
40

Secure Nonlocal Denoising in Outsourced Images

XIANJUN HU, WEIMING ZHANG, KE LI, HONGGANG HU, and NENGHAI YU,
University of Science and Technology of China

Signal processing in the encrypted domain becomes a desired technique to protect privacy of outsourced data
in cloud. In this article, we propose a double-cipher scheme to implement nonlocal means (NLM) denoising
in encrypted images. In this scheme, one ciphertext is generated by the Paillier scheme, which enables the
mean filter, and the other is obtained by a privacy-preserving transform, which enables the nonlocal search.
By the privacy-preserving transform, the cloud server can search the similar pixel blocks in the ciphertexts
with the same speed as in the plaintexts; thus, the proposed method can be executed fast. To enhance the
security, we randomly permutate both ciphertexts. To reduce the denoising complexity caused by random
permutation, a random NLM method is exploited in the encrypted domain. The experimental results show
that the quality of denoised images in the encrypted domain is comparable to that obtained in the plain
domain.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms: Security

Additional Key Words and Phrases: Image denoising, Johnson-Lindenstrauss transform, nonlocal means,
Paillier homomorphic encryption

ACM Reference Format:
Xianjun Hu, Weiming Zhang, Ke Li, Honggang Hu, and Nenghai Yu. 2016. Secure nonlocal denoising
in outsourced images. ACM Trans. Multimedia Comput. Commun. Appl. 12, 3, Article 40 (March 2016),
23 pages.
DOI: http://dx.doi.org/10.1145/2886777

1. INTRODUCTION

The computable cloud is now prevalent in our daily life, in which customers can re-
motely store their data to enjoy convenient and effective services [Mell and Grance
2009]. Increasingly sensitive information such as e-mails and finance data are pro-
fessionally maintained in data centers. They face many basic challenges such as se-
curity [Ren et al. 2012], though outsourcing data storage and processing are quite
promising. In fact, many corporations and companies are still reluctant to outsource
their data to a cloud server, concerned that their data may be leaked or a cloud server

This work was supported in part by the National Natural Science Foundation of China under Grant 61572452
and Grant 61170234, in part by the Strategic Priority Research Program through the Chinese Academy of Sci-
ences under Grant XDA06030601, in part by the National Natural Science Foundation of China (61271271,
61522210), 100 Talents Program of Chinese Academy of Sciences, and the Fundamental Research Funds for
the Central Universities in China (WK2101020005).
Authors’ addresses: X. Hu, W. Zhang, K. Li, H. Hu, and N. Yu, Key Laboratory of Electromagnetic Space In-
formation, Chinese Academy of Sciences, School of Information Science and Technology, University of Science
and Technology of China, Hefei, 230027, China; emails: hxj2012@mail.ustc.edu.cn, zhangwm@ustc.edu.cn,
lee0525@mail.ustc.edu.cn, hghu2005@ustc.edu.cn, ynh@ustc.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1551-6857/2016/03-ART40 $15.00
DOI: http://dx.doi.org/10.1145/2886777

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.

http://dx.doi.org/10.1145/2886777
http://dx.doi.org/10.1145/2886777


40:2 X. Hu et al.

could abuse their data. Thus, it is necessary for sensitive data to be encrypted for data
privacy.

This leads to a need for techniques of signal processing on encrypted data, which
obviously is a difficult problem, because we must have a secure encryption scheme
or a protocol that allows computations in the encrypted domain [Lagendijk et al.
2013]. Rivest et al. [1978] proposed solving this problem by a scheme called homo-
morphic encryption, which keeps the algebraic relations between plaintexts and ci-
phertexts. Later, several homomorphic encryption schemes [ElGamal 1985; Paillier
1999; Damgård and Jurik 2001] were presented, which process encrypted data with
only one homomorphic property, such as addition or multiplication. For instance, the
Paillier scheme [1999] has additive homomorphism, which means that one can per-
form the addition of two plaintext signals by multiplying two corresponding encrypted
signals. A scheme is called full homomorphic encryption (FHE) if it enables additive
and multiplicative homomorphisms at the same time. The first secure FHE scheme
was proposed in Gentry [2009], which, from a theoretical perspective, can solve any
privacy-preserving computational problem. However, due to the huge computational
complexity and ciphertext expansion, the FHE scheme is too inefficient to be applied
in practice, even though great improvements have been made [Brakerski et al. 2012;
Aguilar-Melchor et al. 2013; Zhou and Wornell 2014]. So far, additive homomorphic
encryption is still the most popular scheme used by the privacy-protection community.
Based on additive homomorphic encryption, some linear computations have been real-
ized in the encrypted domain, such as discrete Fourier transform [Bianchi et al. 2009b],
discrete cosine transform [Bianchi et al. 2009a], discrete wavelet transform [Zheng and
Huang 2011, 2013a], and Walsh-Hadamard transform [Zheng and Huang 2013b].

An interesting and challenging problem is how to do nonlinear computations in the
encrypted domain with low complexity. In this article, we present a framework to
solve the problem of encrypted image denoising that involves some nonlinear oper-
ations, such as exponent arithmetic and Euclidean distance. Image denoising is one
of the most popular tasks in image processing; there are many classical image de-
noising algorithms, such as Gaussian filter, neighborhood filter, and nonlocal means
(NLM) [Buades et al. 2005]. Among them, NLM and its extensions can reach better
performance by exploiting the similarity between the nonlocal pixel blocks with the
current block. However, the computational complexity of NLM algorithm is very high
because it needs to search for the similar pixel blocks. Such hardness of computation is
suitable for being outsourced to the cloud server, but the user may hope to prevent the
cloud server from getting the content of the images. Therefore, the cloud server should
implement denoising in encrypted images.

Secure multiparty computation (MPC) proposed in Yao [1982] is an important ap-
proach to compute arbitrary function in cryptography. In recent years, great improve-
ments have made MPC more practical [Cramer et al. 2001; Orlandi 2011], even though
the MPC protocols are still computationally costly.

In particular, the secret sharing scheme has been an efficient technique in encrypted
multimedia processing in recent years. This was proposed in Shamir [1979] and Blakley
et al. [1979], which supports additive and multiplicative homomorphic properties. A
drawback of Shamir’s secret sharing is that it requires multiple cloud servers to resist
collusion attack [Benaloh 1987]. In Saghaian et al. [2012], a privacy-protected wavelet
images denoising using secret sharing was realized. Lathey et al. [2013] and Lathey and
Atrey [2015] proposed a novel and efficient scheme to implement image enhancement
using secret sharing in the encrypted domain, when it came with arithmetic division
operations for nonterminating quotients. In their articles, some of the low-level image
processing tasks (e.g., spatial filtering, unsharp masking) were performed. Using secret
sharing to deal with complex arithmetic is still very difficult (e.g., using secret sharing

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:3

to compute Equation (3) in Section 2). In our article, the cloud server can compute
Equation (3) in the ciphertexts with the same speed as in the plaintexts; also, our
scheme needs only one cloud server.

In this article, we try to implement the NLM in the encrypted domain, which consists
of two operations, that is, nonlocal search and mean filter. Mean filter in the encrypted
domain can be realized based on an additive homomorphic cryptosystem such as the
Paillier scheme [1999], while nonlocal search is a nonlinear operation. To avoid using a
complex cipher algorithm for the nonlinear part, we propose a double-cipher denoising
scheme, in which we encrypt the image with two cryptosystems and thus outsource
two ciphertexts to the cloud. One ciphertext is generated by the Paillier scheme, which
enables the mean filter, and the other is obtained by a distance-preserving transform,
Johnson-Lindenstrauss Transform (JL Transform), which enables the nonlocal search.
According to this idea, we proposed a preliminary scheme for privacy-preserving NLM
in Hu et al. [2014]. However, we found that this scheme may be attacked because JL
Transform keeps the position relationship and relative amplitudes of pixels.

In this article, we present a binarization attack on the scheme in Hu et al. [2014] by
exploiting the information leaked by JL Transform, by which we can infer a profile of
the image from the ciphertext. To resist the binarization attack, we propose the use of
random permutation before JL Transform and Paillier encryption. However, random
permutation will increase the computational complexity of NLM in a ciphertext. To
reduce the complexity, a random NLM method is used in encrypted images. The analysis
shows that the novel scheme can resist binarization attack, and the experimental
results show that the quality of denoised images in the encrypted domain is comparable
to that obtained in the plain domain.

The remainder of the article is organized as follows. In Section 2, we give some prelim-
inaries about the NLM denoising algorithm, Paillier cryptosystem, and JL Transform.
A framework of our scheme is presented in Section 3. In Section 4, we describe how to
perform image denoising in the encrypted domain in detail. We implement our scheme
and give the experimental results in Section 5. In Section 6, we present our conclusions.

2. PRELIMINARY

2.1. Nonlocal Means

The NLM proposed in Buades et al. [2004] was widely used in image denoising. Unlike
local smoothing methods, which operate only within a local area, NLM tries to exploit
the relativity between the pixels that are not close to each other. We briefly introduce
NLM below.

We can describe a discrete noisy image as follow:

v(i) = u(i) + n(i), (1)

where i is the pixel index in the set I, v(i) is the observed value, and u(i) is the
original value. The most simple way to model the effect of noise on a digital image is to
add Gaussian noise. Therefore, n(i) is an i.i.d. Gaussian variable with zero-mean and
variance σ 2.

The denoised pixel value at position i is obtained by

NL(i) =
∑
j∈�

w(i, j)v( j), (2)

where � is the search window for the similar pixel. The weights {w(i, j)} are determined
by the similarity between the i-th and j-th pixels, satisfying 0 ≤ w(i, j) ≤ 1 and∑

j w(i, j) = 1. Usually, the similarity can be calculated by the Euclidean distance
between the two blocks centered at the i-th and the j-th pixels. Therefore, the weights

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:4 X. Hu et al.

are computed as follows:

w(i, j) = 1
Z(i)

e− ‖v(Ni )−v(Nj )‖2
2

h2 . (3)

Herein, h is used to control the decay of the weights, Ni denotes patches centered in
the i-th pixel, v(Ni) denotes the intensity gray level vectors of Ni, ‖ · ‖2 is the Euclidean
norm, and Z(i) is the normalizing constant defined as:

Z(i) =
∑
j∈�

e− ‖v(Ni )−v(Nj )‖2
2

h2 . (4)

2.2. Paillier Cryptosystem

The Paillier cryptosystem [1999] is one of the well-known probabilistic and homomor-
phic schemes with an additive homomorphic property, which is realized as follows:

Initialization. Compute N = pq, where p, q are selected as two large random prime
numbers. Let λ = lcm(p− 1, q − 1) and g ∈ Z∗

N2 , where the order of g is a multiple of N.
The public key pk is (N, g) and the secret key sk is λ.

Encryption. Take a message m ∈ ZN, and a random number (blinding factor) r ∈ Z∗
N.

The corresponding ciphertext is

c = Epk(m, r) = gmrN mod N2. (5)

Decryption. Let the ciphertext c ∈ Z∗
N2 , so that the message m can be recovered by

m = Dsk(c) = L(cλ mod N2)
L(gλ mod N2)

mod N, (6)

where L(φ) = (φ − 1)/N.

Homomorphism. The additive homomorphism means that the sum of two plain-
texts m1 and m2 can be obtained by decrypting the product of corresponding cipher-
texts.

D(E(m1, r1) · E(m2, r2)) = D(gm1+m2 (r1r2)N)
= D(E(m1 + m2, r1r2)) = m1 + m2. (7)

Moreover, let γ be a constant and m be a plaintext, then γ m can be calculated by
decrypting the power of the ciphertext.

D(E(m, r)γ ) = D((gmrN)γ ) = D(E(γ m, rγ )) = γ m. (8)

2.3. Johnson-Lindenstrauss Transform

JL Transform is a dimension-reduction method preserving Euclidean distance. The
Johnson-Lindenstrauss Theorem [Johnson and Lindenstrauss 1984] states that it is
possible to project Q points in a space of arbitrarily high dimension onto an O(log Q)-
dimensional space, such that the pairwise distances between the points are approxi-
mately preserved.

THEOREM 2.1 (JOHNSON-LINDENSTRAUSS THEOREM). For any 0 < ε < 1 and any positive
integer Q, there is a positive integer k such that k ≥ 4 ln Q/(ε2/2 − ε3/3). Then, for any
set U of Q points in Rd, there exists a map f : Rd → Rk such that for any two vectors
α, β ∈ U, the following inequality holds:

(1 − ε)‖α − β‖2 ≤ ‖ f (α) − f (β)‖2 ≤ (1 + ε)‖α − β‖2.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:5

Theorem 2.1 means that some d-dimensional vectors can be mapped into k-
dimensional vectors, and the Euclidean distance between these d-dimensional vec-
tors can be estimated by corresponding k-dimensional vectors. Usually, f is defined
as f (α) = αP, where each entry of P ∈ Rd×k is drawn independently from a Normal
distribution with zero-mean and variance 1/k [Indyk and Motwani 1998]. Kenthapadi
et al. [2012] proposed the following private projection algorithms: Algorithm 1 and
Algorithm 2, and also proved that an attacker who knows all except one value of the
secret vector cannot recover this value from the JL Transform vector. Algorithm 1 uses
a d × k random matrix P to map a d-dimensional vector α to a k-dimensional vector,
and adds Gaussian noise to get α′. Algorithm 2 is about how to use transformed vectors
to estimate squared distance in the original space.

ALGORITHM 1: JL Transform-Based Private Projection
Input: d-dimensional vector α; d × k random matrix P; Noise parameter ζ .
Output: The projected k-dimensional vector α′.

1. Y = αP;
2. Generate a k-dimensional N(0, ζ 2) Gaussian noise vector �;
3. α′ = Y + �.

ALGORITHM 2: JL Transform-Based Distance Recover
Input: Two k-dimensional transformed vectors α′ and β ′; Noise parameter ζ .
Output: Estimated squared distance between α and β in the original space.

Output dist2
α,β = ‖α′ − β ′‖2

2 − 2kζ 2.

3. PROBLEM STATEMENT AND FRAMEWORK

We consider the cloud server as the “honest-but-curious” model (originally called the
semi-honest model, firstly introduced in Goldreich et al. [1987]), which means that
the cloud server will honestly perform the designated algorithm, but it is curious to
obtain the user’s private information from its storage and computation. A resources-
constrained client owns one image I, and wants to denoise I with the NLM method. The
owner hopes to outsource this work to a cloud server without leaking the content of I.

As mentioned earlier, Paillier homomorphic cryptosystem is an additive homomor-
phic cryptosystem, which can perform any linear operations in the encrypted domain.
However, as shown in Equation (3) and Equation (4), NLM block similarity computation
includes nonlinear operations. It is hard to implement the whole NLM algorithm based
only on the additive homomorphic property. But if we can compute the values of {w(i, j)}
with some other methods, this problem will be easily solved. The weights {w(i, j)} are
about the similarity or distance between two image blocks, thus we can use the JL
Transform-based Private Project (Algorithm 1) to compute the weights. Therefore, we
propose the following framework for nonlocal denoising in outsourced images.

As illustrated in Figure 1, the owner encrypts I by Privacy Preserving Transform
(PPT) and Partially homomorphic cryptosystem (PHE), and gets two encrypted images
denoted by EPPT(I) and EPHE(I), respectively. Then, the owner sends EPHE(I) and
EPPT(I) to the cloud. With the help of EPPT(I), the cloud server executes nonlocal filter
on EPHE(I) and yields a denoised cipher-image EPHE(I′) that is sent back to the owner.
The owner decrypts EPHE(I′) and gets a plaintext denoised image I′. In Section 4, we
will elaborate the details of each step.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:6 X. Hu et al.

Fig. 1. Framework of double-cipher scheme.

Fig. 2. Scheme I: Preliminary scheme.

4. DOUBLE-CIPHER SCHEME

4.1. Scheme I: Preliminary Scheme

In this section, we will describe our first scheme. The complete Scheme I has 4 al-
gorithms, as illustrated in Figure 2: Encryption with JL Transform, Paillier Encryp-
tion, Denoising in Encrypted Images, and Paillier Decryption.

Encryption with JL Transform. When encrypting I with Algorithm 1, the owner
takes the random matrix P and noise parameter ζ as the key. For each pixel v(i) of
I, we take an s × s block centered at i and stack the block rows as an s2-dimensional
vector, denoted by Ni. With Algorithm 1, the owner projects Ni into a k-dimensional
vector EJL(Ni), which is just the ciphertext of v(i). In other words, by JL Transform,
each pixel is encrypted into a k-dimensional vector. For marginal pixels, some elements
of the block matrix are blank; thus, we fill them with the surrounding pixels.

As we know, a 1 × s2 vector data vector right-multiplied by an s2 × k Gaussian
projection matrix equals a 1×k data vector. For k < s2, it is hard to inverse this process
to get the original data vector. Thus, we use this procedure to do the JL Transform,
and we give a detailed account of how to apply it to our scheme.

Taking the pixels at positions 6, 7, 10, and 11 as an example in Figure 3, we set
s = 3 and k = 4. The 3 × 3 block centered at each pixel is transformed to a 1 × 9
vector. The four vectors corresponding to the four pixels are arrayed as a 4 × 9 matrix
α, which is multiplied by a 9 × 4 projection matrix P to get a 4 × 4 matrix Y . Then,
we add a N(0, ζ 2) Gaussian noise matrix �, and generate the ciphertext α′. Next,
we can upload the transformed data α′ to the cloud, with which the cloud server can
estimate the Euclidean distance of these image blocks and evaluate values of {w(i, j)}
in Equation (3).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:7

Fig. 3. A toy example of JL Transform. Each row of α′ is the ciphertext of image block centered at 6, 7, 10,
and 11, respectively.

From this description, for an image consisting of n pixels, the size of transformed
data will be n× k, where k is the size of a single transformed block. For instance, when
taking k = 4 for a 512 × 512 image, the size of transformed data is 5122 × 4, that is,
k = 4 is the expansion factor.

Paillier Encryption. For each pixel v(i), take a random number ri ∈ Z∗
N and encrypt

v(i) by Equation (5) as

EPail(v(i)) = EPail(v(i), ri) = gv(i)rN
i mod N2. (9)

Denoising in Encrypted Images. As shown in Equation (2) and Equation (3), to
perform nonlocal filter, the cloud server should first calculate the weights {w(i, j)} that
are determined by the Euclidean distance between Ni and Nj . Note that JL Transform
preserves Euclidean distance; thus, the cloud server can estimate ‖v(Ni) − v(Nj)‖2

2
with the ciphertexts of v(i) and v( j), that is, EJL(v(Ni)) and EJL(v(Nj)). Therefore, the
weights are estimated by

w′(i, j) = 1
Z′(i)

e− ‖EJL(v(Ni ))−EJL(v(Nj ))‖2
2−2kζ2

h2 . (10)

The normalizing constant Z′(i) is obtained by

Z′(i) =
∑
j∈�

e− ‖EJL(v(Ni ))−EJL(v(Nj ))‖2
2−2kζ2

h2 . (11)

With weights {w′(i, j)}, the cloud server filters the encrypted image EPail(I) as follows.
For each ciphertext EPail(v(i)), the filtered value EPail(NL′(i)) is

EPail[NL′(i)] =
∏
j∈�

(EPail[v( j)])
w′(i, j)

mod N2. (12)

Having collected all EPail(NL′(i)), the cloud server yields a denoised encrypted image
EPail(I′) that will be sent back to the owner.

Note that the weights {w′(i, j)} are real numbers, but to calculate Equation (12)
according to the Paillier cryptosystem, the values {w′(i, j)} have to be quantified as
integer numbers. The quantization process is computed as follows:

W(i, j) = 	Aw′(i, j)
, (13)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:8 X. Hu et al.

where 	·
 is the rounding function and A is the scaling factor. Thus, W(i, j) based on
Equation (2), Equation (10), Equation (11), and Equation (13) can be computed as
follows:

W(i, j) =
⌊

A
Z′(i)

e− ‖EJL(v(Ni ))−EJL(v(Nj ))‖2
2−2kζ2

h2

⌉
, (14)

NL′′(i) =
∑
j∈�

W(i, j)v( j) =
∑
j∈�

	Aw′(i, j)
v( j). (15)

Replacing w′(i, j) by W(i, j), Equation (12) will be changed to

EPail[NL′′(i)] =
∏
j∈�

(EPail[v( j)])
	Aw′(i, j)


mod N2. (16)

Comparing with denoising in plaintext images, there are two kinds of errors in this
procedure. The first is caused by JL Transform, which becomes larger when decreasing
the expansion factor k. This error is analyzed in Kenthapadi et al. [2012], who prove
that distance recovery in Algorithm 2 is an unbiased estimator of the original Euclidean
distance.

The second kind of error is caused by quantization. To analyze the quantizing error,
we rewrite Equation (13) as follows:

W(i, j) = Aw′(i, j) + εw j , (17)

where |w′(i, j)| ≤ 1 and εw j is the error caused by quantization with |εw j | ≤ 1/2.
Equation (15) will be changed to

NL′′(i) =
∑
j∈�

W(i, j)v( j) =
∑
j∈�

(Aw′(i, j) + εw j )v( j). (18)

From Equation (18), the owner of I can estimate NL′(i) by

NL′(i) = NL′′(i)
A

= NL′(i) +
∑

j∈� εw j v( j)

A
. (19)

The last item
∑

j∈� εw j v( j)
A in Equation (19) is the error caused by quantization, which

can be controlled by selecting a large enough parameter A. Note that, to get the accurate
value of NL′′(i) by Paillier decryption, we have to limit NL′′(i) < N. In other words, the
value of A cannot be as large as possible, and must be chosen properly according to the
settings of the Paillier cryptosystem. In our scheme, for security reasons, we recommend
choosing the product of two primes (N = p × q) for the Paillier cryptosystem, which is
longer than 1024 bits. For NL′′(i) ≈ A× NL′(i) < N, we can get A < 21024/28 = 21016. If
we choose A = 27L2, the search window � is L2, and the boundary of the error is∑

j∈� εw j v( j)

A
≤ 1/2 × 255 × L2

27 × L2 < 1.

Paillier Decryption. After receiving EPail(I′), the image owner decrypts it pixel
by pixel. According to the homomorphism Equation (7) and Equation (8), the pixel
EPail(NL′′(i)) is decrypted as

NL′′(i) = DPail

⎡
⎣∏

j∈�

(EPail[v( j)])
	Aw′(i, j)


⎤
⎦ =

∑
j∈�

	Aw′(i, j)
v( j) mod N. (20)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:9

Fig. 4. Attack on Scheme I: (a) is the original image and (b) is the recovered image by binarization attack.

Then, we use NL′′(i)/A to estimate NL′(i) according to Equation (19). Comparing
Equation (2) with Equation (20), we conclude that the denoised result obtained in en-
crypted image is similar to what is obtained in the plaintext image because the weights
{w′(i, j)} are a good estimation of {w(i, j)} thanks to the property of JL Transform.

4.2. Attack on Scheme I

Using Scheme I, the cloud server can get the ciphertext EJL(I) encrypted by JL Trans-
form, which preserves Euclidean distance. But careful readers may notice that the
ciphertext EJL(I) keeps the position of the adjacent pixels, as in the plaintext image.
Even though attackers may not infer the accurate pixel values, they may get the profile
of the image.

Here, we present a simple attack method, shown in Algorithm 3. As the JL Transform
described in Section 4.1, for an image of n pixels with the projection dimension k, the
size of transformed data will be n × k. First, we calculate the mean of each row in the
n× k transformed data matrix, and get an n× 1 mean vector. From this analysis, the n
mean values preserve the relative positions and amplitudes of pixels in the plaintext
image. Then, we use image binarization to reset the value of the mean, and reshape this
n×1 binary vector to an image consisting of n pixels. At last, we can get an approximate
image of the plaintext image. Figure 4 shows that this attack can successfully recover
the profile of the plaintext image.

ALGORITHM 3: Attack on Scheme I: Binarization Attack
Input: n × k ciphertexts EJL(I) encrypted by JL Transform.
Output: The approximate image Iapp.

1. Calculate the mean of each row in n × k matrix EJL(I), get an n × 1 data matrix Eapp;
2. Set the threshold and perform image binarization to Eapp, then get a binary image Iapp;
3. Output this binary approximate image Iapp.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:10 X. Hu et al.

Fig. 5. Scheme II: Security-improved scheme.

Fig. 6. Random permutation: (1) Generate a pseudorandom permutation sequence; (2) scramble the images.

4.3. Scheme II: Security-Improved Scheme

The privacy leakage shown earlier is caused by the strong correlation of the adjacent
pixels. To eliminate this correlation, we propose randomly permutating the images
before encryption, then uploading it to the cloud server, as illustrated in Figure 5. We
use the method introduced in Deng et al. [2014] to generate a secure pseudorandom
permutation sequence. Thus, the complete Scheme II has 5 algorithms: Random Per-
mutation, Encryption with JL Transform, Paillier Encryption, Denoising in Encrypted
Images, and Paillier Decryption. Here, we describe only the random permutation algo-
rithm and its correspondingly modified denoising algorithm in encrypted images.

Random Permutation. To keep the relationship between two ciphertexts encrypted
by JL Transform and Paillier encryption, we use two random permutation methods,
Block Random Permutation and Pixel Random Permutation, to permute the two images
with the same pseudorandom permutation sequence, respectively. Image I after block
and pixel random permutation will be used to perform JL Transform and Paillier
encryption, respectively. The owner will perform inverse permutation after getting the
denoised encrypted image Ĩ′. The algorithm of random permutation is described in
Algorithm 4.

Figure 6 is an example of Random Permutation, which has two parts: (1) generate
a pseudorandom permutation sequence and (2) scramble the images.

4.3.1. Generate a Pseudorandom Permutation Sequence. Figure 6 (1) is an example of gen-
erating a 4 → 4 pseudorandom permutation sequence. In the first step of Algorithm 4,
we use AES to generate four pseudorandom numbers, such as 39, 80, 77, and 14, and

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:11

their indices are 1, 2, 3, and 4. Then, we sort the random numbers in an ascending
order: 19, 39, 77, and 80, and get a new index: 4, 1, 3, and 2. Thus, {1 ↔ 4, 2 ↔ 1,
3 ↔ 3, 4 ↔ 2} is a pseudorandom permutation sequence.

4.3.2. Scramble the Images. Figure 6 (2) is an example of scrambling the images with
block and pixel random permutation, respectively. First, we perform block random
permutation, using an example in Figure 3 with s = 3. The 3 × 3 blocks centered
at pixel 6, 7, 10, 11 are transformed to a 4 × 9 matrix α. Then, the image I will be
performed with pixel random permutation, while the matrix α will be performed with
row random permutation. After permutation, the indices of pixels in Ĩ keep consistent
with the indices of rows in I, because the two permutations use the same random
permutation sequence.

ALGORITHM 4: Random Permutation
Input: Image I
Output: Scrambled images I and Ĩ.

1. Compute ciphertexts C = {c1, c2, . . . , cn}, where ci = E(i, v(i)) for i ∈ {1, .., n}, v(i) is the i-th
pixel value, and E is an encryption algorithm (e.g., AES, 3DES);

2. Sort these n ciphertexts in the ascending/descending order and get a new index;
3. Use the new index and the original index to constitute a permutation sequence;
4. Use this permutation sequence to perform block and pixel random permutation;

5. Output the scrambled images I and Ĩ.

Denoising in Encrypted Images. This random permutation may cause some prob-
lems for NLM. In the NLM algorithm, the simplest approach to reduce computational
complexity is to restrict the search window �, as shown in Equation (2). Usually, pixels
in such a window are correlative, thus NLM can achieve good performance. However,
after random permutation, the local correlation is completely destroyed and the search
window will no longer work. The simplest method to solve this problem is directly using
full NLM to search the whole image. However, from the analysis in Section 4.5, the
computational complexity of full NLM is too large. To accelerate NLM on randomly
permutated images, we use the method called Monte Carlo Non-Local Means (MC-
NLM) [Chan et al. 2014], which randomly computes a small number of image patch
distances, according to a designed sampling pattern.

MCNLM is a randomized algorithm to accelerate the full NLM; its basic idea can be
described as follows. For the image pixel v(i), we randomly select a number of image
patches and compute the weights {wi, j}n

j=1 to estimate the full NLM.
For the image pixel v(i), the sampling process of MCNLM depends on a se-

quence of Bernoulli random variables {Ji, j}n
j=1, Ji, j ∈ {0, 1} with the following

probabilities:

Pr[Ji, j = 1] = pi, j and Pr[Ji, j = 0] = 1 − pi, j .

The weights {wi, j} are sampled if and only if Ji, j = 1. For all these probabilities,
the sampling pattern is defined as: p = [pi, j]n×n, 0 < pi, j ≤ 1, and pi, j denotes the
probability of the j-th pixel being sampled when we denoise the i-th pixel. Chan et al.
[2014] introduced two sampling patterns: uniform sampling and optimal sampling. In
the uniform sampling pattern, all pi, j have the same value and are independent of the
image itself. In the optimal sampling pattern, calculating pi, j is to solve an optimization
problem for estimating the upper bounds of w(i, j), which has two choices to estimate

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:12 X. Hu et al.

the upper bounds. In the first choice, the upper bound is estimated by the spatial
distance of the i-th and j-th pixels. In the second choice, the upper bound is estimated
by the intensity information of the i-th and j-th pixel values.

For the image pixel v(i), the empirical sampling ratio is a random variable, which
can be defined as:

Si = 1
n

n∑
j=1

Ji, j . (21)

Thus, the average sampling ratio is

E[Si] = 1
n

n∑
j=1

E[Ji, j] = 1
n

n∑
j=1

pi, j
de f= ξ. (22)

The parameter ξ is an important indicator in the MCNLM algorithm to describe the
sampling ratio. For a special case ξ = 1, the MCNLM becomes the full NLM, and all the
image patches are selected with probability one, that is pi, j = 1 for all i, j ∈ {1, . . . , n}.

Thus, we can estimate Equation (2), Equation (3), and Equation (4) as follows:

wi, j =
1
n

w̃i, j

pi, j
Ji, j

1
n

∑n
j=1

w̃i, j

pi, j
Ji, j

, w̃i, j = e− ‖v(Ni )−v(Nj )‖2
2

h2 , (23)

NL(i) =
∑

j∈{1,..n}
wi, jv( j) =

1
n

∑n
j=1 v( j) w̃i, j

pi, j
Ji, j

1
n

∑n
j=1

w̃i, j

pi, j
Ji, j

=
∑n

j=1 v( j) w̃i, j

pi, j
Ji, j∑n

j=1
w̃i, j

pi, j
Ji, j

. (24)

The denoised image using MCNLM can be viewed as an estimation of the denoised
image obtained by the full NLM. Chan et al. proved that the probability of the de-
viation will drop exponentially as the number of pixels n tends to infinity. There-
fore, for a large n, the MCNLM algorithm will approach the performance of the full
NLM.

We give a complete description of image denoising in the encrypted domain with
MCNLM in Algorithm 5.

ALGORITHM 5: Denoising in Encrypted Images with MCNLM

Input: Ciphertexts EJL(I) and EPail( Ĩ). Scaling factor A. Sampling rate ξ .
Output: Denoised ciphertext image EPail( Ĩ′).

1. For the noisy pixels v(i) (i ∈ {1, . . . , n}), do
1. According to the sampling rate ξ , solve the optimization problem, and get pi, j ;
2. Generate random variables Ji, j ∼ Bernoulli(pi, j);
3. If Ji, j = 1, compute the weight w̃i, j ;
4. Normalize: wi, j = w̃i, j/

∑
j w̃i, j .

2. end.
3. Compute: EPail( Ĩ′) = ∏

j∈� (EPail[v( j)])	Awi, j 
 mod N2;

4. Output the denoised ciphertext image EPail( Ĩ′).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:13

Fig. 7. Scheme II: (a) is the original image; (b) is the recovered image by binarization attack.

4.4. Security Analysis of Scheme II

In our Scheme II, we analyze two ciphertexts: ciphertext encrypted by the Paillier
scheme and ciphertext encrypted by JL Transform.

Paillier [1999] proved that the Paillier scheme provides semantic security [Gold-
wasser and Micali 1984], which means that an attacker could not learn any information
about the plaintext, except for the length of the plaintext.

Next, we analyze the security of the scrambled image EJL(I). The pseudorandom
permutation sequence in Algorithm 4 is generated by a secure block cipher such as
3DES or AES. As we know, a secure block cipher can be thought of as a secure pseu-
dorandom permutation and its output is computationally indistinguishable from the
output of a true random permutation [Katz and Lindell 2007]. Without the private
key, the attacker may want to try all possible permutations; however, the number of
all possible permutations is n! for an image of n pixels. Thus, for a 512 × 512 image,
the possibility for the attacker to guess the correct permutation is 1/262144!. There-
fore, it is computationally infeasible for any attacker to recover the original image this
way.

Here, we consider other attack methods. First, we use the binarization attack method
to attack Scheme II. As shown in Figure 7, the attacker cannot recover the content
of the original image because the locations of pixels have been completely scrambled.
Furthermore, as shown in Figure 8, the statistical information has also been concealed,
where (a) is the histogram of the original image, and (b) and (c) are the histograms
of the mean of each row of ciphertext encrypted by JL Transform from the same
plaintext image. In fact, the same image encrypted by JL Transform will get different
ciphertexts each time due to the random matrix P and Gaussian noise parameter ζ in
JL Transform.

Our scheme leaks the distances of any two pixel blocks, which are needed by the cloud
to compute the weights for nonlocal denoising. We randomly selected several images to
draw the histograms of Euclidean distances of pixel blocks after JL Transform. Some
of the results are listed in Figure 9, which shows that the histograms are very similar
whether the original images are similar or not. In fact, for most natural images, many
pixel blocks are similar; thus, distances between pixel blocks approximately satisfy

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:14 X. Hu et al.

Fig. 8. Scheme II: (a) is the histogram of the plaintext image; (b) and (c) are the histograms of the mean of
each row of ciphertext encrypted by JL Transform from the same plaintext image.

Fig. 9. Scheme II: (a) (b) (c) are the origin image, and (d) (e) (f) are the histograms of Euclidean distances of
corresponding images.

a power law distribution. Thus, it is hard to determine the similar image using a
histogram for the Euclidean distances.

4.5. Complexity Analysis

In our scheme, there are only two parties, client and cloud server. We can see from
Figure 5 that the client should perform random permutation, inverse permutation, JL
Transform, and Paillier encryption and decryption. The cloud server should a perform
nonlocal search to calculate the weights {w(i, j)} and mean filter in the encrypted
domain. Thus, we analyze the client’s and cloud server’s complexity, respectively.

4.5.1. Client Side. In the client side, the most complicated algorithm is Paillier en-
cryption and decryption. Jost et al. [2015] showed that there is a faster algorithm

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:15

for a variant of Paillier encryption. This faster algorithm is efficient especially if the
messages are short.

We can use the variant of the Paillier scheme to replace Equation (5) as

c = gm(gN)r mod N2, (25)

where r is a random number.
In the encryption phase, the values of image pixel are 8-bit integers, which is

suitable for Jost’s fast algorithm [Jost et al. 2015]. First, we precompute all the value
of gm, because m only has 256 different values, and store them as Table T1. Then, we
precompute 216 random (gN)r, and store them as Table T2. When encrypted, we look up
Table T1 to pick gm, and randomly pick 5 different (gN)r in Table T2, then multiply these
6 values to get the ciphertext of m. Thus, in the encryption phase, the client needs only
5 modular multiplication operations. For a 1024-bit integer N, the size of Table T1 is
28×2048 = 219 bits, that is, 64KB, and the size of Table T2 is 216×2048 = 227 bits, that is,
16MB.

As described earlier, JL Transform and Paillier encryption will cause ciphertext
expansion. To reduce the storage in the client side, the pixels are encrypted one by
one, and each pixel will be directly transmitted to the cloud immediately; thus, the
client does not need to store the encrypted images. The ciphertext expansion ratio
of JL Transform is equal to the expansion factor k (k = 9 ∼ 18 in the article), and
the ciphertext encrypted by JL Transform does not need to be sent back from the
cloud.

For Paillier encryption, the data transmission from client to cloud is about 2|N| × n
bits, where |N| denotes the bit length of N, and n is the number of image pixels. Thus,
for a 1024-bit integer N, the expansion ratio is about 2 × 1024/8 = 256 for 8-bit pixel
value, and storage space needed by the cloud is slightly larger than 2|N| × n bits. After
the cloud completes the denoising, the data can be transmitted to the client and release
the cloud space.

We can also reduce the data transmission from cloud to client by the method proposed
in Bianchi et al. [2010], in which the message sequence is divided into l-bit blocks, and
T blocks m1, . . . , mT are packed as a composite message M = m1 · 20 + m2 · 2L + · · · +
mT · 2L(T −1), L > l. For n = 256 × 256, we choose scaling factor A = 223, so after the
cloud completes the denoising, the size of each denoised pixel is about 23 + 8 = 31
bits for 8-bit pixel value. Thus, the cloud can perform ciphertext packed by setting
l = 31, and L = 32. Therefore, T ciphertexts for T = |N|/L = 1024/32 = 32 can be
packed together with the method in Bianchi et al. [2010], and the packed ciphertexts
can be transmitted to the client, which will reduce the expansion ratio from 256 to 8.
This ciphertext-packed method also can speed up Paillier decryption approximately T
times, and reduce the decryption time at the client side.

In the decryption phase, Paillier [1999] shows that the constant parameter
L(gλ mod N2)−1 can be precomputed, and the Chinese Remaindering Theorem [Ding
1996] can reduce the decryption workload efficiently.

We present experiments here to simulate the client side’s operation. The computer
used for simulation has an Intel i5-3210M CPU at 2.5GHz with 4 cores, and it runs
Ubuntu 32b v13.04. The time of precomputing Table T1 and Table T2 is about 7.3s.
These two tables need to be calculated only once; then, they can be used for encrypting
a series of images. We list time cost of different parts in Table I. In Table I, NLM means
the client performs nonlocal denoising in the plaintext, for which the search window
is the whole image. We can see from Table I and Table II that the time of nonlocal
denoising increases with n2, while the time of other operations only increases with n,
where n is the number of image pixels. For the 256 × 256 and 512 × 512 images, the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:16 X. Hu et al.

Table I. Simulation in the Client Side

Size of image Random Permutation Paillier Encryption JL Transform
256 × 256 0.8s 1.1s 0.1s
512 × 512 3.4s 4.4s 0.4s

Size of image Paillier Decryption Inverse Permutation NLM
256 × 256 3.9s 0.3s 405s
512 × 512 16.7s 1.2s 6887s

Table II. Computational Complexity in the Cloud Side

Algorithm Search Window L × L the Whole Image Sampling Ratio ξ

NL Search n × s2 × L2 s2 × n2 s2 × n2 × ξ

Paillier n(1.5L2log(W (i, j)) n(1.5nlog(W (i, j)) ξn(1.5nlog(W (i, j))
Operation + L2 − 1) + n − 1) + n − 1)

total time cost for the client is about 6.2s and 26.1s, respectively, which is much less
than the times used for NLM.

4.5.2. Cloud Server Side. Now, we estimate the computational complexity of nonlocal
denoising in the encrypted domain, including two parts: nonlocal search, and mean
filter in the encrypted domain.

In the first part, if we use a similarity window of size s × s, the computational
complexity for searching an image of n pixels is n × s2 × n = s2 × n2, that is, O(n2). If
we restrict the size of the search windows to L × L, the computational complexity is
reduced to n × s2 × L2, that is, O(n).

In the second part, the denoising is realized by Equation (16). There are only modular
multiplication and modular exponentiation, and the operation ex costs one exponen-
tiation, which approximately costs 1.5log(x) multiplications. Hence, we can use the
number of modular multiplication to evaluate the computational complexity. For the
size of similarity window as s × s and the size of the search window as L × L, when
denoising a single pixel, the number of modular multiplication is L2−1 and the number
of modular exponentiation is L2, which costs approximately L2 × 1.5log(W(i, j)) multi-
plications. Therefore, for denoising an image of n pixels, the total number of modular
multiplication is n × (L2 × 1.5log(W(i, j)) + L2 − 1). When we search the whole image,
the total number of modular multiplication is n × (n × 1.5log(W(i, j)) + n − 1).

In Scheme II, we are able to reduce the complexity by random sampling. The most
complicated part of the Random Sampling algorithm is computing the weights {w(i, j)}
and EPail( Ĩ′). We therefore omit the other parts. For sampling ratio ξ , the computational
complexity of nonlocal search is s2 × n2 × ξ , and the computational complexity of mean
filter is the total number of modular multiplication, ξn× (n× 1.5log(W(i, j)) + n− 1) in
the encrypted domain.

We list the computational complexity of each part for the cloud side in Table II.

5. EXPERIMENTS

Due to image scrambled in Scheme II, it is infeasible to use the spatial approximation to
estimate the upper bound of w(i, j); thus, we use only intensity approximation. We use
10 standard gray test images for this experiment. For each image, we simulate noisy
images by adding zero-mean Gaussian noise with standard deviations σ = 10, 30, 50.
Eight average sampling ratios, ξ = 0.1, 0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 1, are chosen. The
parameters of NLM are set as follows: The patch size is s × s = 5 × 5 (i.e., d = 25) and
the search window is the whole image. For JL Transform, four projection dimensions,
k = 18, 15, 12, 9, are evaluated.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:17

Fig. 10. Image denoising in plaintext and ciphertext using optimal and uniform sampling, respectively.

As MCNLM is a randomized algorithm, we simulate the MCNLM using 12 inde-
pendent random sampling patterns and 5 independent noise realizations in ciphertext
and in plaintext, respectively. The average PSNR values are summarized in Table III
and Table IV in the Appendix. The value of σ is 15 in Table III and the value of k is
18 in Table IV. Table III and Table IV show that the PSNR of the denoised images
monotonously increases with sampling ratio ξ .

Figure 10 shows the difference between denoising in ciphertext and plaintext for
optimal sampling pattern and uniform sampling pattern with intensity approxima-
tion. In this experiment, the projection dimension k and the standard deviation of the
Gaussian noise ζ of JL Transform are 18 and 0.5, respectively. We can see from Fig-
ure 10 that the PSNRs of denoising in cipher images are smaller than that in plaintext
images. The accuracy loss of denoising comes from two aspects: the scaling factor A,
and parameters of JL Transform such as the dimension reduction k and Gaussian
noise ζ . However, k and ζ make JL a privacy-preserving transformation. To observe
the influence of scaling factor A, we apply the same JL Transform to the process of
plaintext denoising, in which scaling factor A is not used, and compare the result with
the denoising quality obtained in ciphtertext. The difference in PSNR between these
two cases is less than 0.01dB, by which we conclude that the accuracy loss of denoising
in ciphertext is mainly due to JL Transform.

Table III and Figure 11 show that the PSNR of the denoised image decreases
monotonously as projection dimension k decreases. Figure 12 shows that the PSNR
of denoised images decreases with the standard deviation of the Gaussian noise ζ . In
fact, the smaller that k and the bigger that noise ζ are set, the more secure the JL
Transform is. Therefore, such quality degradation of denoising image is the cost for
preserving privacy; the user can make a trade-off between image quality and security
by adjusting k and ζ .

Comparisons of visual quality between denoised images in plaintext and ciphertext
are shown in Figure 13 in the Appendix. In this experiment, we use the test image
“House” sized (256 × 256) with noise of standard deviation σ = 10 and sampling
ratio ξ = 0.5 to show that the quality of image obtained by denoising in ciphertext is
comparable to that in plaintext.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:18 X. Hu et al.

Fig. 11. The denoising effect for different projection dimensions k.

Fig. 12. The denoising effect for different standard deviations of the Gaussian noise ζ used in JL Transform.

6. CONCLUSION

In this article, we present a double-cipher framework for signal processing in the
encrypted domain, in which we combine two kinds of computational functions to imple-
ment a special task. Specifically, we propose a nonlocal denoising method in encrypted
images by generating two ciphertexts with an additive homomorphic cryptosystem and
a privacy-preserving transform, respectively. In this scheme, the nonlinear operation,
that is, nonlocal search, can be efficiently realized by the cloud server in ciphertexts.
The experimental results show that the denoised image yielded from ciphertexts has
comparable quality to what yielded from plaintexts.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:19

APPENDIX

Table III. The Denoising Effect for Different Projection Dimensions k

ξ 0.1 0.2 0.5 0.6 0.7 0.8 0.9 1

k Baboon 256 × 256
18 25.79 26.07 26.36 26.41 26.44 26.46 26.47 26.48
15 25.46 25.65 25.79 25.79 25.79 25.79 25.79 25.79
12 25.44 25.61 25.75 25.75 25.75 25.75 25.75 25.75
9 25.08 25.22 25.32 25.33 25.33 25.33 25.33 25.33
k Barbara 256 × 256

18 26.38 26.70 27.07 27.12 27.16 27.19 27.20 27.20
15 26.34 26.69 26.96 26.99 27.01 27.02 27.03 27.03
12 25.86 26.18 26.53 26.57 26.59 26.60 26.60 26.60
9 25.57 25.87 26.13 26.14 26.15 26.15 26.15 26.15
k Boat 256 × 256

18 26.89 27.13 27.38 27.41 27.44 27.46 27.48 27.48
15 26.87 27.04 27.14 27.14 27.14 27.14 27.14 27.14
12 26.34 26.65 26.95 26.99 27.01 27.03 27.04 27.04
9 26.31 26.57 26.75 26.77 26.77 26.77 26.77 26.77
k Bridge 256 × 256

18 26.31 26.57 26.71 26.71 26.71 26.71 26.71 26.71
15 26.02 26.29 26.48 26.50 26.50 26.50 26.50 26.50
12 25.45 25.71 25.95 25.98 25.98 25.98 25.98 25.98
9 25.28 25.46 25.66 25.68 25.69 25.69 25.69 25.69
k Couple 256 × 256

18 26.51 26.78 27.10 27.15 27.19 27.21 27.22 27.23
15 26.46 26.73 26.86 26.87 26.87 26.87 26.87 26.87
12 26.42 26.67 26.82 26.83 26.84 26.84 26.84 26.84
9 25.78 26.08 26.38 26.41 26.43 26.44 26.44 26.44
k Hill 256 × 256

18 27.05 27.40 27.63 27.65 27.66 27.66 27.66 27.66
15 27.04 27.38 27.61 27.64 27.65 27.66 27.66 27.66
12 25.98 26.36 26.76 26.81 26.84 26.86 26.86 26.86
9 25.94 26.27 26.55 26.58 26.59 26.59 26.59 26.59
k House 256 × 256

18 29.33 29.81 30.30 30.38 30.44 30.48 30.51 30.52
15 29.30 29.72 30.13 30.19 30.23 30.25 30.27 30.27
12 28.21 28.71 29.22 29.29 29.34 29.37 29.39 29.39
9 27.31 27.79 28.18 28.20 28.21 28.22 28.22 28.22
k Lena 256 × 256

18 29.06 29.42 29.67 29.68 29.70 29.70 29.70 29.70
15 28.55 28.77 28.82 28.83 28.84 28.85 28.85 28.85
12 27.37 27.89 28.36 28.42 28.45 28.48 28.49 28.49
9 26.96 27.44 27.85 27.88 27.89 27.90 27.90 27.90
k Man 256 × 256

18 26.79 27.18 27.54 27.59 27.62 27.64 27.65 27.66
15 26.57 26.93 27.25 27.30 27.33 27.35 27.36 27.36
12 26.40 26.78 27.11 27.15 27.17 27.18 27.18 27.18
9 25.84 26.15 26.39 26.41 26.42 26.42 26.42 26.42
k Peppers 256 × 256

18 28.36 28.87 29.34 29.41 29.46 29.50 29.53 29.53
15 28.20 28.62 28.98 29.03 29.05 29.07 29.08 29.09
12 26.68 27.16 27.62 27.68 27.72 27.75 27.75 27.75
9 26.52 26.96 27.26 27.29 27.31 27.32 27.32 27.32

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:20 X. Hu et al.

Fig. 13. Scheme II: (a) is the original image, (b) is the image after adding (0, 102) Gaussian noise, (c) is the
image denoised in plaintext using the optimal sampling pattern, (d) is the image denoised in plaintext using
the uniform sampling pattern, (e) is the image denoised in ciphertext using the optimal sampling pattern,
and (f) is the image denoised in ciphertext using the uniform sampling pattern.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



Secure Nonlocal Denoising in Outsourced Images 40:21

Table IV. Image Denoising in the Encrypted Domain by MCNLM, Using
the Optimal Sampling Pattern

ξ 0.1 0.5 0.8 1 0.1 0.5 0.8 1
σ Baboon 256 × 256 Barbara 256 × 256
10 28.61 28.87 28.90 28.90 29.33 29.88 29.94 29.95
30 20.90 21.56 21.60 21.60 22.22 22.82 22.85 22.85
50 18.84 19.48 19.55 19.57 19.89 20.09 20.11 20.11
σ Boat 256 × 256 Bridge 256 × 256
10 29.68 30.01 30.03 30.03 28.58 29.00 29.07 29.08
30 22.87 23.38 23.42 23.42 22.51 22.96 22.97 22.97
50 19.73 20.51 20.58 20.60 19.51 20.01 20.06 20.07
σ Couple 256 × 256 Hill 256 × 256
10 29.35 29.82 29.87 29.87 29.12 29.81 29.91 29.91
30 22.54 22.98 22.98 22.98 23.24 23.65 23.66 23.66
50 19.72 20.15 20.16 20.16 20.08 20.93 21.03 21.05
σ House 256 × 256 Lena 256 × 256
10 32.01 32.75 32.84 32.85 31.20 32.02 32.10 32.11
30 24.64 25.60 25.72 25.74 24.47 24.99 25.03 25.04
50 22.09 22.35 22.37 22.37 21.01 21.77 21.86 21.88
σ Man 256 × 256 Peppers 256 × 256
10 29.55 30.11 30.16 30.16 30.75 31.61 31.69 31.70
30 23.27 23.86 23.87 23.87 23.76 24.71 24.83 24.87
50 19.68 20.64 20.77 20.80 20.87 21.38 21.40 21.41

ACKNOWLEDGMENTS

The authors would like to thank all anonymous reviewers and the associate editor for their valuable com-
ments to improve this article.

REFERENCES

Carlos Aguilar-Melchor, Simon Fau, Caroline Fontaine, Guy Gogniat, and Renaud Sirdey. 2013. Recent
advances in homomorphic encryption: A possible future for signal processing in the encrypted domain.
IEEE Signal Processing Magazine 30, 2, 108–117.

Josh Cohen Benaloh. 1987. Secret sharing homomorphisms: Keeping shares of a secret secret. In Advances
in Cryptology (CRYPTO’86). Springer, 251–260.

Tiziano Bianchi, Alessandro Piva, and Mauro Barni. 2009a. Encrypted domain DCT based on homomorphic
cryptosystems. EURASIP Journal on Information Security, 1.

Tiziano Bianchi, Alessandro Piva, and Mauro Barni. 2009b. On the implementation of the discrete Fourier
transform in the encrypted domain. IEEE Transactions on Information Forensics and Security 4, 1,
86–97.

Tiziano Bianchi, Alessandro Piva, and Mauro Barni. 2010. Composite signal representation for fast and
storage-efficient processing of encrypted signals. IEEE Transactions on Information Forensics and Se-
curity 5, 1, 180–187.

George Robert Blakley and others. 1979. Safeguarding cryptographic keys. In Proceedings of the National
Computer Conference, Vol. 48. 313–317.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully homomorphic encryption
without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.
ACM, New York, NY, 309–325.

Antoni Buades, Bartomeu Coll, and Jean Michel Morel. 2004. On image denoising methods. CMLA Preprint
5.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A review of image denoising algorithms, with
a new one. Multiscale Modeling & Simulation 4, 2, 490–530.

Stanley H. Chan, Todd Zickler, and Yue M. Lu. 2014. Monte Carlo non-local means: Random sampling for
large-scale image filtering. IEEE Transactions on Image Processing 23, 8, 3711–3725.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.



40:22 X. Hu et al.

Ronald Cramer, Ivan Damgård, and Jesper B. Nielsen. 2001. Multiparty Computation from Threshold Ho-
momorphic Encryption. Springer, New York, NY.

Ivan Damgård and Mads Jurik. 2001. A generalisation, a simplication and some applications of Paillier’s
probabilistic public-key system. In Public Key Cryptography, Hideki Imai and Yuliang Zheng (Eds.).
Springer, 119–136.

Robert Huijie Deng, Xuhua Ding, Yongdong Wu, and Zhuo Wei. 2014. Efficient block-based transparent
encryption for H. 264/SVC bitstreams. Multimedia Systems 20, 2, 165–178.

Cunsheng Ding. 1996. Chinese Remainder Theorem. World Scientific, Singapore.
Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Transactions on Information Theory 31, 4, 469–472.
Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation. Stanford University,

Stanford, CA.
Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental game. In Proceedings of the

19th Annual ACM Symposium on Theory of Computing. ACM, New York, NY, 218–229.
Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of Computer and System Sciences

28, 2, 270–299.
Xianjun Hu, Weiming Zhang, Honggang Hu, and Nenghai Yu. 2014. Non-local denoising in encrypted images.

In Internet of Vehicles–Technologies and Services. Springer, New York, NY, 386–395.
Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards removing the curse of

dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing. ACM,
New York, NY, 604–613.

William B. Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics 26, 1, 189–206.

Christine Jost, Ha Lam, Alexander Maximov, and Ben Smeets. 2015. Encryption performance improvements
of the Paillier cryptosystem. Retrieved February 8, 2016 from https://eprint.iacr.org/2015/864.pdf.

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography. Chapman & Hall/CRC
Cryptography and Network Security Series, Boca Raton, FL.

Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. 2012. Privacy via the
Johnson-Lindenstrauss transform. arXiv preprint arXiv:1204.2606.

Reginald L. Lagendijk, Zekeriya Erkin, and Mauro Barni. 2013. Encrypted signal processing for privacy
protection: Conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal
Processing Magazine 30, 1, 82–105.

Ankita Lathey and Pradeep K. Atrey. 2015. Image enhancement in encrypted domain over cloud. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM’15) 11, 3, 38.

Ankita Lathey, Pradeep K. Atrey, and Nishant Joshi. 2013. Homomorphic low pass filtering on encrypted
multimedia over cloud. In Proceedings of the IEEE 7th International Conference on Semantic Computing
(ICSC’13). IEEE, 310–313.

Peter Mell and Tim Grance. 2009. Draft NIST working definition of cloud computing. Referenced on June.
3rd, 2009 Online at http://csrc.nist.gov/groups/SNS/cloud-computing/index.html.

Claudio Orlandi. 2011. Is multiparty computation any good in practice? In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP’11). IEEE, 5848–5851.

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In Advances
in cryptology (EUROCRYPT’99). Springer, 223–238.

Kui Ren, Cong Wang, Qian Wang, and others. 2012. Security challenges for the public cloud. IEEE Internet
Computing 16, 1, 69–73.

Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. On data banks and privacy homomorphisms.
Foundations of Secure Computation 32, 4, 169–178.

Sayed M. Saghaian, Nejad Esfahani, Ying Luo, and S.-C. S. Cheung. 2012. Privacy protected image denoising
with secret shares. In Proceedings of the 2012 19th IEEE International Conference on Image Processing
(ICIP’12). IEEE, 253–256.

Adi Shamir. 1979. How to share a secret. Communications of the ACM 22, 11, 612–613.
Andrew Chi-Chih Yao. 1982. Protocols for secure computations. In FOCS, Vol. 82. 160–164.
Peijia Zheng and Jiwu Huang. 2011. Implementation of the discrete wavelet transform and multiresolu-

tion analysis in the encrypted domain. In Proceedings of the 19th ACM International Conference on
Multimedia. ACM, New York, NY, 413–422.

Peijia Zheng and Jiwu Huang. 2013a. Discrete wavelet transform and data expansion reduction in homo-
morphic encrypted domain. IEEE Transactions on Image Processing 22, 6, 2455–2468.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.

https://eprint.iacr.org/2015/864.pdf
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html


Secure Nonlocal Denoising in Outsourced Images 40:23

Peijia Zheng and Jiwu Huang. 2013b. Walsh-Hadamard transform in the homomorphic encrypted domain
and its application in image watermarking. In Information Hiding, Jessica Fridrich (Ed.). Springer,
240–254.

Hongchao Zhou and Gregory Wornell. 2014. Efficient homomorphic encryption on integer vectors and its
applications. In Proceedings of the Information Theory and Applications Workshop (ITA’14). IEEE, 1–9.

Received August 2015; revised November 2015; accepted December 2015

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 40, Publication date: March 2016.


