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Minimum Rate Prediction and Optimized
Histograms Modification for

Reversible Data Hiding
Xiaocheng Hu, Weiming Zhang, Xiaolong Li, and Nenghai Yu

Abstract— Prediction-error expansion (PEE)-based reversible
data hiding schemes consist of two steps. First, a sharp prediction-
error (PE) histogram is generated by utilizing pixel prediction
strategies. Second, secret messages are reversibly embedded
into the prediction-errors through expanding and shifting the
PE histogram. Previous PEE methods treat the two steps inde-
pendently while they either focus on pixel prediction to obtain a
sharp PE histogram, or aim at histogram modification to enhance
the embedding performance for a given PE histogram. This paper
propose a pixel prediction method based on the minimum rate
criterion for reversible data hiding, which establishes the con-
sistency between the two steps in essence. And correspondingly,
a novel optimized histograms modification scheme is presented
to approximate the optimal embedding performance on the
generated PE sequence. Experiments demonstrate that the pro-
posed method outperforms the previous state-of-art counterparts
significantly in terms of both the prediction accuracy and the final
embedding performance.

Index Terms— Prediction-error expansion, reversible data
hiding, minimum rate prediction, optimized histograms
modification.

I. INTRODUCTION

REVERSIBLE data hiding (RDH) [1] is a special embed-
ding technique that ensures not only the embedded

messages be extracted precisely, but also the cover itself should
be restored losslessly. This important technique is widely used
in medical imagery [2], military imagery [3] and law forensics,
where the original cover is too precious to be damaged.
Moreover, it has been found that RDH can be quite helpful in
video error-concealment coding [4].

A plenty of RDH algorithms have been proposed in the
past decade. Until now, they roughly fall into three cate-
gories: the compression appending framework [3], the differ-
ence expansion (DE) [5], [6], [8] scheme and the histogram
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shift (HS) technique [9]. In fact, by applying DE or HS
to the residual parts of images instead, e.g., the prediction
errors (PE) [10]–[14], better performance can be achieved.
This extended method is called prediction-error expan-
sion (PEE), which is currently a research hot spot and the
most powerful technique of RDH.

Almost all state-of-art PEE algorithms consist of two steps.
The first step generates a PE sequence with small entropy,
i.e., the PE has a sharp histogram which usually can be realized
by utilizing kinds of pixel prediction strategies combined with
the sorting [11] or pixel selection [14] technique. The second
step reversibly embeds the message into the PE sequence by
modifying its histogram with methods like HS and DE.

As for the second step, the upper bound of the payload
for a fixed host sequence and a distortion constraint is given
by Kalker and Willems [15]. They formulated the RDH as a
special rate-distortion problem, and obtained the rate-distortion
function, i.e., the upper bound of the embedding rate under a
given distortion constraint �, as follows:

ρrev (�) = maximize{H (Y )}− H (X) (1)

where X and Y denote the random variables of the host signal
and the marked signal respectively. The maximum entropy is
over all transition probability matrices PY |X (y|x) satisfying
the distortion constraint

∑
x,y PX (x)PY |X (y|x)D(x, y) ≤ �.

The distortion metric D(x, y) is usually defined as the square
error distortion, D(x, y) = (x − y)2.

Therefore, to evaluate the capacity of RDH given the host
sequence, one can calculate the optimal transition probability
matrix PY |X (y|x) and then use it for guidance to approximate
the upper bound of the embedding capacity. Lin et al. [16]
proposed a method to estimate the optimal transition
probability PY |X (y|x), by which they can evaluate the
capacity (1) for distortion metrics such as square error
distortion or L1-Norm distortion. In [17], we proposed a
fast algorithm to estimate the optimal transition probability
PY |X (y|x) for both the distortion constrained problem (1)
and its dual problem, i.e., the embedding rate constrained
problem. Afterwards, by improving the recursive code
construction (RCC), we obtain the optimal embedding
method of RDH for binary host sequences [18], [19]
and general gray-scale host sequences [20] respectively.
Meanwhile we proved that RCC can approach the rate-
distortion bound (1) as long as the entropy encoder reaches
entropy, which establishes the equivalency between RDH and
lossless data compression.
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Thus to some extent, for the second step of PEE based
RDH schemes, i.e., the capacity approaching embedding for
a given PE sequence can be practically realized as discussed
above. But for the first step of PEE schemes, here comes one
nature problem. What is the optimal evaluation criteria for the
goodness of a prediction strategy?

Typical prediction methods either use a fixed neighborhood
average model [11], or a content adaptive predictor such
as the median edge detector (MED) [6], [7], the gradient
adjusted predictor (GAP) [23], [24] and the checker-
board based predictor (CBP) [22]. Minimum Mean Square
Error (MMSE) predictors are also designed to predict pixel
values for PEE schemes like the global optimal weight-based
predictor [25], or the recently proposed local-prediction-based
least square (LS) predictor [26], in which a distinct LS
predictor is calculated on a neighboring block for each pixel
individually.

Either fixed predictors, or content adaptive predictors, or
the LS predictors are aimed at generating a sharp PE his-
togram which is generally like a Laplace distribution. A sharp
histogram means a small entropy for the PE sequence, i.e.,
a small amount of information bits required to encode the PE
sequence. Observing from the rate-distortion formulation (1),
a small value of H (X) means more capacity exists in the
difference between the two entropies H (Y ) − H (X), and
thus better embedding performance can be achieved. But
intrinsically, these above pixel predictors expect to fit the
PE histogram to a single distribution like the Laplace or the
Gaussian distribution, which to a certain extent restricts them-
selves from decreasing the total information bits to encode the
PE sequence.

In [28], Matsuda et al. designed an adaptive pixel predictor
for lossless image coding based on the minimum rate criterion,
in which they aim to fit the prediction errors to a group
of fixed Gaussian probability models, and then a context-
adaptive arithmetic coding scheme is applied to encode the
prediction errors. Recently, Gui et al. [27] proposed a high
capacity adaptive embedding scheme based on generalized
prediction-error expansion where they classify the pixels into
several levels according to their neighborhood complexity
measurements, and then different amount of data bits are
assigned to different levels of pixels to be embedded. A rather
similar idea to split histogram and adaptively choosing the bins
of the histogram according to the embedding rate is introduced
recently by Caciula et al. [29].

In this paper, we propose a pixel prediction strategy for PEE
based reversible data hiding schemes based on the minimum
rate criterion, which was inspired by the lossless image cod-
ing methods in [28] and the context modeling of JPEG-LS
standard [7]. Instead of pursuing a single sharp PE histogram,
we design the pixel predictors for the sake of minimizing the
conditional entropy of the PE sequence by utilizing mixture
of Gaussian distributions. And correspondingly, a novel opti-
mized multiple histograms modification scheme is presented to
finally embed messages into the generated Gaussian mixture of
PE sequence, which automatically allocates different amount
of data into different groups of pixels like the schemes
in [27].

Fig. 1. Rhombus prediction pattern. The pixel value of u of the Cross set
is predicted by using its four neighboring pixels in the Dot set.

The rest of the paper is structured as follows. Section II-A
briefly introduces the PEE based reversible data hiding
schemes and the rate-distortion bound approaching embedding
realizations. The proposed minimum rate prediction method
is presented in Section III, followed by the novel optimized
histograms modification strategy in Section IV. Experimental
comparison results are demonstrated in Section V. And finally,
some discussions and conclusions are given in Section VI.

II. PREDICTION-ERROR EXPANSION AND OPTIMIZED

HISTOGRAM MODIFICATION

A. Prediction-Error Expansion

Typical PEE based schemes divide cover image pixels
into different parts, while a pixel of one part is predicted
by its neighboring pixels in other parts. For the rhombus
prediction pattern in Sachnev et al.’s double-layered embed-
ding method [11], all pixels are divided into two sets: the
Cross set and the Dot set (see Fig. 1). In the first round, the
Cross set is used for embedding data and Dot set for computing
predictions, while in the second round, the Dot set is used for
embedding and Cross set for computing predictions. Since the
two layers’ embedding processes are similar in nature, we only
take the Cross layer for illustration.

As shown in Fig. 1, the Cross pixels ui, j in the cover image
are collected into a sequence u = (u1, u2, · · · , un) from left
to right and from top to bottom. For each Cross pixel ui, j ,
the rhombus predicted value ûi, j is computed by averaging its
four nearest Dot pixels:

ûi, j = �vi, j−1 + vi+1, j + vi, j+1 + vi−1, j

4
� (2)

Then, by subtracting the predicted value ûi, j from the original
pixel value ui, j , we obtain the prediction-error sequence
e = (e1, e2, · · · , en). Afterwards, secret data are embedded
into the prediction-error sequence e through expanding and
shifting techniques. Details of the embedding and extraction
procedures for the standard PEE scheme are illustrated in [11].

B. Optimized Histogram Modification

Actually, for a given PE sequence, the upper bound of
the embedding rate under an input distortion constraint � is
given by (1). So instead of using the expanding and shifting
technique described in [11], Lin et al. [16] proposed a pixel by
pixel code construction to approach the rate distortion bounds
for distortion metrics like square error distortion or L1-Norm
distortion. And alternatively, by improving the recursive code
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Fig. 2. Prediction context of a Cross set pixel.

construction (RCC), we obtain the optimal embedding method
for general gray-scale PE sequences [20], which performs in
a bin by bin manner respectively.

In [16], Lin et al.’s optimal code construction needs the
estimated optimal marginal distribution PY (y) of the marked
signal as input, while in [17], we proposed a fast algorithm to
estimate the optimal marginal distribution PY (y) for both dis-
tortion constrained and rate constrained problems. Therefore,
to realize the optimal code construction practically, one can
first estimate the optimal marginal distribution PY (y) of the
marked signal, and then use Lin et al.’s code construction to
embed messages. For the rest of the paper, we name this com-
bined scheme as the optimized histogram modification (OHM),
in which it treats the input PE sequence as a single probability
distribution histogram.

Next we elaborate the OHM procedure to embed messages
into the Cross set pixels as shown in Fig. 1.

• Firstly, using the rhombus prediction strategy
in Section II-A, a prediction-error sequence
e = (e1, e2, · · · , en) is obtained from the Cross set
pixels, which acts as the host signal X in (1).

• Secondly, in order to minimize the embedding distortion
for a fixed length of message payload, run the fast algo-
rithm in [17] to estimate the optimal marginal distribution
PY (y) of the marked signal Y , i.e. the marked prediction-
error sequence e′ = (e′

1, e′
2, · · · , e′

n).
• Finally, according to the estimated marginal distribution

PY (y), by modifying the host PE sequence e to the
marked PE sequence e′ = (e′

1, e′
2, · · · , e′

n), messages
can be optimally embedded through Lin et al’s code
construction [16].

Another OHM scheme which behaves in a bin by bin
manner instead of Lin et al.’s pixel by pixel manner can be
found in our recent work [20].

III. MINIMUM-RATE PREDICTION

In [28], Matsuda et al. designed an adaptive pixel pre-
dictor for lossless image coding based on the minimum
rate criterion. Now we adapt the minimum rate criterion to
optimize pixel predictors for PEE based reversible data hiding
schemes. Firstly, like the scheme in Sachnev et al.’s method
[11], pixels in image I are divided into two sets, the Cross
set and the Dot set. Then for each pixel p0 in the cover
image, instead of predicting by averaging its four nearest
neighbors in Fig. 1, we adopt the linear combinations of its
K neighboring pixels for prediction. As shown in Fig. 2,

the prediction error e at the current Cross set pixel p0
is given by:

e = p0 −
K∑

k=1

ak · pk (3)

where pk(k = 0, 1, · · · , K ) are pixel values of the image I
and ak(k = 1, 2, · · · , K ) are the prediction coefficients. K
is the prediction order. The prediction coefficients ak are
optimized later for the image and the values of them are coded
as overhead information to be transmitted to the receiver side.

Assume that the probability distribution P(e) of the predic-
tion error e follows the simple zero mean Laplace form

P(e) = 1

2b
exp

(

−|e|
b

)

(4)

where b is the scale parameter.
From the information theory perspective, the average

bits L(e) required for encoding a value of e is given by

L(e) = − log2(P(e))

= − log2(
1

2b
) + log2 ε · |e|

b
(5)

while ε is the base of the natural logarithm. Consequently,
considering all the Cross set pixels in a certain image region R
of the image I, the total average bits on the prediction errors
can be estimated as:

J (R) =
∑

p0∈R

L(e)

= −
∑

p0∈R

log2(
1

2b
) +

∑

p0∈R

log2 ε · |e|
b

(6)

As a result, if we treat the whole image I as a large region,
the average information cost will be J (I).

Observing from (6), if the Laplace scale b is constant in
the certain image region R, the total information cost J (R)
will be determined by the sum of absolute of the prediction
errors because the first term of J (R) is a constant. Thus in
this case, the predictor which minimizes the information cost
function J (R) reduces to the L1-norm minimization solution,
which is similar to the least square (LS) predictors designed
for reversible data hiding [25], [26]. However, natural images
often contain kinds of textures and structures. Pixels in smooth
places are easy to predict while in complex places pixel
prediction becomes difficult. Thus the value of b should vary
from a small one to a big one, with respect to the local
contexts of different pixels. In order to chase the minimum
rate predictor for nature images, it is necessary to assign a
context adaptive value of b for each pixel individually.

A. Mixture of Probability Models

For all the Cross set pixels in a certain image region R,
instead of considering a single probability pattern, we assume
that the probability density function (PDF) of the prediction
error e can be modeled by the following generalized Gaussian
mixture:

Pn(e) = αn · exp
{−|η(sn, σn) · e|sn

}
(7)
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Fig. 3. Probability models of the prediction error e.

where αn is a normalizing factor which makes the probabilities
of all candidate prediction errors e sum to one. And the
function η(sn, σn) is given by

η(sn, σn) = 1

σn

√
Γ (3/sn)

Γ (1/sn)
(8)

Here Γ (·) is the gamma function, σn is the standard deviation
of e and sn is a shape parameter which controls the sharpness
of the PDF.

The region R consists of N probability model groups
gn(n = 1, 2, · · · , N) and the values of σn and sn in these
groups differ from one to another, which controls the shape
of the probability models as depicted in Fig. 3.

For the sake of conducting the group classification inside
each image region R, for each current pixel p0, a local adaptive
context parameter G is calculate as:

G =
∑

k=2,4,6,8,10,12

1

dk
· |ek| (9)

where dk is the Euclidean distance of the neighboring pixel
pk from the current pixel p0 as shown in Fig. 2, and ek is the
prediction error at the neighboring pixel pk . Roughly speaking,
the local adaptive parameter G measures the smoothness of
the neighboring context for the current pixel p0. So a small
value of G indicates a smooth neighborhood, and a large
value of G indicates a complex neighborhood like texture
places or structural places. Therefore if the current pixel p0
locates in a smooth context, mean a small value of G for
instance, we can expect that the value of σ for the prediction
error e at pixel p0 will also be small, and vice versa.

Afterwards, by comparing the value of the parameter G with
a set of thresholds {T1 ≤ T2 ≤ · · · ≤ TN−1}, we classify the
current pixel p0 into one of the N groups {g1, g2, · · · , gN }.
Specifically, if the parameter G of the current pixel p0 satisfies
the condition Tn−1 ≤ G < Tn(T0 = 0, TN = ∞), then we
decide that it belongs to the group gn .

According to (7), the amount of information L(e) required
for encoding a value of e can be now rewritten as:

Ln(e) = − log2(Pn(e))

= − log2 αn + log2 ε · | e

σn

√
Γ (3/sn)

Γ (1/sn)
|sn (10)

Fig. 4. Image blocks classification.

For a pixel classified into the group gn , (10) can be
simplified as follows:

Ln(e) = − log2 αn + log2 ε · | e

βn
|sn (11)

where βn is a group dependent constant given by

βn = σn/
√

Γ (3/sn)
Γ (1/sn)

.
As a result, in consideration of the group classification for

all the pixels in a certain image region R, the total average
information cost J (R) can be formulated by:

J (R) =
N∑

n=1

∑

p0∈gn

Ln(e)

=
N∑

n=1

∑

p0∈gn

{

− log2 αn + log2 ε · | e

βn
|sn

}

(12)

Here R = {g1 ∪ g2 ∪ · · · ∪ gN } means all the groups in the
image region R. Through minimizing the total information
cost J (R), we can estimate the predictor coefficients ak in (3)
for a certain image region R. Note that βn and sn in (11) are
positive parameters, so the estimation for the predictor ak can
be carried out through solving a weighted norm optimization
problem.

After minimizing the minimum rate predictor ak , the values
of the group thresholds Tn(n = 1, 2, · · · , N − 1) are further
optimized for a fixed set of σn and sn(n = 1, 2, · · · , N).
In essence, the thresholds optimization procedure is similar
to the Matrix Chain Multiplication problem, and thus can be
easily solved by utilizing the dynamic programing technique.

B. Adaptive Prediction Based on Block Classification

As stated before, nature images contain various kinds of
textures and structural components, global predictive coding
using a single predictor ak(i = 1, 2, · · · , K ) generally
performs not good enough. By exploiting non-local
self-similarities and structural information of image patches,
we partition the whole image I into S × S square blocks and
classify them into different M classes as depicted in Fig. 4.
Then for each class, we treat all of its owned image blocks
as a certain image region Rc, and a separate minimum rate
predictor ac

k(c = 1, 2, · · · , M) is estimated correspondingly.
Here c is the class index and M is the total number of
classes.
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Finally, for all the Cross set pixels in the whole image I,
the total information cost function J (I) is given by:

J (I) =
M∑

c=1

I (Rc) =
M∑

c=1

{
N∑

n=1

∑

p0∈(gn∪ Rc)

Ln(e)} (13)

It should be clear that for each image class Rc the group
thresholds Tn(n = 1, 2, · · · , N − 1) are different, but all the
image classes share the same groups of probability models
which are governed by the parameters σn and sn . So for the
rest of the paper, the class dependent group thresholds are
denoted by T c

n (n = 1, 2, · · · , N − 1) to avoid ambiguity.
Observing from (13), the image region classification

procedure is also iteratively optimized to minimize the total
average coding bits of the prediction errors in the whole
image I simultaneously. Specifically, for each image block
b j ( j = 1, 2, · · · , B), a class index b j is recorded for its
belonged class. Here B is the number of image blocks and
by default b j ∈ {1, 2, · · · , M}.

In comparison with the prediction coefficients ac
k and the

group thresholds T c
n (n = 1, 2, · · · , N −1), the total amount of

information bits to record the class indexes b j is roughly large.
Considering that the embedding modifications on the pixel
values for reversible data hiding is generally trivial, so after
embedding messages into the image pixels, we can optimize
the class indexes again and obtain another b′

j . By applying
entropy coding to the difference between b j and b′

j , the extra
bits to record the class indexes can be greatly reduced.

C. Embedding and Extracting

The overall Embedding and Extracting algorithms with
respect to minimizing J (I) for the Cross set pixels are
described as follows. Fig. 5 illustrates the one round opti-
mizing framework for the embedding procedure of the Cross
set pixels.

Embedding
1) Divide the image I into S × S square blocks

b j ( j = 1, 2, · · · , B) and classify them into M classes.
At the initialization stage, we run the K-means clustering
algorithm by treating all pixels in each block as a feature
vector, and the clustering results are used for the rough
classification.

2) Estimate the least square predictor ac
k for each class

region Rc as the initial predictors without probability
models classification.

3) Optimize the values of the group thresholds T c
n in each

image class region Rc respectively to minimize the
information cost J (Rc) for a given predictor ac

k and a
fixed set of σ 2

n and sn .
4) Classify each image block b j into the class Rc such

that J (b j )|b j ∈ Rc is the smallest among all the
classes. J (b j )|b j ∈ Rc means the information cost in
the block b j calculated by assuming that the block b j

belongs to class Rc. And then update the class index by
setting b j = c.

5) Optimize the shape parameter sn for each group proba-
bility model gn individually by chosen one of the values
from a fixed value set to minimize (13).

Fig. 5. One round embedding optimizing framework for Cross set pixels.

6) Optimize the minimum rate predictor ac
k for each class

Rc individually by minimizing (12).
7) Repeat the above procedures 3), 4), 5) and 6) until the

values of the group thresholds T c
n , the classification of

the image blocks and the optimization for the minimum
rate predictor converge. The maximal outer iteration
number is set to 50 by default.

8) Predict the image pixels using the estimated predictors
ac

k , probability group and image block class informa-
tions accordingly. And then embedding messages into
the prediction-errors e through the OHM embedding
scheme. Afterwards, repeat procedure 4) once again
using the modified pixel values and as a result obtain
the auxiliary class indexes b′

j .
9) Encode all the predictor coefficients ac

k , group thresh-
olds T c

n , shape parameters sn as well as the difference
between b j and b′

j , and then record the coded overhead
bit stream to the least significant bits (LSBs) of some
reserved pixels.
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Note here after the optimizing process, the prediction-error e
at each pixel is rounded down to embed message:

e = p0 − �
K∑

k=1

ac
k · pk� (14)

As for the overhead part which contains the predictor
coefficients and all the other parameters, we first estimate the
length of it, and then reserve enough pixels in the first couple
of lines in the image to be not processed during embedding.
The LSBs of these pixels are added to the message sequence
to be embedded later, after embedding is done, the overhead
part for the parameters are embedded into the reserved first
couple of lines by simple LSB replacement.

Extracting
1) Extract the coded overhead bit stream from the LSBs

of some reserved pixelsï¼Œ and then decode all the
predictor coefficients ac

k , group thresholds T c
n , shape

parameters sn , and the difference between b j and b′
j .

2) Repeat procedure 4) once again described in the Embed-
ding framework to obtain the auxiliary class indexes b′

j ,
and together with the decoded difference between
b j and b′

j , recover the original class indexes b j .

3) Predict the image pixels using the predictor parame-
ters ac

k , group and class informations respectively. And
then extracting message from the marked prediction-
errors e′

i through the OHM extracting scheme,
meanwhile restore the original image pixel values.

After estimating the optimized predictor for the Cross set
pixels, messages are embedded into the prediction errors of the
Cross set pixels. Next in the second round, another optimized
predictor is calculated again for the Dot set pixels while the
modified Cross set pixels are used for predicting. As for
the second round for the Dot set pixels, the embedding and
extracting procedures are nearly the same as the first round for
the Cross set pixels presented above. At the receiver side, the
extraction procedures act in a reverse order, the Dot set pixels
are recovered first, and the Cross set pixels are restored later in
the second extraction round. This double layered embedding
framework is adapted from Sachnev et al.’s work [11].

IV. OPTIMIZED HISTOGRAMS MODIFICATION

A. OHM-Single and OHM-Stitched Schemes

As described in Section II-B, after generating the PE
sequence by utilizing some pixel prediction strategies, the
second step of PEE based reversible data hiding can be opti-
mally conducted using the OHM method. For our minimum
rate prediction strategy, although we assume that the generated
PE sequence owns a mixture of probability model groups,
the OHM method can be directly applied to it for embedding
messages yet, if we treat the PE sequence as a single histogram
regardless of the group information. We denote this direct
OHM embedding scheme as OHM-Single.

Actually, the PE sequence generated by our minimum
rate prediction strategy contains a group of probability
distribution histograms {g1, g2, · · · , gN }. For each group
gn(n = 1, 2, · · · , N), we can run the OHM method to it and

Fig. 6. Comparison of histograms of test image Lena. (a) The single
histogram of Lena. (b) The stitched histogram of Lena.

get a corresponding rate distortion embedding performance.
Each group holds a different shape of histogram, which is
controlled by the parameters σ 2

n and sn as depicted in Fig. 3.
Generally, the shape of the histograms varies from a steep one
to a broad one, and thus for a fixed message payload, different
histogram performs differently while chosen for embedding.
As a result, a resource allocation problem arises naturally, how
to reasonably distribute the total message payload to these
groups of histograms so that an overall minimum distortion
embedding performance can be achieved?

Here we proposed a simple but effective solution to the
resource allocation problem arose above. For each gener-
ated histogram gn(n = 1, 2, · · · , N), we assign them an
offset value on(n = 1, 2, · · · , N). Then by translating each
histogram with their corresponding offset on along the x-axis
as depicted in Fig. 6(b), we stitch all the histograms to a big
histogram. The offset values on is uniquely decided so that
no overlap and vacant spaces occur between any two of the
histograms after stitched to a big histogram.

Afterwards, the OHM embedding method can be applied
to the stitched histogram, which will automatically decide
the message payload distribution proportion to each sub
histogram. We name this stitched histogram embedding
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scheme by OHM-Stitched respectively. For the purpose of
illustration, the single histogram and the stitched histogram
of the Cross pixels in the test image Lena are presented
in Fig. 6(a) and Fig. 6(b) accordingly.

B. Compressing Stitched Histogram for OHM-Stitched Scheme

For the OHM method described Section II-B, the frequency
histogram Fe = {t Pe(e)} of the original prediction errors e
needs to be transmitted to the receiver side. Here Pe(e)
is the normalized probability for the prediction error and t
is the total number of the prediction errors. At the sender
side, we compress the histogram Fe and embed it with LSB
replacements. At the receiver side, after recovering the prob-
ability distribution Pe(e) = {Fe/t} from the decompressed
histogram Fe, the recipient can estimate the optimal marginal
distribution PY (y), and then extract the message and restore
the cover simultaneously.

For the OHM-Single scheme as shown in Fig. 6(a), the
range of the possible prediction errors is not large, usually
0 to 90, and the shape of the histogram is unimodal. Thus
to compress the frequency histogram Fe, we can first employ
the differential pulse-code modulation (DPCM) technique to
it, and second entropy coding will be applied to the difference
values coming from the DPCM. In the experiments, the
average length of the coded bits of the frequency histogram
Fe for common natural images are nearly 800 to 1000.

Nevertheless, observing from Fig. 6(b), we can see that for
the OHM-Stitched scheme, the stitched histogram becomes
large. The max value along the x-axis of the frequency
histogram Fe increased to 450, and the shape of Fe turns
to a complicated multimodal form. So the conventional com-
pressing method for the OHM-Single scheme is not suited
here. Noted that for our minimum rate predictor, we expect
to fit the probability distribution of the prediction error e
to groups of generalized Gaussian models. Therefore, we
can simulate a stitched histogram F ′

e using the Gaussian
model parameters σn and sn and compare it to the actual
generated histogram Fe of the prediction errors. By just
compressing the difference between Fe and F ′

e through entropy
coding techniques combined with the quantization process,
the length of the coded bits of the frequency histogram for the
OHM-Stitched scheme can be efficiently reduced to the
OHM-Single scheme’s level. Fig. 7 draws the two stitched
histograms for test image Lena, where we can see that they
fit well to each other.

V. EXPERIMENTS

A. Pixel Value Predictors Comparison

Firstly, the proposed minimum rate prediction scheme for
PEE based RDH methods is compared to other six pre-
diction schemes, namely, the median edge detector (MED)
predictor [6], the simplified gradient adjusted (SGAP)
predictor [24], Sachnev et al.’s rhombus predictor [11], the
checkerboard based predictor (CBP) [22], the global least
square (LS) predictor [25], and the local-prediction-based (LP)
least square predictor [26]. TABLE I records the prediction

Fig. 7. Comparison between the generated stitched histogram and the
expected stitched histogram of test image Lena.

comparison results for various test grayscale images in terms
of MAE (mean absolute error), which is defined by:

M AE = 1

t
×

t∑

i=1

|ei | (15)

where t is the total number of pixels been predicted.
For the sake of simplicity, we just predict the Cross set

pixels for prediction accuracy comparisons. And for the LP
prediction method [26] which predicts simultaneously with
embedding, we did not embed messages while predicting.
It can be seen from TABLE I that our minimum rate prediction
strategy provides the best prediction accuracy among all the
competitors.

Alternatively, based on the minimum rate prediction and the
rate distortion formulation (1), we propose a new assessment
criteria for general prediction schemes for reversible data
hiding, which is called the mean histogram entropy (MHE).
The MHE criteria is defined by:

M H E = 1
∑N

n=1 ln

N∑

n=1

ln × H (Xn) (16)

where ln is the number of pixels belong to group n, and
H (Xn) is the entropy of the histogram of group n. N is the
number of histograms. If a prediction scheme assumes a single
probability model for the PE sequence, then MHE equals
to the conventional entropy function H (X). The prediction
comparison results for various test grayscale images in terms
of MHE are illustrated in TABLE II. Note here for our
proposed minimum rate predictor, both the MHE values of the
OHM-Single scheme and OHM-Stitched scheme are listed.

Observing from TABLE II, our minimum rate predictor
provides the best prediction accuracy among all the competi-
tors in term of the new MHE criteria, which agrees with the
MAE results in TABLE I.

B. Embedding Performance Comparison

Next, to demonstrate that the MHE criteria directly indicates
the embedding performance of PEE based RDH methods, we
compare our proposed double-layered (the Cross set pixels
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TABLE I

ONE ROUND PREDICTION ACCURACY (MAE) COMPARISONS

TABLE II

ONE ROUND PREDICTION ACCURACY (MHE) COMPARISONS

TABLE III

VALUE OF THE STANDARD DEVIATION σn IN THE n-TH PROBABILITY MODEL GROUP

layer and the Dot set pixels layer) OHM-Single scheme and
OHM-Stitched scheme to the local-prediction-based (LP) PEE
scheme proposed in [26], and the classical PEE technique
in [11] combined with our proposed minimum rate predictor,
which is denoted by PEE-MRP. Six standard grayscale images
are tested, namely Lena, Barbara, Baboon, Airplane, Boat, and
Gold-Hill.

For our OHM-Single and OHM-Stitched schemes, the
prediction order in Section III is set with K = 16, the
number of groups in Section III-A and number of classes
in Section III-B is set with N = 16 and M = 16. The
parameters σn , which corresponds to the standard deviation
of prediction errors in each probability model group, is
fixed for all test images. TABLE III shows the values of
σn(n = 1, 2, · · · , N) used in our experiments. The shape
parameters sn in each group is optimized by chosen one of
the values in the following value set:

V = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6,

1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2} (17)

The block size for image region classification in Section III-B
is set by S = 16.

As for the LP [26] method, the local block size is set with
12×12, the prediction order and prediction pattern is the same
as ours, which is shown in Fig. 2. The LP method performs
pixel predicting and message embedding simultaneously, so
the OHM scheme cannot apply to it because the OHM needs
the histogram of the PE sequence before embedding. The rate
distortion comparison results for the four methods are depicted
in Fig. 8.

Observing form Fig. 8, just provided by our minimum
rate predictor, the overall gain of the PEE-MRP scheme
compared with the LP method is not obvious, nearly 0.2dB
to 0.3dB. And due to the extra overhead of our minimum
rate predictor, the PEE-MRP scheme performs not well in
low embedding rate cases. But intrinsically, the LP method
embeds messages and predicts pixels one after the other,
which restricts itself from using the sorting technique in
Sachnev et al.’s method [11], let alone the OHM embedding
scheme.

As for our OHM-Single method, an average 1.0dB PSNR
gain is earned compared with the LP method. And for our
OHM-Stitched method, the gains of PSNR is much higher,
about 2dB to 2.5dB on average, especially under high embed-
ding rates. Both of this indicate that to some extent, the
minimum rate prediction strategy for PEE based RDH method
establishes the consistency between the two steps of RDH
in essence.

Recently, Gui et al. [27] proposed a high capacity
adaptive embedding scheme based on generalized prediction-
error expansion. They classify the cover image pixels into
several levels according to their neighborhood complex-
ity measurement, and different amount of data bits are
assigned to different levels of pixels to be embedded. Smooth
region pixels embed more message bits while complex
texture region pixels embed less, which to some extent
behaves similarly to our mixture of group probability models.
We compare our OHM-Single scheme and OHM-Stitched
scheme to Gui et al.’s method [27] for four standard grayscale
images: Lena, Baboon, Barbara, and Airplane. Embedding
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Fig. 8. Embedding performance comparisons with LP [26] and PEE-MRP. (a) Lena. (b) Baboon. (c) Barbara. (d) Airplane. (e) Boat. (f) Gold-Hill.

performance comparisons under both low embedding rates and
high embedding rates are given in Fig. 9.

Seeing from Fig. 9, we note that our OHM-Single and
OHM-Stitched schemes perform bad for low embedding rates
in comparison with Gui et al.’s method [27]. The reason is that
our proposed minimum rate prediction scheme has to record

the predictor parameters ac
k , group thresholds T c

n , and the class
index information for each image block, the total overhead
length for them is nearly about 0.03 bpp to 0.04 bpp for
each image. Thus under the low embedding rate scenarios,
our proposed schemes’ performance are overwhelmed by the
extra overhead information bits. While the embedding rate
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Fig. 9. Embedding performance comparisons with Gui et al. [27]. (a) Lena. (b) Lena. (c) Baboon. (d) Baboon. (e) Barbara. (f) Barbara. (g) Airplane.
(h) Airplane.

grows, our OHM-Single and OHM-Stitched schemes’ superior
performance appears correspondingly as shown in Fig. 9.

To make it simple, for the parameters like the number of
predictors K , the number of histograms N , the variances of

these histograms σn and the corresponding shapes sn , we just
choose a fixed setting of values for all the test image. Actually,
a wise and efficient scheme would be to adaptively choose
or estimate these parameters for different kinds of images.
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For instance, a smooth picture which contains a single
texture pattern will favor less number of histograms and small
variances. While for a complex picture which contains many
structures and textures, more number of histograms and large
variances are preferred. This subject is of much interest and
value for us to be covered in our later research work.

VI. CONCLUSION

This paper propose a pixel prediction method for PEE based
reversible data hiding schemes based on the minimum rate
criterion, which establishes the consistency in essence between
the two steps of PEE based reversible data hiding schemes.
Previous PEE methods treat the two steps independently while
they either focus on pixel prediction to obtain a sharp PE
histogram, or aim at histogram modification to enhance the
embedding performance for a given PE histogram. And corre-
spondingly, a novel optimized histograms modification scheme
is presented to achieve the optimal embedding performance
on the generated PE sequence. Experiments demonstrate that
the proposed method outperforms the previous state-of-art
counterparts significantly in terms of both the prediction accu-
racy and the final embedding performance. Some theoretical
analysis and proofs may be covered in our future work.
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