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Abstract: This study proposes a novel scheme of semantic image compression. A compressor firstly creates a compact image by
gathering a part of pixels in an original image, and calculates estimation errors of the rest pixels. Then, a compressed image is
produced by embedding the estimation errors into the compact image using data hiding techniques. This way, the compressed
image are made up of a small number of pixel values, and the original content is still visible roughly through the compressed
image without any decompression tool. If a decompression tool is available, a user may reconstruct a high quality image with
original size by exploiting the embedded data. Because the proposed scheme is compatible with reversible and non-reversible
data hiding techniques, either the lossy or lossless semantic compression can be performed. With different parameters, the
qualities of compressed and decompressed images vary. Furthermore, the smoother the original image content, the better is
the compression–decompression performance.
1 Introduction

The purpose of image compression methods, such as JPEG
and JPEG 2000, is to reduce the data amounts of digital
images when keeping satisfactory quality. In most
compression applications, since the structure and
representation of image data have been changed for
removing the redundancy, that is, the image format has
been altered, some corresponding decompression tools are
necessary to reconstruct the image content from
compressed data. In this work, we will focus on another
type of image compression, called as semantic image
compression, in which the compressed images with
significantly smaller data amounts are also made up of
pixel values. In other words, the formats of the original
and compressed images are same, while the content of
them are similar. That means the original content is still
visible roughly through compressed images without any
decompression tool. If the decompression tool is available,
the decompressed images with high visual quality can
be obtained.
A coding method of semantic image compression has been

presented to convert an 8-bit grey-level image into a 7-bit
grey-level version with acceptable visual quality, and the
original content can be recovered without any error from
the 7-bit version [1]. The theoretical bounds of
lower-grey-level compression for both lossless and lossy
manners have been also studied in [2]. However, since the
pixel value is usually stored within one byte, that is, 8 bits,
the applications of [1, 2] are limited. This work proposes a
novel semantic image compression method, in which each
pixel in compressed image is also represented as 8 bits and
the image size is reduced. On decompression side, a high
quality image with original size can be reconstructed. Fig. 1
gives a brief illustration of this work.
Data hiding techniques, which aim to embed additional

data into host signals, are employed in this work to carry
some data used for decompression within compressed
images. In data hiding scenarios, the embedding operation
will result in distortion in the host signals, so that it is
always desired to lower the distortion with a given payload
or to maximise the embedded payload with a given
distortion level, in other words, to achieve a good
rate-distortion performance. The theoretical bounds of
rate-distortion performance have been studied in [3, 4], and
a number of practical data hiding methods with good
performance have been developed. When viewing the least
significant bits (LSB) plane of host images as an available
data space for accommodating additional data, the different
patterns of cover data corresponding to a same syndrome
can be used to represent an identical type of additional data,
and a data-hider may modify the original cover data to the
nearest pattern mapping the additional data to be hidden [5,
6]. This way, the rate-distortion performance is close to the
theoretical bound of binary embedding method. In [7], Wet
Paper Codes [8] and Hamming codes are introduced to
derive a family of data hiding methods from an existing
binary embedding method. If the binary embedding method
is near optimal, the performance of the derived data hiding
methods will still stay close to the theoretical limit [9].
When the distortion caused by data embedding, no matter

how small it is, is unacceptable, it is imperative to embed
the additional data in a reversible manner so that the
original contents can be perfectly restored after extraction of
the hidden data. The reversible data hiding (RDH)
techniques can be roughly classified into three types:
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Fig. 1 Brief illustration of semantic image compression in this work
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lossless compression-based methods, difference expansion
(DE) methods and histogram shift (HS) methods. The
lossless compression-based methods make use of statistical
redundancy of the host signals by performing lossless
compression in order to create a spare space to
accommodate additional data [10, 11]. In the DE method
[12], differences between two adjacent pixels are doubled
so that a new LSB plane without carrying any information
of the original is generated. The hidden data together with a
compressed location map derived from the property of each
pixel pair, but not the host information itself, is embedded
into the generated LSB plane. Various techniques have been
introduced into DE algorithm to improve its performance,
including generalised integer transform [13, 14], pixel value
prediction mechanism [15], histogram modification
operation [16], prediction of location map [17],
simplification of location map [18, 19] and improvement of
compressibility of location map [20]. A data-hider can also
employ HS mechanism to realise reversible data hiding. A
typical HS method presented in [21] utilises the zero and
peak points of the histogram of an image and slightly
modifies the pixel grey scale values to embed data into the
image. The HS mechanism can also be implemented in the
differences between sub-sampled images [22] and the
prediction errors of host pixels [23, 24]. In addition, several
good prediction approaches [25, 26] and an optimal rule of
value modification under a payload-distortion criterion [27]
have been introduced to improve the performance of
reversible data hiding.
This work employs the data hiding techniques to embed

some data for decompression into a down-sampled version
of original image to generate a compressed image. Then,
the compressed image possesses similar content and its size
is smaller then the original one. On decompression side,
with the aid of extracted data, we may obtain a
reconstructed image with original size and high quality.
Since both the reversible and non-RDH techniques may be
used, either the lossy or lossless semantic compression can
be performed with the proposed scheme. The rest of this
paper is organised as follows. The compression and
decompression procedures are presented in Sections 2 and
3, respectively. Section 4 gives the experimental results
and Section 5 concludes the paper.
2 Semantic compression procedure

In the semantic compression procedure, we firstly create a
compact image by gathering a part of pixels in original
image, and collect the estimation errors of the rest pixels.
Then, the compressed data of the estimation errors are
embedded into the compact image using the LSB
replacement and/or RDH techniques to produce a
compressed image with small size and similar content.
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 54–61
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Assume an original image P is in uncompressed format and
the pixel values are within [0, 255]. Denote the numbers of
the rows and the columns in the original image as N1 and
N2, and the pixels as p(n1, n2) where 1≤ n1≤N1 and 1≤
n2≤ N2. Firstly, a small image G is generated by employing
the nearest neighbour interpolation method with a given
scaling ratio r (0 < r < 1). The number of rows and columns
in G are

M1 = round (N1 · r) (1)

M2 = round (N2 · r) (2)

and the pixel values in G are

g m1, m2

( ) = p round m1/r
( )

, round m2/r
( )( )

,

1 ≤ m1 ≤ M1, 1 ≤ m2 ≤ M2

(3)

where the operation round (·) returns the nearest integer. In
other words, a part of pixels in the original image P are
picked to form the compact image G. We call the picked
pixels in P as seed pixels, and the pixels that are not picked
as default pixels.
For each default pixel p(n1, n2), calculate

mU
1 = n1 · r

⌊ ⌋
(4)

mD
1 = n1 · r

⌈ ⌉
(5)

mL
2 = n2 · r

⌊ ⌋
(6)

mR
2 = n2 · r

⌈ ⌉
(7)

where ⌈·⌉ and ⌊·⌋ take the nearest integers towards infinity
and negative infinity, respectively, and

nU1 = round mU
1 /r

( )
(8)

nD1 = round mD
1 /r

( )
(9)

nL2 = round mL
2/r

( )
(10)

nR2 = round mR
2/r

( )
(11)

That implies p nU1 , n
L
2

( )
, p nU1 , n

R
2

( )
, p nD1 , n

L
2

( )
and p nD1 , n

R
2

( )
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are the seed pixels closest to the default pixel p(n1, n2), and

g mU
1 , m

L
2

( ) = p nU1 , n
L
2

( )
(12)

g mU
1 , m

R
2

( ) = p nU1 , n
R
2

( )
(13)

g mD
1 , m

L
2

( ) = p nD1 , n
L
2

( )
(14)

g mD
1 , m

R
2

( ) = p nD1 , n
R
2

( )
(15)

We divide 8 bits of each pixel value into (8− T ) highest bits
and T lowest bits where T is an integer within [0, 7] and
shared by both the compression and decompression sides,
and denote the value of (8− T ) highest bits of each pixel in
G as

gH m1, m2

( ) = g m1, m2

( )
/2T

⌊ ⌋
(16)

Then, estimate the default pixel p(n1, n2) using the values of
gH mU

1 , m
L
2

( )
, gH mU

1 , m
R
2

( )
, gH mD

1 , m
L
2

( )
, gH mD

1 , m
R
2

( )
and the

bilinear interpolation method (see (17))

where (see (18 and 19))

The estimation error is

e(n1, n2) = p(n1, n2)− round �p(n1, n2)
[ ]

(20)

In the following, we will compress the estimation errors and
embed the compressed data into the compact image G.
Denote the minimal and maximal values of all estimation

errors as Vmin and Vmax, and the number of estimation
errors being i as hi (Vmin≤ i≤ Vmax). Hence, the probability
of estimation error being i is

gi = hi/
∑Vmax

j=Vmin

hj (21)

We intend to divide the range [Vmin, Vmax] into K sections:
[α1, β1], [α2, β2], …, [αK, βK] where α1 = Vmin, βK = Vmax,
and αk+1 = βk + 1 (k = 1, 2, …, K− 1), and use the index of
each section to represent the estimation errors falling into
the section. This way, the set of estimation errors is
converted into a set of section indices, and the amount of
�p n1, n2
( ) = 2T ·

�pL n1, n2
( )

n2 − nL2
nR2 − nL2

· �pR n1, n2
( )+

n

⎧⎪⎨
⎪⎩

�pL n1, n2
( ) = gH mU

1 , m
L
2

( )
n1 − nU1
nD1 − nU1

· gH mD
1 , m

L
2

( )+ nD1
nD1

⎧⎪⎨
⎪⎩

�pR n1, n2
( ) = gH mU

1 , m
R
2

( )
n1 − nU1
nD1 − nU1

· gH mD
1 , m

R
2

( )+ nD1
nD1

⎧⎪⎨
⎪⎩
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required data for representing the estimation errors is

A = −
∑Vmax

i=Vmin

hi ·
∑K
k=1

∑bk
i=ak

gi · log2
∑bk
i=ak

gi

( )[ ]
(22)

That implies the estimation errors are compressed. If we
regard the estimation errors in a section [αk, βk] as a median
(αk + βk)/2, the distortion would be

Dk =
∑bk
i=ak

hi · i− ak + bk

2

( )2

(23)

and the total distortion would be

D =
∑K
k=1

Dk (24)

Clearly, A and D are determined by the section division [α1,
β1], [α2, β2], …, [αK, βK]. With the following steps, we may
obtain a series of ways of section division to keep a low
data amount with given distortion level or keep a low
distortion with given data amount.

Step 1: At the beginning, we define (Vmax− Vmin + 1)
sections, each of which contains only one value. In other
words, αk = βk = k + Vmin− 1 (1≤ k≤ Vmax− Vmin + 1). And
let

A = −
∑Vmax

i=Vmin

hi ·
∑Vmax

i=Vmin

gi · log2
1

gi

( )
(25)
D = 0 (26)

Step 2: Denote the number of current sections as K.
Considering two adjacent sections [αk, βk] and [αk+1, βk+1]
, if nL2 = nR2
nR2 − n2
R
2 − nL2

· �pL n1, n2
( )

, if nL2 , nR2
(17)

, if nU1 = nD1
− n1
− nU1

· gH mU
1 , m

L
2

( )
, if nU1 , nD1

(18)

, if nU1 = nD1
− n1
− nU1

· gH mU
1 , m

R
2

( )
, if nU1 , nD1

(19)
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(1≤ k≤K− 1), calculate

wk =
∑Vmax

i=Vmin

hi · −
∑bk+1

i=ak

gi · log2
∑bk+1

i=ak

gi

( )[

+
∑bk
i=ak

gi · log2
∑bk
i=ak

gi

( )
+

∑bk+1

i=ak+1

gi · log2
∑bk+1

i=ak+1

gi

( )]

(27)

ck =
∑bk+1

i=ak

hi · i−ak +bk+1

2

( )2

−
∑bk
i=ak

hi · i−ak +bk

2

( )2

−
∑bk+1

i=ak+1

hi · i−ak+1+bk+1

2

( )2

(28)

Here, fk and ck are, respectively, the increments of data
amount A and total distortion D if we combine the two
adjacent sections [αk, βk] and [αk + 1, βk + 1] as a new
section. That implies fk < 0 and ck > 0. After finding

k∗ = argmax
k

wk

∣∣ ∣∣
ck

(29)

combine the two sections [ak∗, bk∗ and] [ak∗+1, bk∗+1] as a
new section and decrease the number of sections K by 1.

Step 3: Update the values of A and D as in (22) and (24).
Owing to the section combination in Step 2, the value of A
decreases while the value of D increases, and a new pair of
A and D has been produced.
Step 4: If K > 1, go to Step 2; otherwise, terminate the
iterative procedure.

With the iterative procedure, a number pairs of A and D can
be obtained in Step 3, and a rough division would result in a
low A and a high D, while a fine division would result in a
high A and a low D. In other words, a higher A corresponds
to a lower D. After selecting a pair of (A, D) and the
corresponding section division, the estimation errors are
represented by the indices of their corresponding sections,
and converted into a bit sequence using a lossless source
coding method, such as arithmetic coding and Huffman
coding.
Collect the values of r, N1, N2, αk (k = 1, 2, …, K ), βK, and

the compressed data of estimation errors to form a data set S,
and denote the bit amount of S as LS. If LS is not larger than
M1·M2·T, we keep the data in the (8− T ) highest bit-planes of
G unchanged and replace the data in the T lowest bit-planes of
Gwith the data of S to generate a new image GC. If LS is larger
thanM1·M2·T, we divide S into two parts: S1 and S2, where the
length of S1 is M1·M2·T and the length of S2 is (LS−
M1·M2·T ). Then replace all data in the T lowest bit-planes
of G with S1, and embed S2 into the (8− T ) highest
bit-planes of G, which are viewed as an (8− T )-bit image,
by using a RDH technique. Here, the RDH technique
ensures that the original (8− T ) highest bits of G can be
retrieved without any error when extracting the embedded
S2 in decompression phase, and a number of RDH methods
with good payload-distortion performance are suitable for
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 54–61
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this purpose. By combining the new data in the T lowest
bit-planes coming from S1 and the new data in (8− T )
highest bit-planes containing S2, a new image GC with a
size of M1 ×M2 is generated. The image GC is just a final
result of the semantic compression procedure. Then, the
compressed image GC is distributed broadly to the potential
users or transmitted to some appointed receivers.
Since the principal content of original image is represented

by the data in highest hit-planes and the affection of RDH
technique is not serious as long as the length of S2 is not
too large, the compressed image looks similar to the
original one. Actually, the quality of GC is dependent on the
scaling ratio r, the value of T and the amount of embedded
data LS. A larger r and a smaller T imply the more original
data reserved in the compressed image, while a smaller LS
implies the less data embedded into compressed image,
leading to the better quality of the compressed image.
3 Decompression procedure

When a receiver or user with the compressed image GC is
interested in obtaining an image with better quality and
higher resolution, he may employ the following procedure
to generate a decompressed image.
Firstly, the receiver extracts the embedded data S from GC

and retrieve the original data in the (8− T ) highest bit-planes
of G. If S occupies only the T lowest bit-planes of GC, it is
easy to obtain S from the lowest bit-planes, and the original
(8− T ) highest bits of G are same as those in GC since they
are not changed in the compression procedure. On the other
hand, if two parts of S are, respectively, carried by the T
lowest and (8 − T ) highest bit-planes of GC, the receiver
may reorganise the data in the T lowest bit-planes as S1,
and recover the original data in the (8− T ) highest
bit-planes of G when extracting S2 from the bit-planes. In
this case, S is obtained by combining S1 and S2. Then, the
values of r, N1, N2, αk (k = 1, 2, …, K ), βK, and the
compressed data of estimation errors are also obtained. That
means the scaling rate, the size of original image, the way
of section division and the section indices corresponding to
the estimation errors of default pixels have been known by
the receiver.
Then, a decompressed image PD sized N1 ×N2 can be

produced using the following method. Let the values of
seed pixels in PD to be equal to the corresponding pixel
values in GC,

pD round m1/r
( )

, round m2/r
( )( ) = gC m1, m2

( )
,

1 ≤ m1 ≤ M1, 1 ≤ m2 ≤ M2

(30)

For the default pixels pD(n1, n2), assuming its estimation error
falls into a section [αk, βk], we define

�e n1, n2
( ) = ak + bk

( )
/2 (31)

And the receiver can also calculate its estimated value
�p n1, n2
( )

using (17) since the original (8 − T ) highest bits
of G have been retrieved. So, the values of decompressed
default pixels are

pD n1, n2
( ) = �e n1, n2

( )+ round �p n1, n2
( )[ ]

(32)

This way, a decompressed image is produced.
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Fig. 2 Original images

a Lena
b Man
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The distortion in the decompressed image is made up of
two parts: the distortion in the seed pixels and the distortion
in the default pixels. The first part is dependent on the
value of T while the second part is dependent on the way of
section division. Consider T = 0 and [Vmax, Vmin] is divided
into (Vmax− Vmin + 1) sections, each of which contains only
one value. In this case, the estimation errors of default
pixels are compressed in a lossless manner and then
embedded into the compact image G in a reversible manner
to produce the image GC. So, the original image P can be
perfectly recovered from GC since no distortion is
introduced in the compression–decompression procedures.
In short, a lossless semantic compression is performed. On
the other hand, if T is a positive integer, the data
embedding results in a distortion in seed pixels of
decompression image, and the section combination results
in a distortion in default pixels. That implies a lossy
semantic compression/decompression is performed.

4 Experimental results

Two 512 × 512 images, Lena and Man, shown in Fig. 2, were
used as the original images. With a scaling ratio r = 0.88, we
Fig. 3 Compact images sized 450 × 450

a Lena
b Man
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produced two compact version sized 450 × 450 as in Fig. 3. In
this case, the image size was reduced to 77% of the original
size. After assigning T = 0 and calculating estimation errors
of default pixels, we let each section contain only one value
to perform lossless semantic compression. That means the
estimation errors of default pixels were compressed in a
lossless manner and embedded into the compact images in
a reversible manner. Here, the RDH method in [26] was
employed. The final compressed images are given in Fig. 4,
and the peak signal-to-noise ratio (PSNR) values are 26.4
dB and 23.1 dB when using the compact images in Fig. 3
as references. When implementing the decompression
procedure, the original images can be perfectly recovered
from the decompressed images.
We also performed lossy semantic compression using the

proposed scheme. With r = 0.50, the compact Lena and
Man sized 256 × 256 were obtained. We let T = 3 and
compressed the estimation errors of default pixels in Lena
and Man as 2.9 × 105 and 2.2 × 105 bits, respectively. Then,
a part of data to be embedded was accommodated in the 3
LSB, and the rest data were embedded into the 5 MSB
using the RDH method in [26] to generate the compressed
images. The compact and compressed images are shown in
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 54–61
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Fig. 4 Lossless compressed images

a Lena with PSNR 26.4 dB
b Man with PSNR 23.1 dB

Fig. 5 Compact images sized 256 × 256

a Lena
b Man

Fig. 6 Lossy compressed images

a Lena with PSNR 18.6 dB
b Man with PSNR 30.2 dB
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Figs. 5 and 6, and the values of PSNR in the compressed Lena
and Man are 18.6 and 30.2 dB when regarding the
corresponding compact images as references. Fig. 7 gives
two images decompressed from Fig. 6. The values of PSNR
in the decompressed results are 38.8 dB and 34.1 dB when
regarding the original Lena and Man as references.
Fig. 7 Decompressed results

a Lena with PSNR 38.8 dB
b Man with PSNR 34.1 dB

IET Image Process., 2015, Vol. 9, Iss. 1, pp. 54–61
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Tables 1–4 list the compression/decompression
performance with respect to different r, T and LS when
using four 512 × 512 images Lena, Man, Lake and Peppers
as the original, while the last two images are given in
Fig. 8. In these tables, PSNRC is the PSNR value in
compressed image when regarding the compact image as
59
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Table 2 Compression/decompression performance when using
Man as the original

r (M1 ×M2) T LS PSNRC, dB PSNRD, dB

0.92 (470 × 470) 0 2.02 × 105 31.9 +∞
0.88 (450 × 450) 0 2.93 × 105 23.1 +∞
0.88 (450 × 450) 1 2.93 × 105 37.5 52.3
0.88 (450 × 450) 2 2.94 × 105 46.6 47.7
0.68 (350 × 350) 1 3.03 × 105 21.0 44.2
0.68 (350 × 350) 1 1.76 × 105 37.3 39.0
0.68 (350 × 350) 2 2.61 × 105 36.1 41.9
0.68 (350 × 350) 2 3.65 × 105 26.4 43.8
0.68 (350 × 350) 3 3.55 × 105 38.2 40.2
0.68 (350 × 350) 3 4.82 × 105 22.2 40.7
0.50 (256 × 256) 1 1.51 × 105 20.4 32.9
0.50 (256 × 256) 2 2.20 × 105 19.6 32.9
0.50 (256 × 256) 3 2.21 × 105 30.2 34.1

Table 1 Compression/decompression performance when
using Lena as the original

r (M1 ×M2) T LS PSNRC, dB PSNRD, dB

0.92 (470 × 470) 0 1.84 × 105 33.6 +∞
0.88 (450 × 450) 0 2.66 × 105 26.4 +∞
0.88 (450 × 450) 1 2.52 × 105 42.3 52.0
0.88 (450 × 450) 2 2.67 × 105 47.6 48.7
0.68 (350 × 350) 1 1.84 × 105 37.5 42.7
0.68 (350 × 350) 2 3.01 × 105 36.3 43.8
0.68 (350 × 350) 3 2.70 × 105 42.0 42.3
0.50 (256 × 256) 1 1.62 × 105 21.8 37.6
0.50 (256 × 256) 2 1.74 × 105 31.3 36.2
0.50 (256 × 256) 3 2.51 × 105 25.2 37.8
0.50 (256 × 256) 3 2.91 × 105 18.4 38.8

Table 4 Compression/decompression performance when
using Peppers as the original

r (M1 ×M2) T LS PSNRC, dB PSNRD, dB

0.92 (470 × 470) 0 1.94 × 105 30.7 +∞
0.88 (450 × 450) 1 2.81 × 105 37.3 52.3
0.88 (450 × 450) 2 2.82 × 105 47.1 48.2
0.68 (350 × 350) 1 1.83 × 105 37.3 40.9
0.68 (350 × 350) 1 2.88 × 105 21.4 44.5
0.68 (350 × 350) 2 2.99 × 105 36.2 43.3
0.68 (350 × 350) 3 3.55 × 105 38.3 40.6
0.68 (350 × 350) 3 4.48 × 105 25.3 40.8
0.50 (256 × 256) 1 1.19 × 105 30.3 34.7
0.50 (256 × 256) 2 1.80 × 105 31.2 36.4
0.50 (256 × 256) 3 2.56 × 105 25.3 36.7
0.50 (256 × 256) 3 2.69 × 105 22.5 36.9

Table 3 Compression/decompression performance when
using Lake as the original

r (M1 ×M2) T LS PSNRC, dB PSNRD, dB

0.92 (470 × 470) 0 2.20 × 105 25.5 +∞
0.88 (450 × 450) 1 3.18 × 105 32.0 52.3
0.88 (450 × 450) 1 2.78 × 105 37.0 51.4
0.88 (450 × 450) 2 3.18 × 105 46.0 47.1
0.68 (350 × 350) 1 2.35 × 105 26.2 38.7
0.68 (350 × 350) 2 3.01 × 105 31.4 40.2
0.68 (350 × 350) 2 3.62 × 105 24.4 42.7
0.68 (350 × 350) 3 3.82 × 105 30.2 39.8
0.68 (350 × 350) 3 4.73 × 105 22.2 40.6
0.50 (256 × 256) 1 1.23 × 105 26.1 29.6
0.50 (256 × 256) 2 1.66 × 105 31.0 32.6
0.50 (256 × 256) 3 2.66 × 105 20.5 32.7

www.ietdl.org
reference, while PSNRD is the PSNR value in decompressed
image when regarding the original image as reference. When
the scaling ratio r was close to 1, we could let T = 0 to perform
lossless semantic compression. So, the original image content
can be perfectly reconstructed, that is, PSNRD =∞. We also
let r < 0.9 and T > 0 to perform lossy semantic compression,
and, in these cases, both PSNRC and PSNRD are dependent
on r, T and LS. A lower r means a smaller size of
Fig. 8 Original images

a Lake
b Peppers
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compressed image and more default pixels, leading to lower
PSNRC and PSNRD. A smaller T means lower embedding
capacity in compact version and more precise estimation on
default pixels, so that a lower PSNRC and a higher PSNRD

are caused. A larger LS, which implies more data embedded
for decompression, also results in a lower PSNRC and a
higher PSNRD. In other words, even though T is high, a
very-large LS can also result in a low PSNRC and a high
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 54–61
doi: 10.1049/iet-ipr.2014.0321



Fig. 9 Comparison between the proposed scheme and JPEG
compression when using Lena as original image

www.ietdl.org
PSNRD. That means PSNRC/PSNRD is not always obtaining
worse/better with a decreasing T. In fact, PSNRC and
PSNRD are also dependent on the original image content.
Generally speaking, the smoother the original image content,
the better are the qualities of compressed and decompressed
images.
Fig. 9 compares the performance of the proposed scheme

and lossy JPEG compression when using Lena as original
image. With the proposed semantic compression scheme,
since there is still redundancy in the compressed images, we
employed the lossless JPEG compression to further reduce
the data amount. A user may reconstruct high quality
images using lossless and semantic decompression tools. It
can be seen that the two curves intersect and the experiment
results on other images were similar. That means the
rate-distortion performance of the proposed semantic
compression scheme is close to that of JPEG compression.

5 Conclusion

This work proposes a semantic image compression scheme
based on data hiding techniques. A compact version is
firstly generated by gathering a part of pixels in original
image, and after embedding compressed data of estimation
errors of the rest pixels into the compact version, a
compressed image with smaller size and similar content is
produced. With the aid of extracted data, a decompressed
image with original size and high quality can be
reconstructed. By employing reversible/non-RDH
techniques, both the lossy and lossless semantic
compression can be performed with the proposed scheme.
The qualities of compressed and decompressed images are
dependent on the parameter values and the original image
content. In the future, the smarter semantic compression
methods with better performance and the theoretical
performance bounds deserve further investigation.
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