the number of vectors

{r1, . . . , rk} that participate in expressing u.

For a coset leader f(c, m) of CH(u) defined in (3), suppose that f (c, m) = (u − ∑k
i=1 v∗

i
ri, v∗

1
, . . . , v∗

k
). In [17], Gao et al. proposed

to consider

λu = v∗
1 + · · · + v∗

k (13)

which is the number of vectors {r1, . . . , rk} used by the coset leader for expressing u. Clearly, λu ∈ {0, . . . , k}. However, in [17], it

is experimentally verified that λu is usually a relatively small number with respect to its maximum, k (see Fig. 1 of [17]). Based

on this observation, instead of the coset CH(u) composed of all solutions to Hv = u, Gao et al. proposed to consider a part of

solutions defined by

Ct
H(u) =

{(
u −

k∑
i=1

viri, v1, . . . , vk

)
: vi ∈ {0, 1},

k∑
i=1

vi ≤ t

}
(14)

where t ≤ k is a given threshold.

Since λu is usually smaller than k, one can expect that the coset leader is contained in the set Ct
H
(u) for a small t. Then, instead

of CH(0n−k), Gao et al. proposed to precalculate and store in memory only the vectors in Ct
H
(0n−k) and then take the vector with

the minimum Hamming weight of Ct
H
(u) = (u, 0k) + Ct

H
(0n−k) as the modification to the cover image. In this situation, instead

of the coset leader, a sub-optimal solution is adopted. As a result, the modification to the cover image may be larger compared to

the conventional ME presented in the previous subsection, however, the CCPP is reduced from O(2k) to O(θ(k, t)), where

θ(k, t) =
(

k

0

)
+ · · · +

(
k

t

)
≤ 2k. (15)

Consequently, higher dimensional matrix can be utilized and it leads to an improved embedding efficiency. For example, for the

same computational cost at an embedding rate of 0.5 bpp, compared with the conventional ME employing a 15 × 30 matrix, the

embedding efficiency can be increased from 3.54 to 3.84 by Gao et al.’s method with a 30 × 60 matrix and t = 4.

2.3. Wang et al.’s work

To enhance the embedding speed and get practical efficient steganography, Wang et al. proposed a fast ME method by ex-

tending the systematic matrix via some referential columns [34]. Specifically, Wang et al. proposed to consider the matrix in the

form of

H = (In−k, R, J) (16)

where R is a random matrix of dimension (n − k) × k1, J is a (n − k) × k2 matrix whose i-th column is

ji =
(
0t1

, . . . , 0ti−1
, 1ti

, 0ti+1
, . . . , 0tk2

)
(17)

where k1 + k2 = k and ti is defined by

ti =
{� n−k

k2
� if i < k2

(n − k) − (k2 − 1)� n−k
k2

� if i = k2

. (18)

For example, the following 6 × 11 matrix is such an instance with (n, k, k1, k2) = (11, 5, 2, 3)⎛⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 0 0 1
0 0 0 0 0 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎠. (19)

With the matrix defined in (16), every vector in the coset CH(u) can be written as v = (v0, v1, v2) where v0, v1 and v2 satisfy

v0 + Rv1 + Jv2 = u. (20)

Rewrite u − Rv1 as (w1, . . . , wk2
) where the length of wi is ti, and v0 as (v0,1, . . . , v0,k2

) where the length of v0, i is also ti. Then,

we have, according to (20)(
v0,1, . . . , v0,k2

)
+ Jv2 =

(
w1, . . . , wk2

)
. (21)
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Table 1

CCPP of the methods of Fridrich and Soukal [13], Gao

et al. [17] and Wang et al. [34].

Fridrich and Soukal Gao et al. Wang et al.

O(2k) O(θ(k, t)) O(2k1 )
This yields that, for each i ∈ {1, . . . , k2}
v0,i + v2,i1ti

= wi (22)

where we take v2 = (v2,1, . . . , v2,k2
). Thus

v0,i =
{

wi, if v2,i = 0

1ti
− wi, if v2,i = 1

(23)

and the Hamming weight of v is clearly

w(v1) +
k2∑

i=1

(gi + v2,i) (24)

where gi is the Hamming weight of v0, i,

gi =
{

w(wi), if v2,i = 0

ti − w(wi), if v2,i = 1
. (25)

Consequently, the coset leader of CH(u) can be determined by finding the vector v1 ∈ F
k1
2

that minimizing the following quantity:

w(v1) +
k2∑

i=1

min{w(wi), ti − w(wi) + 1} (26)

with (w1, . . . , wk2
) = u − Rv1.

By Wang et al.’s approach, compared with the conventional ME, the CCPP is reduced from O(2k) to O(2k1). As a result, at

the same CCPP, higher dimensional matrix can be conducted and a better embedding efficiency is achieved. For example, by this

method using a 20 × 40 matrix with (k1, k2) = (15, 5), the embedding efficiency can be increased from 3.54 to 3.70 compared

with the conventional ME.

For a summarization, the CCPP of the methods [13,17,34] presented in this section are listed in Table 1. For embedding rates 0.5

and 0.8 bpp, the comparison of embedding efficiency for these methods at the same CCPP is shown in Tables 2 and 3, respectively.

According to the two tables, an observation is that, the embedding efficiency is better if employing a larger dimensional matrix.

Finally, we remark that Wang et al.’s method can be improved by incorporating it with Gao et al.’s sub-optimal search strategy.

The idea is straightforward. By the matrix H defined in (16), for a coset leader f(c, m) of CH(u) expressed as(
u −

k1∑
i=1

v∗
i ri −

k2∑
i=1

v∗
i+k1

ji, v∗
1, . . . , v∗

k

)
(27)

where r and j are respectively column vectors of R and J, we define
i i

Table 2

Comparison of embedding efficiency between the methods of Fridrich and Soukal [13], Gao et al. [17]

and Wang et al. [34], for an embedding rate of 0.5 bpp. The dimension and parameters for the em-

ployed matrix of each method are also given.

Fridrich and Soukal Gao et al. Wang et al.

Parameters (n, k) = (30, 15) (n, k, t) = (60, 30, 4) (n, k1, k2) = (40, 15, 5)

Matrix dimension 15 × 30 30 × 60 20 × 40

Embedding efficiency 3.54 3.84 3.70

Table 3

Comparison of embedding efficiency between the methods of Fridrich and Soukal [13], Gao et al. [17]

and Wang et al. [34], for an embedding rate of 0.8 bpp. The dimension and parameters for the employed

matrix of each method are also given.

Fridrich and Soukal Gao et al. Wang et al.

Parameters (n, k) = (75, 15) (n, k, t) = (90, 18, 6) (n, k1, k2) = (100, 15, 5)

Matrix dimension 60 × 75 72 × 90 80 × 100

Embedding efficiency 3.01 3.03 3.06
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Fig. 1. Distribution of μu ∈ {0, . . . , 15} of Wang et al.’s method using a 20 × 40 matrix with (k1, k2) = (15, 5).
μu = v∗
1 + · · · + v∗

k1
. (28)

Similar to the case of λu defined in (13), one can also verify that μu is usually a relatively small number with respect to its

maximum, k1. For example, we show in Fig. 1 the statistical distribution of μu ∈ {0, . . . , 15} of Wang et al.’s method using a 20 ×
40 matrix with (k1, k2) = (15, 5). This means, the coset leader f(c, m) probably lies in the set{(

u −
k1∑

i=1

viri −
k2∑

i=1

vi+k1
ji, v1, . . . , vk

)
: vi ∈ {0, 1},

k1∑
i=1

vi ≤ t

}
(29)

with t � k1. Based on this observation, instead of all v1 ∈ F
k1
2

, one may consider only the vectors v1 ∈ F
k1
2

with w(v1) ≤ t, to

minimize (26). In this way, the optimality is lost and only a sub-optimal solution is selected instead of the coset leader, however,

the CCPP can be reduced from O(2k1) to O(θ(k1, t)), where the function θ is defined in (15). For example, Wang et al.’s CCPP is

O(215) when taking a 20 × 40 matrix. At the same CCPP, by the improvement, one can utilize a 40 × 80 matrix with (k1, k2) =
(30, 10) and t = 4, and Wang et al.’s embedding efficiency can be increased from 3.70 to 3.94. Regarding Table 2, an even higher

embedding efficiency is thus achieved.

3. Proposed method

The proposed method is motivated by the previous works [13,17,34]. We will construct a new matrix for ME and use sub-

optimal search to reduce the computational complexity.

First of all, we point out that in Wang et al.’s work [34] when k2|(n − k) (i.e., k2 is a factor of n − k), by column transformations

(i.e., interchange two columns for several times), the matrix (16) can be transformed as a form of (A, R), where R is the (n − k) × k1

random matrix, and A is a (n − k) × (n − k + k2) matrix constructed by repeatedly placing a a × (a + 1) sub-matrix B = (Ia, 1a)
along its main diagonal, i.e.,

A =

⎛⎜⎜⎝
B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

⎞⎟⎟⎠ (30)

with a = (n − k)/k2. For example, for the matrix (19), it can be transformed to (A, R), where R is composed of its 7-th and 8-th

columns, and

A =
(

B 0 0
0 B 0
0 0 B

)
(31)

with

B =
(

1 0 1
0 1 1

)
. (32)

On the other hand, notice that interchanging two columns of PCM will not change the embedding distortion. Then for Wang

et al.’s method, the authors utilized actually aforementioned matrix (A, R) in which A is essential a diagonal matrix composed of

B = (Ia, 1a) on its main diagonal, and the advantage is, the equation Bv = u can be directly solved due to the specific structure

of B.

Based on the above discussion, our viewpoint is that the sub-matrix B in (30) can be taken as any full-ranked matrix. We then

propose to consider the matrix H in a form of (A, R), where A is defined in (30) composed of m a × b full-ranked sub-matrix B



X. Li et al. / Information Sciences 324 (2015) 257–269 263

Fig. 2. Construction of the matrix H = (A, R) used in our method, in which A is composed of m sub-matrix B on its main diagonal.
with a ≤ b, and R is a (n − k) × k1 random matrix. Notice that, considering the randomness of R, the full-rank property is required

for the sub-matrix B to guarantee that H is full-ranked whatever the matrix R is. In this case, we have{
n − k = ma
n = mb + k1

. (33)

An illustration for the construction of H is given in Fig. 2. Next, we consider solving the equation Hv = u. Rewrite v as (v1, v2),

where the lengths of v1 and v2 are mb and k1, respectively. Then Hv = u is equivalent to

Av1 = u − Rv2. (34)

Denote respectively v1 and u − Rv2 as (v1,1, . . . , v1,m) and (w1, . . . , wm) where, for each i ∈ {1, . . . , m}, the lengths of v1, i and

wi are b and a, respectively. One can see that, to solve (34) for a fixed v2, one needs to find solutions to Bv1,i = wi for each

i ∈ {1, . . . , m}. In this situation, as the Hamming weight of v is the sum w(v2) + ∑m
i=1 w(v1,i), one can see that each v1, i is the

coset leader of CB(wi) if v is the coset leader of CH(u). So, one first needs to find the coset leader of each CB(wi) for fixed v2. Thus,

finding the solution to Hv = u having the minimum Hamming weight, i.e., finding the coset leader of CH(u), contains two steps:

• Step 1: For a given v2 ∈ F
k1
2

, find the following vector v∗
1,i

which is the coset leader of CB(wi), for each i ∈ {1, … , m}

v∗
1,i = arg min

Bv1,i=wi

w(v1,i) (35)

where (w1, . . . , wm) = u − Rv2.

• Step 2: Determine v2 ∈ F
k1
2

such that

w(v2) +
m∑

i=1

w(v∗
1,i) (36)

is minimized. The corresponding vector (v∗
1,1

, . . . , v∗
1,m

, v2) is just the coset leader of CH(u).

We now describe how to speed up the above two steps for the proposed (A, R)-based ME. First, for Step 1, as B is usually a

small dimensional matrix, we then propose to precalculate and store in memory the coset leader of CB(w) for each w ∈ F
a
2
. In

this way, the vector v∗
1,i

can be found immediately by a look-up table. For Step 2, motivated by the improvement of Wang et al.’s

method presented at the end of previous section, we adopt Gao et al.’s sub-optimal search method. Specifically, only the vector

v2 ∈ F
k1
2

with small Hamming weight will be processed to minimize (36), and a sub-optimal solution is adopted instead of the

coset leader. We will see later that the sub-optimal search strategy is helpful for improving the embedding performance.

We give the detailed data embedding procedure of the proposed (A, R)-based ME as follows.

First of all, we introduce the preprocessing step. Sort first in ascending order all vectors of F
k1
2

according to their Hamming

weights, and select the first 2c vectors to compose a set S, where c is a predefined positive integer no more than k1. Then,

precalculate and store in memory the vector Rv for each v ∈ S . Finally, determine and store in memory a coset leader of the

coset CB(w) for each w ∈ F
a
2
, and this can be done by computing all linear combinations of column vectors of B. The memory

requirement for the preprocessing step is (n − k)2c + b2a bits.

The data embedding procedure contains following steps. Consider here a cover sequence c ∈ F
n
2

and a message m ∈ F
n−k
2

.

Compute first u = m − Hc. Then, for each v2 ∈ S, utilizing the stored vector Rv2, determine (w1, . . . , wm) = u − Rv2 where the

length of wi is a, and take out the coset leader denoted v∗
1,i

of the coset CB(wi) for each i ∈ {1, . . . , m}. Next, determine the vector

v2 ∈ S such that (36) is minimized, and take the corresponding vector (v∗
1,1

, . . . , v∗
1,m

, v2) as v. Finally, take s = c + v as the stego

sequence.

Clearly, the CCPP of the proposed method is O(2c) which only depends on c. We call c the complexity parameter. Moreover,

the extraction phase of the proposed method is just the same as the conventional ME. One needs only to compute Hs to extract

the embedded message from the stego sequence s. Besides, we remark that, the proposed method includes the conventional ME

and Wang et al.’s method as special cases if taking the sub-matrix B as Ia and (Ia, 1a), respectively.

Finally, we discuss the selection of the sub-matrix B. Notice that the coset leader of the coset CB(wi), v∗
1,i

, is involved to

generate the embedding distortion (36). Then, roughly speaking, the distortion is less if the expected value of w(v∗
1,i

) is smaller.
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Fig. 3. Comparison of embedding efficiency of our method with different kinds of B.
On the other hand, this expected value is actually proportional to the embedding distortion of the conventional ME in which the

PCM is taken as B [16]. Thus, we may expect that, for two matrices B1 and B2, if the embedding distortion of the conventional ME

using B1 is smaller than that of B2, our method using B1 will achieve a reduced distortion compared with that of using B2. This

thought is experimentally verified to be true as follows.

In our previous work [16], we studied the so-called optimal matrix defined as the matrix which can provide the highest

embedding efficiency for the conventional ME at a fixed matrix dimension. As pointed out in [16], it is still unclear that how

to determine an optimal matrix when the matrix dimension is large, then a greedy algorithm is proposed in [16] to determine

the approximately optimal matrix (AOM) in systematic form (Ia, P) in which P is determined column by column. Specifically, by

exhaustive search, we first select a vector p1 ∈ F
a
2

such that the a × (a + 1) matrix (Ia, p1) can achieve the highest embedding

efficiency among all a × (a + 1) matrices in systematic form. In other words, for each p1 ∈ F
a
2
, according to (7), we compute

the embedding efficiency of ME using the a × (a + 1) matrix (Ia, p1), and determine the vector p1 as the one such that the

corresponding embedding efficiency is maximized. Then, also by exhaustive search, we select a vector p2 ∈ F
a
2

such that the

a × (a + 2) matrix (Ia, p1, p2) can achieve the highest embedding efficiency among all a × (a + 2) matrices in systematic form

whose (a + 1)-th column vector is fixed as p1. That is to say, for each p2 ∈ F
a
2
, according to (7), we compute the embedding

efficiency of ME using the a × (a + 2) matrix (Ia, p1, p2), and determine the vector p2 as the one with the maximized embedding

efficiency. In the same way, the other column vectors of P can be determined iteratively. We adopt the AOM obtained in this way

to verify the impact of B to the embedding performance.

Referring to Fig. 3, it shows the comparison of embedding efficiency of our method with different kinds of B. The parameters

are fixed as (a, b, m, k1, c) = (15, 26, 5, 20, 10), and the dimension of H is 75 × 150 where the embedding rate is 0.5 bpp. The

dimension of B is 15 × 26 and it is taken as the AOM or randomly selected for 100 times. Recall that in each case, the matrix R

is randomly selected when B is given. The corresponding embedding efficiencies of our method using the AOM and randomly

selected B are marked as red and black dots, respectively. According to this figure, one can see that a better embedding efficiency

is achieved using the AOM. Thus, to get the best embedding performance for our method, we will take the sub-matrix B as the

AOM determined using the greedy algorithm. For reference, the 20 × 19 matrix P of the 20 × 39 AOM (I20, P) is given below⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1
1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0
1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1
1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1
1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0
1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0
1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1
1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0
1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0
1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1
1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1
1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1
1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1
1 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0
1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0
1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)
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According to the greedy algorithm, we know that for each l ∈ {1, . . . , 18}, the 20 × (20 + l) AOM (I20, P′) can be constructed by

taking P′ as the first l columns of P.

Finally, before closing this section, we discuss the practical issue of the proposed method that how to communicate the PCM

H = (A, R). Actually, the matrix can be delivered along with the stego data. Notice that, R is a random binary matrix and it can

be generated in a pseudo-random manner, e.g., using a pseudo random number generator (PRNG). On the other hand, as A is

composed of the sub-matrix B which is taken as the AOM of a fixed dimension, only the matrix dimension of B needs to be

delivered since the AOM can be predetermined and stored in memory. In this case, to communicate the PCM, only the following

information should be delivered: the seed of PRNG and the parameters (a, b, m, k1, c). The above information can be embedded

into some reserved cover pixels using simple LSB replacement.

4. Experimental results

We first illustrate the effectiveness of the sub-optimal search strategy in our method. The experiment is conducted as follows.

We consider the embedding rate q/p with conditions

p, q ∈ {1, . . . , 10}, q/p ∈ [0.5, 1) and (p, q) = 1, (38)

i.e., 16 different embedding rates {1/2, 2/3, 3/4, 3/5, 4/5, 5/6, 4/7, 5/7, 6/7, 5/8, 7/8, 5/9, 7/9, 8/9, 7/10, 9/10} are taken into account

in the experiment. The complexity parameter c is fixed as 10. For the paraments a, b and m, they are empirically selected as

10 ≤ a ≤ 20, a + 1 ≤ b < 2a, 2 ≤ m ≤ 20. (39)

Recall that a × b is the dimension of B, m is the numbers of B used to form A, and the AOM of dimension a × b is required for each

(a, b) satisfying (39). In addition, we remark that, to get high embedding rates, the parameter b is thus restricted by the condition

b < 2a. Then, for each (p, q) satisfying (38) and (a, b, m) satisfying (39), the parameter k1 (the width of matrix R) is determined

such that the embedding rate is q/p, i.e.,

q

p
= n − k

n
= ma

mb + k1

(40)

which is equivalent to

k1 = p

q
ma − mb. (41)

If k1 is an integer no less than c, the proposed method is then repeatedly implemented for 100 times using the matrix H = (A, R)
determined by the parameters (a, b, m, k1), i.e., the matrix R is randomly chosen for 100 times, and the results are averaged as the

final embedding efficiency denoted Ec
a,b,m,k1

(p, q). Notice that, for a given (p, q), there are many parameters (a, b, m, k1) where

the corresponding embedding rate is q/p, we then select the best parameters that can yield the least distortion, i.e., we take

Ec(p, q) = max
(a,b,m,k1)

Ec
a,b,m,k1

(p, q) (42)

as the embedding efficiency of our method at the embedding rate q/p. For example, for q/p = 1/2, the best parameters are

(a, b, m, k1) = (20, 37, 6, 18) where the dimensions of H and B are 120 × 240 and 20 × 37, respectively. On the other hand,

reviewing (41), if k1 = c, it means that all the vectors in F
k1
2

are tested for minimizing (36) and a coset leader is thus selected

without any loss of optimality. We then define

Ẽc(p, q) = max
(a,b,m), k1=c

Ec
a,b,m,k1

(p, q) (43)

in which k1 is fixed as c and the sub-optimal search is disabled. The comparison between Ec(p, q) and Ẽc(p, q) is shown in

Fig. 4. One can see that our method with sub-optimal search can provide a larger embedding efficiency especially for moderate

embedding rate. It confirms the effectiveness of the sub-optimal search.

The proposed method is then evaluated by comparing it with the previous works [13,17,34]. Referring to Table 1, for a given

complexity parameter c, the parameters for [13,17,34] and our method are determined as follows to get the same CCPP:

• For the method [13] described in Section 2.1, k is fixed as c and n varies to generate different embedding rate.
• For the method [17] described in Section 2.2, every (n, k, t) is tested if θ (k, t) ≤ 2c. For a given embedding rate, the optimal (n,

k, t) that yields maximum embedding efficiency is selected, and the maximum embedding efficiency is taken as the result.
• For the method [34] described in Section 2.3, (k1, k2) is taken as (c, c/3) and n varies to generate different embedding rate.
• For our method, only the embedding rate q/p satisfying (38) is tested and the parameters (a, b, m, k1) are determined according

to (39) and (41). The best parameters are selected for a given (p, q) and Ec(p, q) defined in (42) is taken as our embedding

efficiency at the embedding rate q/p.

For both these methods, the matrix R is randomly chosen for 100 times when the parameters are given, and the corresponding

100 embedding efficiencies are averaged as the final result.

The embedding efficiency comparison is shown in Figs. 5, 6, and 7, for c = 9, 12, and 15, respectively. Notice that in these

figures, the blue dots in our method are obtained using embedding rate interpolation. That is, for two embedding methods with
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Fig. 4. Comparison of embedding efficiency of our method with and without the sub-optimal search, where the complexity parameter c is fixed as 10.
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Fig. 5. Comparison of embedding efficiency between our method and the methods of Fridrich et al. [13], Gao et al. [17] and Wang et al. [34], for the same CCPP

with the complexity parameter c = 9. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Fig. 6. Comparison of embedding efficiency between our method and the methods of Fridrich et al. [13], Gao et al. [17] and Wang et al. [34], for the same CCPP

with the complexity parameter c = 12. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Fig. 7. Comparison of embedding efficiency between our method and the methods of Fridrich et al. [13], Gao et al. [17] and Wang et al. [34], for the same CCPP

with the complexity parameter c = 15. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).

Table 4

Best parameters (a, b, m, k1) that yield the least distortion in the proposed method, the corresponding matrix di-

mension and embedding efficiency, and the running time for embedding a gray-scale cover image of 1024 × 1024

pixels.

Embedding rate (bpp) 0.5 0.6 0.7 0.8 0.9

c = 9 (20,37,5,15) (20,31,6,14) (20,27,7,11) (20,23,5,10) (18,19,9,9)

Best (a, b, m, k1) c = 12 (20,37,6,18) (20,30,6,20) (20,26,7,18) (20,23,7,14) (18,19,13,13)

c = 15 (20,35,6,30) (20,30,6,20) (20,26,7,18) (12,13,9,18) (18,19,16,16)

c = 9 100 × 200 120 × 200 140 × 200 100 × 125 162 × 180

Dimension of H c = 12 120 × 240 120 × 200 140 × 200 140 × 175 234 × 260

c = 15 120 × 240 120 × 200 140 × 200 108 × 135 288 × 320

c = 9 4.07 3.71 3.37 3.02 2.69

Embedding efficiency c = 12 4.12 3.74 3.41 3.05 2.72

c = 15 4.16 3.78 3.44 3.08 2.73

c = 9 0.09 0.10 0.10 0.21 0.15

Running time (s) c = 12 0.45 0.52 0.54 0.92 0.90

c = 15 4.17 4.86 5.52 6.55 6.34
the pairs of embedding rate and distortion, (r1, d1) and (r2, d2), one can get an embedding method with embedding rate r and

distortion d, where r = αr1 + (1 − α)r2 and d = αd1 + (1 − α)d2. Here, α ∈ [0, 1] is an arbitrary real number. This can be done

by a mixed embedding using the two methods and the obvious detail is omitted here. Moreover, for a better illustration, the

theoretical upper bound of embedding efficiency of LSB-based embedding is also plotted as the black line. According to these

figures, one can see that the proposed method always achieves the best performance among all the tested methods, and our

superiority is significant for moderate embedding rates. For example, for an embedding rate of 0.5 bpp, comparing our method

with Gao et al.’s which performs the best among [13,17,34], the embedding efficiency is significantly improved from 3.48 to 4.07,

3.70 to 4.12, and 3.84 to 4.16, when c is 9, 12, and 15, respectively. It can be concluded that the proposed method outperforms

these state-of-the-art works [13,17,34].

Finally, for different complexity parameter c ∈ {9, 12, 15} and embedding rates of 0.5, 0.6, 0.7, 0.8 and 0.9 bpp, we show in

Table 4 the following results:

• The best parameters (a, b, m, k1) that yield the least distortion in our method, i.e., the parameters (a, b, m, k1) such that

Ec
a,b,m,k1

(p, q) is maximized for a given (p, q) (see (42)).

• The dimension of the matrix H determined by the best parameters.
• The embedding efficiency of the proposed method using the matrix H determined by the best parameters.
• The running time of our method for embedding a gray-scale cover image of 1024 × 1024 pixels. The test is run on a per-

sonal computer utilizing a single CPU core of Intel Core i7-4770 running at 3.4 GHz with 8GB RAM. The proposed method is

implemented in C++ and compiled under Windows 7 with Visual C++ 10.

According to this table, one can see that a very promising embedding efficiency is obtained by our method with the complexity

parameter c = 12 in which 1024 × 1024 ≈ 106 cover pixels can be processed within 1 s.
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5. Conclusion

In this paper, a study of large payloads ME is proposed by improving the embedding efficiency while keeping low computa-

tional complexity. The key issues of the proposed method are the utilization of a new designed matrix and the adoption of the

sub-optimal search strategy. This work is an extension of previous methods [13,17,34], and our superiority over these state-of-

the-art works is experimentally verified. By the proposed method, effective and practically feasible large payloads ME can be

realized. A future work is to try/design different matrix H to further enhance the embedding efficiency of ME.
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