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a b s t r a c t

Matrix embedding (ME) is a well-known steganographic scheme that can improve the
embedding efficiency of steganography. In ME, the sender and recipient agree on a matrix
in advance, and the message will be embedded into the cover data according to the
matrix. In this paper, we propose a general framework for ME based on covering sequence
(CS) of finite abelian group. By the proposed approach, the to-be-embedded message is
regraded as an element of a finite abelian group, and it can be embedded into the cover
data according to a CS of the group. It can be verified that many previous works, including
the conventional ME (binary and ternary) and the sum and difference covering set based
steganography, are special cases of the proposed general framework. The proposed
CS-based ME formally extends these classical algorithms, and it provides a general way
for designing efficient steganography. Some examples of CS-based ME and their perfor-
mance evaluation are also given for a better illustration.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Steganography studies secure secret communication
[1,2]. By this means, a secret message is embedded into a
cover by slightly modifying its content. The most impor-
tant requirement for a steganographic scheme is its
security, i.e., the perceptual and statistical undetectability
of the hidden message.

There are mainly two ways to improve the stego-security.
On one hand, less changes can be made to the cover for the
same embedding capacity, which can be realized by, for
example, matrix embedding (ME) [3–6]. The ME technique
was firstly proposed by Crandall [3], and was made popular
by the F5 algorithm of Westfeld [4]. Thereafter, the ME
technique was systematically investigated by Fridrich et al.
[7–9], in which they proved that the theoretical upper bound
of embedding efficiency of the LSB-based steganography can
(W. Zhang),
be achieved by using binary codes. In ME, the sender and
recipient agree on a parity check matrix (PCM) in advance,
and then the embedded message is extracted by the reci-
pient as the syndrome of the received stego data. In
particular, to minimize the embedding distortion, the sender
usually chooses a coset leader as the modification to the
cover data. Besides ME using binary linear codes, ternary ME
(71 embedding) is also studied in the literature [8,10,11].
Moreover, as an extension of the classical LSB matching and
Mielikainen's algorithm [12], a variant of ME based on the
sum and difference covering set (SDCS) of cyclic groups is
proposed [13–15]. By the SDCS-based approach, the embed-
ding distortion is reduced compared with LSB matching and
[12]. In another work, Zhang and Wang proposed a new
steganographic method based on exploiting modification
direction (EMD) [16]. The EMD method and its related works
such as [17–23] are also designed to reduce the embedding
distortion and enhance the embedding efficiency.

On the other hand, given a content-adaptive distortion
measurement, more appropriate changes can be made by a
well designed embedding method. For example, it is obvious
that embedding modifications operated in rough regions of a
natural image are less perceptible than that in flat regions.

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2015.02.007
http://dx.doi.org/10.1016/j.sigpro.2015.02.007
http://dx.doi.org/10.1016/j.sigpro.2015.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.02.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.02.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.02.007&domain=pdf
mailto:lixiaolong@pku.edu.cn
mailto:caisiren@pku.edu.cn
mailto:zhangwm@ustc.edu.cn
mailto:yang_bin@pku.edu.cn
http://dx.doi.org/10.1016/j.sigpro.2015.02.007


X. Li et al. / Signal Processing 113 (2015) 250–258 251
Besides, the slight modifications to rough regions cannot be
easily perceived by analyzing normal image statistics since
the embedding noise is covered by the inherent noise. Thus
the content-adaptive approach for steganography has the
potential to provide a high level of security. Based on this
consideration, Wu et al. proposed the so-called pixel-value-
differencing (PVD) steganography [24], in which the differ-
ence value of a pixel pair is considered as the smoothness
measurement and more data bits will be embedded into a
pair if its difference is relatively larger. To the best of our
knowledge, the PVD-based approach is the first attempt to
realize content-adaptive steganography, and it is extensively
studied in the literature including both performance enhan-
cement and security discussions [25–32]. Later on, Fridrich
et al. proposed the wet paper code (WPC) based stegano-
graphy [33,34]. Imagine that we have a cover image exposed
to rain and the sender can only slightly modify the dry spots
of the image but cannot change the wet ones. During data
transmission, the stego image dries out, and thus the receiver
cannot identify which pixels were dry. However, with WPC,
the positions of dry spots are unnecessary for the receiver to
recover the embedded message. The WPC-based embedding
is a fundamental work of content-adaptive steganography.
After that, many other content-adaptive and effective stega-
nographic methods are also proposed [35–41]. Particularly, in
a recent work [42], Filler et al. proposed a practical approach
to minimize the embedding impact measured by a content-
adaptive cost function quantifying the effect of making
modification to cover pixels. This method is based on
syndrome coding using linear convolutional codes with the
optimal binary quantizer implemented using the Viterbi
algorithm. Nowadays, it is a hot topic to explore a reasonable
image-dependent distortion measurement for enhancing the
stego-security.

In this work, we focus on the first approach that improves
the stego-security based on making less modification to the
cover data. We conduct a further study on ME systematically
and provide a general framework for ME based on the
covering sequence (CS) of finite abelian group. Referred to
this framework, it can be verified that many previous works,
including the conventional ME (binary and ternary) and the
SDCS-based steganography, are special cases of the proposed
general framework. Moreover, the proposed new approach
leads to some theoretical (somewhat interesting) problems
beyond the steganography scope as well. Some examples of
CS-based ME are also given for a better illustration.

The rest of this paper is organized as follows. We first
introduce the general framework for CS-based ME in finite
abelian group in Section 2. Some examples of CS-based ME
and discussions are presented in Section 3. Some numer-
ical results demonstrating the embedding performance of
CS-based ME are also reported in Section 3. The final
conclusion is drawn in the last section.

2. General framework for matrix embedding in finite
abelian group

In this section, based on summarizing and extending
the conventional ME and some previously proposed ste-
ganographic methods such as [8,12,14,16,43], we propose
a general framework for designing steganography. Our
approach is based on CS of finite abelian group. For a
cover sequence X ¼ ðx1;…; xNÞAZN , the to-be-embedded
message is regarded as an element of a finite abelian group
G. Then, by the proposed framework utilizing a pre-
determined CS of G, we can derive the stego sequence
Y ¼ ðy1;…; yNÞAZN such that the embedding distortion
(measured by l2-norm)

‖X�Y‖l2 ¼
XN
i ¼ 1

ðxi�yiÞ2
 !1=2

ð1Þ

is minimized.
We start our presentation by reviewing some basic

concepts of group theory.
A group ðG; þÞ is a set of elements together with an

operation “þ” (also called the group operation) satisfying
the following four properties:
�
 Closure: If a; bAG, then aþbAG.

�
 Associativity: The group operation is associative, i.e., for

any a; b; cAG, ðaþbÞþc¼ aþðbþcÞ.

�
 Identity: There is an identity element denoted as “0”

such that 0þa¼aþ0¼a holds for every aAG.

�
 Invertibility: For each aAG, there exists anAG such that

aþan ¼ anþa¼ 0. Here, an is called the inverse of a and
denoted as �a.

The cardinal number of G is called the order of G. In
addition, if aþb¼ bþa holds for any a; bAG, G is called an
abelian group (also called a commutative group). For
example, the cyclic group ZM ¼ f0;1;…;M�1g is an abe-
lian group with orderM, where the group operation “þ” is
just the addition operation modulo M (e.g., 3þ4¼ 2 in Z5,
3þð�4Þ ¼ 5 in Z6).

For a given finite abelian group ðG; þÞ with order M, a
sequence A¼ ða1;…; aNÞ of Gwith aia0 is called a CS if, for
each gAG, there exists an integer sequence S¼ ðs1;…; sNÞ
such that

g¼ s1a1þ⋯þsNaN ð2Þ

holds. Notice that the multiplication here is realized by
addition of ai if si is positive and otherwise addition of �ai
(inverse of ai in the group G). In other words, A is a CS if
every element in G can be represented by the linear
combination of elements in A, i.e., using the terminology
of algebra, A is a CS if fa1;…; aNg is a generating set of G.

A CS can lead to a steganographic method. We first give
some definitions. For gAG, we define

Cg ¼ fðs1;…; sNÞAZN: s1a1þ⋯þsNaN ¼ gg; ð3Þ

dg ¼minfs21þ⋯þs2N: ðs1;…; sNÞACgg; ð4Þ

Dg ¼ fðs1;…; sNÞACg: s21þ⋯þs2N ¼ dgg: ð5Þ

Here, Cg is the set of all linear representations of g, dg
stands for the smallest cost in l2-norm of all these linear
representations, and Dg denotes the set of linear repre-
sentations of g with the smallest cost. According to the
condition in (2), Cg is non-empty and thus dg and Dg are
well-defined. In addition, Dg is a subset of Cg.
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We then define a steganographic method based on (G,
A). For a cover sequence X ¼ ðx1;…; xNÞAZN and a secret
data gAG, the corresponding stego sequence Y ¼ ðy1;…;

yNÞ is taken as XþS, where S is randomly chosen from the
set Dgn with

gn ¼ g�ðx1a1þ⋯þxNaNÞ: ð6Þ
In this case, for the stego sequence Y, the embedded data g
can be extracted by computing

PN
i ¼ 1 yiai since

XN
i ¼ 1

yiai ¼
XN
i ¼ 1

ðxiþsiÞai ¼
XN
i ¼ 1

xiaiþ
XN
i ¼ 1

siai

¼
XN
i ¼ 1

xiaiþ g�
XN
i ¼ 1

xiai

 !
¼ g: ð7Þ

Here, we remark that, instead of Dgn , S can be taken as any
element of Cgn which contains Dgn as a subset, and the
extraction phase in (7) still works. However, since S¼ Y�X
is the modification generated by data embedding, we then
take S from the set Dgn to minimize the embedding
distortion.

With (G, A), one can get a steganographic method based
on the aforementioned embedding and extraction proce-
dures. In this case, log2 M bits are embedded into N pixels,
and thus the embedding rate denoted as ER is

ER¼ log2 M
N

: ð8Þ

And, according to the definition of S, the embedding
distortion denoted as ED can be computed as

ED¼
P

gAGdg�ðx1a1 þ⋯þ xNaN Þ
MN

¼
P

gAGdg
MN

: ð9Þ

As a result, the embedding efficiency denoted as EE is

EE¼ ER
ED

¼Mlog2 MP
gAGdg

: ð10Þ

The classical LSB matching steganography is a special case
of the proposed CS-based ME. By taking G¼ Z2 ¼ f0;1g and
A¼ ð1Þ, one can verify that D0 ¼ f0g and D1 ¼ f71g. Accord-
ing to (6), for a cover XAZ and a message gAf0;1g, we have
gn ¼ g�X. Then, the stego data is X itself if X and g have the
same parity, otherwise, the stego data will be randomly
taken as Xþ1 or X�1.

As another example illustrating the CS-based embed-
ding procedure, we introduce the method proposed by
Mielikainen [12]. This method is also a special case of the
proposed general framework. Actually, we may take G¼Z4

and A¼ ð1;2Þ. In this case, the corresponding set Dg can be
computed as D0 ¼ fð0;0Þg, D1 ¼ fð1;0Þg, D2 ¼ fð0;1Þ; ð0; �1Þg
and D3 ¼ fð�1;0Þg. For a cover pixel pair such as X ¼
ð10;12Þ and a message g¼0, we first compute gn ¼
g�ðx1a1þx2a2Þ ¼ 2. Then, by randomly taking an element
from Dgn , e.g., S¼ ð0; �1Þ, we can determine the stego pixel
pair as Y ¼ XþS¼ ð10;11Þ. In addition, the embedding
rate, distortion, and efficiency, are clearly ER¼ ðlog24Þ=
2¼ 1, ED¼ ð0þ1þ1þ1Þ=8¼ 0:375, and EE¼ ER=ED¼ 8=3.

By the fundamental theorem of finite abelian groups,
any finite abelian group is isomorphic to a direct product
of cyclic groups of prime power order, then we can rewrite
G as Zq1 � ⋯ � ZqK , where each qi corresponds to a prime
power. In this situation, each element of A can be
expressed as aj ¼ ða1;j;…; aK;jÞ where ai;jAZqi . Thus, for
g ¼ ðg1;…; gK ÞAG, (2) equivalents to

a1;1 … a1;N
… … …
aK;1 … aK;N

0
B@

1
CA

s1
…
sN

0
B@

1
CA¼

g1
…
gK

0
B@

1
CA: ð11Þ

With this form, the CS A can be viewed as a K � N matrix
ðai;jÞ, and the proposed general framework is in fact a
natural extension of the conventional ME. Here, NZK is
not required to be satisfied, and the smallest N is the size
of the minimal generating set of G. For example, for
G¼ Z2 � Z2 � Z2 � Z3 where K¼4, the size of the mini-
mal generating set of G is 3. Notice that, G can be written
as the Smith canonical form of Zn1 � ⋯ � ZnL where
n1;…;nL are integers greater than 1 and nijniþ1 holds for
1r irL�1. Using this form, L is actually the size of the
minimal generating set of G.

For CS-based ME, a basic problem is the existence of CS,
i.e., how to find a CS and decide whether a given sequence
is a CS or not. We can give the solution to this question for
a simple case where G is a cyclic group.

Theorem 1. For a cyclic group G¼ ZM , A¼ ða1;…; aNÞ is a CS
of G if and only if one of the following two conditions holds:
(1) there exists an index iAf1;…;Ng such that gcdðai;MÞ ¼ 1,
(2) gcdða1;…; aN ;MÞ ¼ 1 and gcdðai;MÞ41 hold for each
iAf1;…;Ng. Here, gcd means the greatest common divisor of
integers.

Proof. Suppose that ða1;…; aNÞ is a CS of ZM . Then, there is an
integer sequence ðs1;…; sNÞ satisfying 1¼ s1a1þ⋯þsNaN . In
this case, if gcdðai;MÞ41 for each iAf1;…;Ng, one must have
gcdða1;…; aN ;MÞ ¼ 1. Otherwise, there exists iAf1;…;Ng
such that gcdðai;MÞ ¼ 1 and thus the condition (1) holds.
We now consider the inverse. If there exists iAf1;…;Ng

such that gcdðai;MÞ ¼ 1, there exists bAZ satisfying bai¼1 in
ZM . As a result, any gAZM can be written as g¼ gbai and
thus ða1;…; aNÞ is a CS of ZM . On the other hand, if
gcdða1;…; aN ;MÞ ¼ 1, according to Bézout's identity, there
exists an integer sequence ðs1;…; sNÞ satisfying 1¼ s1a1
þ⋯þsNaN . Consequently, any gAZM can be written as
g ¼ gs1a1þ⋯þgsNaN and thus A is also a CS of ZM . □

By this theorem, in terms of equivalence (here, two CSs
of a given group G are regraded equivalent if they have the
same embedding rate and distortion), we can only con-
sider the CSs A¼ ða1;…; aNÞ that satisfy one of the follow-
ing two conditions:
1.
 1¼ a1ra2r⋯raNrM=2.

2.
 1oa1ra2r⋯raNrM=2, gcdða1;…; aN ;MÞ ¼ 1 and

gcdðai;MÞ41 hold for each iAf1;…;Ng.

It gives all CSs of ZM .
Finally, we give an estimation for the lower bound of

the embedding distortion when M and N are fixed. The
estimation is straightforward. First, for kZ0, we define

Ek ¼ fðs1;…; sNÞAZN: s21þ⋯þs2N ¼ kg: ð12Þ
Then, we have the following estimation for the embedding
distortion.
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Theorem 2. Suppose TZ0 is the unique positive integer
satisfying

PT
k ¼ 0 jEkjoMrPTþ1

k ¼ 0 jEkj, where j � j means the
cardinal number of a set. Then, we have

EDZ
1

MN

XT
k ¼ 0

kjEkjþðTþ1Þ M�
XT
k ¼ 0

jEkj
 ! !

: ð13Þ

Proof. According to the definition of ED in (9), we need to
prove that

X
gAG

dgZ
XT
k ¼ 0

kjEkjþðTþ1Þ M�
XT
k ¼ 0

jEkj
 !

: ð14Þ

For every kZ0, consider the set Fk ¼ fgAG: dg ¼ kg, we
have G¼ [kZ0Fk andX
gAG

dg ¼
X
kZ0

X
gAFk

dg ¼
X
kZ0

kjFkj: ð15Þ

Notice that, for any g1ag2AG, Cg1 \ Cg2 ¼∅. Thus, the
mapping σk: Fk-Ek defined by taking σkðgÞ as an (arbi-
trary) element of Dg is an injective. It yields that jFkjr jEkj.
On the other hand, as

P
kZ0jFkj ¼ jGj ¼M, we have

X
kZ0

kjFkj�
XT
k ¼ 0

kjEkjþðTþ1Þ M�
XT
k ¼ 0

jEkj
 ! !

Z
XT
k ¼ 0

kjFkjþðTþ1Þ M�
XT
k ¼ 0

jFkj
 ! !

�
XT
k ¼ 0

kjEkjþðTþ1Þ M�
XT
k ¼ 0

jEkj
 ! !

¼
XT
k ¼ 0

ðTþ1�kÞðjEkj�jFkjÞZ0:

The theorem is finally proved according to the above equa-
tion and (14) and (15). □

By definition (12), we know that E0 ¼ fð0;…;0Þg and
E1 ¼ fðs1;…; sNÞAZN: si

¼ 71 for an index i; sj ¼ 0 for each ja ig: ð16Þ
Then we get jE0j ¼ 1 and jE1j ¼ 2C1

N ¼ 2N. As a result, for
MA ð1;1þ2N�, we have T¼0 and

EDZ
M�1
MN

: ð17Þ

With (17), we know that the embedding distortion can be
minimized for a CS if dgAf0;1g holds for every gAG.

For another example, as jE2j ¼ 2N2�2N, we have T¼1
for MAð1þ2N;1þ2N2�, and in this case,

EDZ2
M�N�1

MN
: ð18Þ

3. Examples of CS-based ME

Some examples of CS-based ME are presented in this
section. The comments and discussions are also given in the
context. Since the proposed CS-based ME only depends on
the group G and its CS A, and the detailed data embedding
and extraction procedures have already been given in the
previous section, we simply give here the definition of (G, A)
in each example. Moreover, at the end of this section, some
numerical results demonstrating the embedding perfor-
mance of CS-based ME are presented as well.

Example 1. According to (11), the proposed CS-based ME
includes binary ME [7,8,44–46] and ternary ME [8,10,11] as
special cases, by taking G as ZK

2 and ZK
3 , respectively. The

proposed general embedding scheme formally extends
these classical algorithms. For G¼ZK

2 , the matrix A can
be viewed as the PCM of a binary linear code C with length
N and dimension N�K . By this means, determining the set
Dg defined in (5) is equivalent to finding a coset leader, i.e.,
the vector in the coset which has the minimal Hamming
weight. Moreover, one can prove that ED¼ RaðCÞ=N, where
RaðCÞ is the average distance to code defined by

Ra Cð Þ ¼
P

gAGdisðg; CÞ
2K ð19Þ

with disðg; CÞ ¼mincACjg�cj which is the distance from g
to C. It should be mentioned that the problem of minimiz-
ing ED (equivalently, minimizing the average distance to
code) is different from the covering radius problem exten-
sively studied in coding theory [47]. The latter aims at
minimizing the covering radius RðCÞ which is defined by

RðCÞ ¼max
gAG

disðg; CÞ: ð20Þ

For a given G, finding the optimal CS, i.e., the CS minimiz-
ing ED, is a new and challenging problem. For G¼ZK

2 or
ZK
3 , only some special cases have been solved for this

problem in some recent works [11,48,49].

Example 2. The SDCS-based steganography [13–15] is a
special case of the proposed CS-based ME. For SDCS-based
steganography, the maximum modification to each image
pixel value is limited to 1, and it extends the classical LSB
matching and Mielikainen's method [12] by achieving higher
embedding efficiency. The CS-based ME is degraded to SDCS-
based steganography if taking G¼ZM and restricting
siAf0; 71g in (2). Moreover, it should be mentioned that,
in [50], a new steganographic method is proposed by Lisoněk
using the sum covers of a cyclic group. This approach is
exactly the same as the one based on SDCS.

Example 3. In [43], Hong and Chen proposed a new data
hiding method based on the so-called pixel pair matching
(PPM). The basic idea of PPM is to use the values of pixel
pair as a reference coordinate, and search a coordinate in
the neighborhood set of this pixel pair according to a given
message digit. The pixel pair is then replaced by the
searched coordinate to conceal the digit. As a matter of
fact, their method is just a specific case of CS-based ME
with G¼ZM and A¼ ða1; a2Þ where a1 is fixed as 1. Notice
that, according to Theorem 1 (see the subsequent discus-
sion part of this theorem), there are actually two types of
CSs for cyclic group. However, only the first type of CS with
the condition 1¼ a1ra2rM=2 is investigated in Hong
and Chen's method. The second type of CS, e.g., G¼Z12

and A¼ ð2;3Þ, is not taken into account in their work.

Example 4. We consider the case that Mr1þ2N in this
example. By taking G¼ ZM and A¼ ð1;…;NÞ, one can verify
that d0 ¼ 0 and dg¼1 for each ga0. Then, in this CS-based
ME, only one element of the cover sequence is modified at
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most by 1 in value. Thus, the similarity between cover and
stego data measured by embedding change is well guar-
anteed. Moreover, according to (17), this CS-based ME is
optimal in the sense that the embedding distortion is
minimized for fixed (M, N). When taking M¼ 1þ2N in this
example, it is in fact the EMD method of Zhang and Wang
[16] and the grid coloring steganography of Fridrich and
Lisoněk [51].

Example 5. As a continuation of the previous example, we
consider here a little more difficult case with 1þ2No
Mr1þ2N2. By the CS-based ME of this example, only two
elements of the cover sequence are modified at most by 1 in
value, and the similarity between cover and stego data is also
well guaranteed. We first consider the case that
1þ2NoMrN2þ3N�1. In this case, we take G¼ZM and
A¼ ð1;2;…; k;3k;5kþ1;…; ð2mþ1Þkþm�1Þ, where kþ
m¼N and k40. With this example, one can verify that it
is optimal by taking a proper k. We now consider the case
that M¼ 4

3N
2þO Nð Þ. This construction is inspired by our

previous work [13] (see Theorem 1 of [13]). For convenience,
denote here ða; dÞk a k term arithmetic progression
a; aþd;…; aþðk�1Þd. Then, we take G¼ ZM and consider
that A is composed of three arithmetic progressions
ða1; d1Þk1 , ða2; d2Þk2 and ða3; d3Þk3 . Next, we take
�
 if N� 0ðmod 3Þ: ða1; d1Þ ¼ ð1;1Þ, ða2; d2Þ ¼ ðN=3þ1;2N
þ3Þ, ða3; d3Þ ¼ ð5N=3þ1;2Nþ1Þ, and k1 ¼ k2 ¼ k3 ¼
N=3;
�
 if N� 1ðmod 3Þ: ða1; d1Þ ¼ ð1;2Þ, ða2;d2Þ ¼ ð2ðN�1Þ=
3þ1;2Nþ3Þ, ða3; d3Þ ¼ ð4ðN�1Þ=3þ2;2N�1Þ, and
k1 ¼ k2 ¼ ðN�1Þ=3 and k3 ¼ ðN�1Þ=3þ1;
�
 if N� 2ðmod 3Þ: ða1; d1Þ ¼ ð1;1Þ, ða2; d2Þ ¼ ððNþ1Þ=
3;2Nþ1Þ, ða3; d3Þ ¼ ð5ðNþ1Þ=3�2;2N�1Þ, and k1 ¼ ðN
�2Þ=3 and k2 ¼ k3 ¼ ðNþ1Þ=3.

Finally, with this choice of A, one can verify that it is an
optimal CS of ZM where M is

4
3N

2þ4
3Nþ1 if N� 0;2 ðmod 3Þ

ð2Nþ1Þ2=3 if N� 1ðmod 3Þ:

(
ð21Þ

According to the above construction, for G¼ ZM with order
M¼ 4

3N
2þO Nð Þ, we know that there exists a CS

A¼ ða1;…; aNÞ such that each element of G can be written
as siaiþsjaj with ai; ajAf0; 71g. In other words, each
element of ZM can be represented by the sum or difference
of at most two elements of A. For a fixed N, denote λN as
the largest integer M such that ZM contains such a CS.
Then, λNZ4

3N
2þO Nð Þ. On the other hand, we clearly have

λNr1þ2N2. Based on this discussion, a natural problem
is, what is the asymptotic expression of λN when N-þ1?
Or, in a weak sense, can we determine two constants C1
and C2 such that C1N

2rλNrC2N
2 holds for a sufficient

large N? This problem is difficult and we cannot give a
response even for the extreme case where M¼ 1þ2N2. It
is an interesting problem for the future work. Moreover,
we remark that the sum or difference covers of finite
abelian group are also studied in the literature [13,52–56],
in which one concerns to cover the group G by either
AþA¼ faiþaj: ai; ajAAg or A�A¼ fai�aj: ai; ajAAg for a
subset A	 G. For the minimal sum or difference covers
problem, i.e., finding the set A with minimal cardinal
number such that G¼ AþA or G¼ A�A holds, only some
numerical results are known and it lacks solid
theoretical study.

Example 6. In this example, we use the q-ary notational
system to construct CS. We take G¼ZqN and A¼
ðq0; q1;…; qN�1Þ, where q is a positive odd number. Notice
that, for any integer gA ½�ðqN�1Þ=2; ðqN�1Þ=2�, it can be
uniquely represented by g ¼ PN

i ¼ 1 siq
i�1 with siAf0; 7

1;…; 7 ðq�1Þ=2g. Thus, the sequence A is a CS of G. The
corresponding embedding rate and distortion can be
computed as ER¼ log2q and ED¼ ðq2�1Þ=12. With this
example, a high embedding rate can be achieved by taking
a large q.

Example 7. We consider the CS composed of prime
numbers, i.e., we take G¼ZM and A¼ ða1;…; aNÞ where
ai is the ith prime number less than M=2. According to the
classical theorem describing the asymptotic distribution of
prime numbers, we have N
M=2=logðM=2Þ. On the other
hand, according to Vinogradov's theorem (each odd inte-
ger no less than 7 can be written as a sum of three prime
numbers), we know that for each odd integer gAG, it can
be written as the forms of 7ð3aiÞ, 7ð2aiþajÞ, or
7ðaiþajþakÞ. Moreover, since Goldbach's conjecture is
verified true for sufficient large even numbers (about
4�1018) and generally assumed to be true, for each even
integer gAG, it can be written as the forms of 7 ð2aiÞ or
7ðaiþajÞ. As a result, A is a CS of G with dgr9 holds for
each gAG.

Example 8. This example is somewhat similar to the
previous one. In number theory, Waring's problem, pro-
posed in 1770 by Edward Waring, asks whether for every
natural number k there exists an associated positive
integer s such that every natural number is the sum of at
most s kth powers of natural numbers. The response is
positive and it is firstly proved by David Hilbert in 1909.
For every kZ1, we denote by f(k) the minimum number of
kth powers needed to represent all integers, for examples,
f ð1Þ ¼ 1, f ð2Þ ¼ 4, and f ð3Þ ¼ 9. In this light, the set of
powers of natural numbers can lead to a CS. Specifically,
we take G¼ ZM , A¼ ða1;…; aNÞ where ai ¼ ik and N is
determined such that Nk is the largest kth power less than
M=2. According to Hilbert–Waring's theorem, A is a CS of G
with dgr f ðkÞ2. By Examples 7 and 8, we see a connection
between two different scientific domains, information
hiding and number theory. We believe that advanced
results in number theory may provide advisable designs
in steganography, and it should be investigated in the
future work.

Example 9. In this example, by exhaustive search con-
sidering all non-isomorphic finite abelian groups of small
order, all optimal CSs are computed for 2rNr5 and
4rMr100. For given M and N, in most cases, there is a
CS A of the cyclic group ZM such that ðZM ;AÞ leads to an
optimal embedding where the distortion is minimized
among all possible choices of (G, A). The exceptions where
(G, A) is optimal with (1) GaZM , (2) ðZM ;AÞ is not optimal
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for each CS A of ZM are listed in Table 1. The cyclic group
and its CS can lead to optimal embedding in most tested
cases, however, with limited experimental results and
without theoretical analysis, the impact of the group
structure on the embedding performance is still unclear.

Example 10. In this example, we give a CS based on a
specific matrix construction using the PCM of convolu-
tional q-ary codes. Our idea derives from the previous
works of syndrome-trellis-based decoding [42,57]. Speci-
fically, for a positive odd number q, we take G¼ ZK

q and the
K � N matrix ðai;jÞ (see (11)) as the following form, by
placing respectively two a� b sub-matrices A1 and A2

along its main and minor diagonals

A1 …
A2 A1 …

A2 A1 …
… … … … … …

… A1

… A2 A1

0
BBBBBBBBB@

1
CCCCCCCCCA

ð22Þ

where A1 is in systematic form as (I, R), I is an identical
matrix of a� a and R is an a� ðb�aÞ matrix. The non-
singularity of A1 ensures that (11) has a solution for every
g¼ ðg1;…; gK ÞAG. And, using the syndrome-trellis-based
decoding methods [42,57], the computation complexity
for processing one pixel in data embedding procedure is
Oðq2aþ1Þ and thus q and a should be small. Suppose that
Table 1
Exceptional optimal (G, A). Here, “exceptional” means that GaZM and,
for given M and N, ðZM ;AÞ is not optimal for each CS A of ZM .

(N, M) G A ER EE

(2,60) Z2
2 � Z3 � Z5 1 0

0 1
1 2
1 1

0
BBB@

1
CCCA

2.9534 0.6111

(2,92) Z2
2 � Z23 1 0

0 1
1 5

0
B@

1
CA

3.2618 0.4413

(3,64) Z2 � Z32 1 0 0
4 1 14

� �
2.0000 1.5868

(3,81) Z2
9

1 0 2
0 1 4

� �
2.1133 1.4506

(3,84) Z2
2 � Z3 � Z7 1 0 0

0 0 1
0 1 2
1 1 1

0
BBB@

1
CCCA

2.1308 1.4056

(4,36) Z2
3 � Z4 1 0 0 1

0 0 1 2
0 1 1 1

0
B@

1
CA

1.2925 2.8633

(4,48) Z2 � Z3 � Z8 0 0 1 0
1 0 1 1
0 1 1 3

0
B@

1
CA

1.3962 2.6542

(4,98) Z2 � Z2
7 1 1 1 1

0 1 2 3
1 0 3 5

0
B@

1
CA

1.6537 2.1974

(5,60) Z2
2 � Z3 � Z5 0 1 0 1 0

0 0 1 0 1
1 0 0 1 2
0 1 1 2 2

0
BBB@

1
CCCA

1.1814 3.0035
the number of matrix A1 in the main diagonal is k, we then
have N¼kb and K¼ka, and the embedding rate is clearly

log2 M
N

¼ K
N
log2 q¼

a
b
log2q: ð23Þ

The embedding rate is fixed whatever k is. However, for
the distortion, one has a desirable property when increas-
ing k. Denote for convenience the embedding distortion as
EDk, then we have, for any k1; k2Z2

EDk1 þk2 r
k1

k1þk2
EDk1 þ

k2
k1þk2

EDk2 : ð24Þ

By taking k1 ¼ k2 ¼ k, (24) yields that

ED2krEDk: ð25Þ
It says, the distortion is either unchanged or decreased by
doubling k. This property guarantees the validity of emp-
loying large k. See appendix for the proof of (24).

Finally, before closing this section, some preliminary
numerical results illustrating the performance of CS-based
ME are reported. We give the embedding rate versus
embedding efficiency in Fig. 1, for the following CSs:
�

Fi
M
th
The CS presented in Example 4, where G¼Z1þ2N and
A¼ ð1;…;NÞ. This CS-based ME is just the EMD embed-
ding method [16] and the grid coloring steganography
[51].
�
 The CS presented in Example 5, where G¼ZM with M
defined in (21) and A composed of the three arithmetic
progressions. These CSs are based on our previouswork [13].
�
 The CS presented in Example 7 using prime numbers,
where G¼ZM and A¼ ða1;…; aNÞ with ai as the ith prime
number less than M=2. For example, A¼ ð2;3;5;7Þ when
M¼16.
�
 The CS presented in Example 8 using square numbers,
where G¼ ZM and A¼ ða1;…; aNÞ with ai ¼ i2rM=2.
For example, A¼ ð1;4;9Þ when M¼25.
�
 The CS presented in Example 8 using cubic numbers,
where G¼ ZM and A¼ ða1;…; aNÞ with ai ¼ i3rM=2.
For example, A¼ ð1;8;27;64;125Þ when M¼256.
�
 The optimal ðZM ;AÞ with NAf2;3;4g and MA
f2;…;22Ng. In this case, for each (N, M), according to
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Table 3

Optimal CS of ZM for N¼3 and MAf2;…;26g.

M Optimal CS ER EE
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Theorem 1, all CSs sized N of ZM are tested to get the
optimal one such that the distortion is minimized. For
reference, the optimal CS of ZM for NAf2;3g and
MAf2;…;22Ng are listed in Tables 2 and 3.
�

2 (1,1,1) 0.3333 2.0000
3 (1,1,1) 0.5283 2.3774
4 (1,1,2) 0.6666 2.6666
5 (1,1,2) 0.7739 2.9024
The CS composed of powers of 3 with an embedding rate
of 1, i.e., we take G¼ Z2N with the specific CS
A¼ ð30;31;…;3N�1Þ. This CS-based ME is previously
presented in our work of SDCS-based steganography [14].
6 (1,2,3) 0.8616 3.1019
�

7 (1,2,3) 0.9357 3.2752
8 (1,2,3) 1.0000 3.0000
9 (1,2,3) 1.0566 2.8529

10 (1,2,3) 1.1073 2.7682
11 (1,2,3) 1.1531 2.7181
12 (1,2,4) 1.1949 2.6887
13 (1,2,4) 1.2334 2.6725
14 (1,2,5) 1.2691 2.6651
15 (1,2,5) 1.3022 2.6637
The CSs presented in Example 10. Here, k is fixed as 210.
And, we take q¼3 with aAf2;3;4;5g, q¼5 with
aAf2;3;4g, q¼7 with aAf2;3g, and bZaþ1. For each
ðq; a; bÞ, the sub-matrices A1 and A2 are randomly
selected for 100 times, and the embedding distortion
is averaged as the final result. This type of CS is
motivated by the syndrome-trellis-codes-based stega-
nography [42] and the decoding method [57].
16 (1,2,6) 1.3333 2.6666
17 (1,2,6) 1.3624 2.6725
18 (1,2,6) 1.3899 2.5882
19 (1,2,6) 1.4159 2.5222
20 (2,5,6) 1.4406 2.5423
21 (1,3,8) 1.4641 2.5621
22 (1,3,8) 1.4864 2.4526
23 (1,3,8) 1.5078 2.4771
24 (1,3,8) 1.5283 2.4453
25 (1,3,8) 1.5479 2.4186
26 (1,3,9) 1.5668 2.3963
27 (1,3,9) 1.5849 2.3774
28 (1,3,9) 1.6024 2.2434
29 (1,3,9) 1.6193 2.2012
30 (3,5,9) 1.6356 2.1971
31 (1,3,11) 1.6513 2.1330
32 (1,4,10) 1.6666 2.0779
33 (1,6,15) 1.6814 2.0808
34 (1,3,13) 1.6958 1.9882
35 (1,11,16) 1.7097 2.0400
36 (4,6,9) 1.7233 1.9799
37 (1,3,14) 1.7364 1.9274
38 (1,6,9) 1.7493 1.8992
39 (1,12,18) 1.7618 1.9086
40 (1,4,14) 1.7739 1.8673
41 (1,5,13) 1.7858 1.8615
42 (2,15,18) 1.7974 1.8412
43 (1,3,17) 1.8087 1.7948
44 (1,14,20) 1.8198 1.8061
45 (1,4,17) 1.8306 1.7908
46 (1,8,12) 1.8411 1.7768
Also, for a better illustration, the theoretical upper bound
of “71 embedding” is plotted as well in this figure. The
“71 embedding” means that in the embedding process,
each pixel value is allowed to be modified at most by 1
[58]. According to this figure, one can observe that the
CS-based ME can provide different embedding efficiencies
based on different CS constructions. However, both the
presented CS-based ME can provide good embedding
efficiencies. For example, when the embedding rate is 1,
the embedding efficiency of LSB matching and Mielikai-
nen's method [12] is 2 and 8/3, respectively. However, with
the CS-based ME using cubic numbers, one can get an
efficiency of 3.08 for M¼4096. With the CS-based ME
using powers of 3, one can get an efficiency of 3.65 when
N¼26. And, for the CS-based ME of Example 10 with
ðq; a; b; kÞ ¼ ð3;5;8;210Þ, one can get an efficiency as large
as 4.10. Moreover, one can also observe that the CS-based
ME of Example 10 can approach the theoretical upper
bound of 71 embedding, and for a sufficient large
embedding rate (see the red rectangle between the
embedding rates 1.5 and 1.6), it can provide an even larger
efficiency. For the latter case, q¼5 and the maximum
modification to cover pixels is 2.
le 2

imal CS of ZM for N¼2 and MAf2;…;24g.

optimal CS ER EE

2 (1,1) 0.5000 2.0000
3 (1,1) 0.7924 2.3774
4 (1,2) 1.0000 2.6666
5 (1,2) 1.1609 2.9024
6 (1,2) 1.2924 2.5849
7 (1,2) 1.4036 2.4564
8 (1,3) 1.5000 2.4000
9 (1,3) 1.5849 2.3774
0 (1,3) 1.6609 1.9540
1 (1,3) 1.7297 1.9026
2 (2,3) 1.7924 1.7924
3 (1,5) 1.8502 1.7180
4 (1,4) 1.9036 1.6152
5 (1,4) 1.9534 1.5421
6 (1,6) 2.0000 1.4883

47 (1,4,18) 1.8515 1.7639
48 (1,4,18) 1.8616 1.7407
49 (1,4,14) 1.8715 1.7195
50 (1,8,12) 1.8812 1.7312
51 (1,4,15) 1.8908 1.7017
52 (2,10,13) 1.9001 1.7035
53 (1,4,21) 1.9093 1.6865
54 (1,4,20) 1.9182 1.6707
55 (1,5,21) 1.9271 1.6913
56 (1,5,18) 1.9357 1.6508
57 (1,5,22) 1.9442 1.6459
58 (1,4,16) 1.9526 1.6334
59 (1,5,17) 1.9608 1.6218
60 (1,22,26) 1.9689 1.6183
61 (1,4,17) 1.9769 1.6007
62 (1,5,18) 1.9847 1.6120
63 (1,5,25) 1.9924 1.6092
64 (1,7,18) 2.0000 1.5802
In summary, with these primary constructions of CS,
the CS-based ME can provide high embedding efficiency
and lead to secure steganography.
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4. Conclusion

In this work, a general framework for ME based on CS
in finite abelian group is proposed. It includes many
previous works such as the conventional ME (binary and
ternary) and SDCS-based steganography as special cases.
The proposed CS-based ME formally extended these clas-
sical steganographic methods. This work is a summariza-
tion and extension of the previous works.

However, this paper is just a beginning work of CS-based
ME, and only some specific examples and preliminary
numerical results are presented. There are many subsequent
works for the future research, for examples:
(1)
 Besides the presented CSs, how to construct specific
(G, A) such that there exists a fast encoding method
(i.e., finding an element of Dg) and meanwhile a high
embedding efficiency can be achieved?
(2)
 For a given (M, N) (in this case, the embedding rate is
fixed), how to determine the optimal (G, A) such that
the embedding distortion is minimized?
(3)
 Consider a non-cyclic group G in Smith canonical form
or a direct product of cyclic groups of prime power
order, what is the necessary and sufficient condition
that a sequence A is a CS of G?
(4)
 What is the impact of the group structure on the
embedding performance? For example, for two non-
isomorphic groups Z3K and ZK

3 , do they have the same
embedding distortion? Or, in a more general case, in
what conditions, the two groups Z∏K

i ¼ 1qi
and Zq1 �

⋯ � ZqK have the same embedding distortion.

(5)
 How to construct good (G, A) such that siAf0; 71g and

dgrT hold? Here, T is a given threshold. In this case,
each pixel value is modified at most by 1 and the total
distortion for N pixels is restrained by T. In particular,
does there exist a (G, A) with M¼ 1þ2N2 such that for
each gAG, it can be written as siaiþsjaj with ia j and
si; sjAf0; 71g?
More investigations on CS-based ME, including both
theoretical analysis and numerical contribution for practi-
cally efficient steganography, are expected. The interesting
theoretical problems related to CS-based ME are beyond
the steganography scope.
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Appendix A

We give the key points for the proof of (24).
For simplicity, we take k¼ k1þk2 and the matrix defined

in (22) as Mk. For a given g¼ ðg1;…; gkÞAZka
q with each

giAZa
q, suppose that a vector S¼ ðs1;…; skÞAZkb satisfying
MkS¼ g where each siAZb. Here, we use either row or
column vectors depending on the choice for convenience.
We then have, Mk1S

0 ¼ g0, where S0 ¼ ðs1;…; sk1 Þ and
g0 ¼ ðg1;…; gk1 Þ. Now, suppose that S0ADg0 (see (5)), i.e., S0

is the solution having the minimal l2-norm. In this case, we
can derive that Mk2S″¼ g″, where S″¼ ðsk1 þ1;…; skÞ and
g″¼ ðgk1 þ1�A2sk1 ; gk1 þ2;…; gkÞ. Then, by taking S″ADg″,
we have

dgrdg0 þdg″ ð26Þ

where dg is defined in (4). Notice that in the above equation,
dg, dg0 and dg″ correspond to the CSs (the matrices) Mk, Mk1
and Mk2 , respectively. Next, in (26), fixing g0 and summing up
every giAZa

q for each iAfk1þ1;…; kg, we can getX
g″AZ

k2a
q

dðg0 ;g″Þr
X

g″AZ
k2a
q

ðdg0 þdg″Þ ¼ qk2adg0 þ
X

g″AZ
k2a
q

dg″: ð27Þ

It yields thatX
gAZka

q

dg ¼
X

g0 AZ
k1a
q ;g″AZ

k2a
q

dðg0 ;g″Þrqk2a
X

g0 AZ
k1a
q

dg0 þqk1a
X

g″AZ
k2a
q

dg″:

ð28Þ
This completes the proof of (24) according to the definition of
embedding distortion in (9).
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