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Reversible Data Hiding in Encrypted Images
by Reversible Image Transformation
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Abstract—With the popularity of outsourcing data to the cloud,
it is vital to protect the privacy of data and enable the cloud server
to easily manage the data at the same time. Under such demands,
reversible data hiding in encrypted images (RDH-EI) attracts more
and more researchers’ attention. In this paper, we propose a novel
framework for RDH-EI based on reversible image transformation
(RIT). Different from all previous encryption-based frameworks,
in which the ciphertexts may attract the notation of the curious
cloud, RIT-based framework allows the user to transform the
content of original image into the content of another target
image with the same size. The transformed image, that looks
like the target image, is used as the “encrypted image,” and is
outsourced to the cloud. Therefore, the cloud server can easily
embed data into the “encrypted image” by any RDH methods for
plaintext images. And thus a client-free scheme for RDH-EI can
be realized, that is, the data-embedding process executed by the
cloud server is irrelevant with the processes of both encryption and
decryption. Two RDH methods, including traditional RDH scheme
and unified embedding and scrambling scheme, are adopted to
embed watermark in the encrypted image, which can satisfy
different needs on image quality and large embedding capacity,
respectively.

Index Terms—Image encryption, outsoured storage in cloud,
privacy protection, reversible data hiding (RDH), reversible image
transformation (RIT).

I. INTRODUCTION

NOWADAYS outsourced storage by cloud becomes a more
and more popular service, especially for multimedia files,

such as images or videos, which need large storage space. To
manage the outsourced images, the cloud server may embed
some additional data into the images, such as image category
and notation information, and use such data to identify the own-
ership [1] or verify the integrity of images. Obviously, the cloud
service provider has no right to introduce permanent distortion
during data embedding into the outsourced images. Therefore,
reversible data hiding (RDH) technology is needed, by which
the original image can be losslessly recovered after the embed-
ded message is extracted. This technique is also widely used in
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medical imagery [2], military imagery and law forensics, where
no distortion of the original cover is allowed.

So far, many RDH methods on images have been proposed.
In essence, all these methods can be viewed as a process of
semantic lossless compression [3], [4], in which some space is
saved for embedding extra data by losslessly compressing the
image. Herein, “semantic compression” means that the com-
pressed image should be close to the original image, and thus
one can get a marked image with good visual quality. Because
the residual part of images, e.g., the prediction errors (PE), has
small entropy and can be easily compressed, almost all recent
RDH methods first generate PEs as the host sequence [5]–[7],
and then reversibly embed the message into the host sequence
by modifying its histogram with methods like histogram shifting
[8] or difference expansion [9]. Recently, Zhang et al. proposed
the optimal histogram modification algorithm [4], [10] for RDH
by estimating the optimal modification probability [11], [12].

On the other hand, cloud service for outsourced storage makes
it challenging to protect the privacy of image contents. For
instance, recently many private photos of Hollywood actress
leaked from iCloud.1 Although RDH is helpful for managing
the outsourced images, it cannot protect the image content. En-
cryption is the most popular technique for protecting privacy. So
it is interesting to implement RDH in encrypted images (RDH-
EI), by which the cloud server can reversibly embed data into the
image but cannot get any knowledge about the image contents.
Inspired by the needs of privacy protection, many methods have
been presented to extend RDH methods to encryption domain.
From the viewpoint of compression, these methods on RDH-EI
belong to the next two frameworks [13]: Framework I “vacating
room after encryption (VRAE)” and Framework II “reserving
room before encryption (RRBE).”

In the framework ‘VRAE,” the cloud server embeds data by
losslessly vacating room from the encrypted images by using the
idea of compressing encrypted images [14], [15]. Compression
of encrypted data can be formulated as source coding with side
information at the decoder [14]. Usually the side information is
the correlation of plaintexts that is exploited for decompression
by the decoder. In [16], Zhang divided the encrypted image into
several blocks. By flipping 3 LSBs (least significant bits) of
the half of pixels in each block, room can be vacated for the
embedded bit. The data extraction and image recovery proceed
by finding which part has been flipped in one block. This pro-
cess can be realized with the help of spatial correlation in the
decrypted image. Hong et al. [17] ameliorated Zhang’s method
at the decoder side by further exploiting the spatial correlation

1“2014 celebrity photo hack,” Aug. 31, 2014. [Online]. Available: http://
en.wikipedia.org/wiki/2014_celebrity_photo_hack, accessed on Jun. 2016.
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using a different estimation equation and side match technique.
For both methods in [16] and [17], decrypting image and ex-
tracting data must be jointly executed. Recently, Zhou et al.
[18] proposed a novel RDH-EI method for joint decryption and
extraction, in which the correlation of plaintexts is further ex-
ploited by distinguishing the encrypted and non-encrypted pixel
blocks with a two-class SVM classifier. To separate the data ex-
traction from image decryption, Zhang [19] emptied out space
for data embedding by directly using the typical manner of ci-
phertext compression, that is, compressing the encrypted pixels
in a lossless manner by using the syndromes of parity-check
matrix of channel codes. Qian et al. [20] improved the method
of [19] by adopting low density parity check based Slepian–
Wolf encoder which is also one of the most efficient methods
for ciphertext compression.

In the framework “RRBE,” the image owner first empties out
room by using RDH method in the plain images. After that,
the image is encrypted and outsourced to the cloud and the
cloud server can freely embed data into the reserved room of
the encrypted image. The first method under RRBE framework
was presented in [13], which reserves room by embedding LSBs
of some pixels into other pixels with a traditional RDH method
and then encrypts the image, so the positions of these LSBs in
the encrypted image can be used to embed data. The method in
[13] implies that the purpose of RDH-EI can also be realized
by RDH for plaintext images. Following this idea, Zhang et al.
[21] reserve room in images by generating PE and modifying
the histogram of PE, which is the most popular technique used
in RDH for plaintext images. To protect confidentiality, a special
encryption scheme is designed in [21] to encrypt the PEs. Cao
et al. [22] improved the methods of [13], [21] by patch-level
sparse representation which can yield PEs with smaller entropy
and thus result in a large hiding room.

For both frameworks, VRAE and RRBE, the image owner
will send a ciphertext-formed image to the cloud. However, the
ciphertexts with the special form of messy codes are easy to
cause the attention of the cloud server who may try to dig out
information on the encryption users. In fact, the cloud server
is assumed to be curious to collect information from the out-
sourced files [23], and obviously the encrypted images are more
attractive to a curious cloud server. Therefore, the fact, that the
user is outsourcing encrypted images, itself is also a kind of
privacy of the user, which should be protected.

In this paper, we propose a novel framework for RDH-EI by
using reversible image transformation (RIT). RIT transfers the
semantic (content) of the original image I into the semantic
of another image J , and “reversibility” means that I can be
losslessly restored from the transformed image. Therefore RIT
can be viewed as a special encryption scheme, called “Semantic
Transfer Encryption.” In other words, the resultant transformed
image which is also the encrypted image E(I) will look similar
with J . The image J is selected to be irrelevant with I but has the
same size of I , and thus the content of the image I is protected.
Because the “encrypted image” is in a form of plaintext, it will
avoid the notation of the cloud server, and the cloud server can
easily embed data into the “encrypted image” with traditional
RDH methods for plaintext images.

The rest of the paper is organized as follows. In Section II,
we compare the RIT-based framework with previous frame-
works and summarize the main contributions of the novel frame-
work. A method of RIT is elaborated in Section III, and two
kinds of RDH methods on transformed images are proposed in
Section IV. The paper is concluded with a discussion in
Section V.

II. COMPARISON BETWEEN THREE FRAMEWORKS

Fig. 1 depicts the differences between the novel framework
and previous frameworks, which shows that, by frameworks
VRAE and RRBE, the user’s images are stored in the form of
ciphertext in the cloud account, while by the RIT-based frame-
work, the image is stored in a form of plaintext.

In the framework VRAE shown in Fig. 1(a), such as schemes
in [16] and [17], the image owner (the sender) encrypts the im-
age I into E(I) with a key K. The cloud server embeds data by
compressing the encrypted image E(I) and generates Ew (I)
that is stored in the cloud. When getting a retrieval request, the
cloud server returns E′

w (I) to the receiver, maybe an authorized
third party, who generates I through a process of joint decom-
pression and decryption with the key K. Herein, E′

w (I) may
be just Ew (I) or a modified version obtained by removing the
embedded data. Note that the cloud server cannot restore E(I)
from Ew (I), since decompression should be joined with de-
cryption with the help of K. In this framework, the complexity
is taken on by the receiver who must join the process of de-
compression and decryption to get the original image. In other
words, the compression-based RDH method used by the cloud
server should be specified together with the receiver, i.e., the
RDH method is receiver-related.

In the framework RRBE shown in Fig. 1(b), such as schemes
in [13], [21], the image owner (the sender) reserves room from
the image I and encrypts it into E(I) with a key K, and then
sends it to the cloud server who embeds data into the reserved
room and generates Ew (I). Ew (I) is stored in the cloud, from
which the cloud server can extract the data that is used for
management. When an authorized user (the receiver) wants to
retrieve the image, the cloud server can restore E(I) from Ew (I)
and send E(I) to the user who can decrypt E(I) and get I with
the key K. In the framework RRBE, the complexity is borne by
the sender who should reserve room for RDH by exploiting the
redundancy within the image and thus the RDH method used by
the cloud should be specified with the sender, that is, the RDH
method used by cloud is sender-related.

In the RIT based framework depicted in Fig. 1(c), the im-
age I is “encrypted” into another plaintext image E(I) with
a key K, so all images of the users, encrypted or not, will be
stored in the cloud in the form of plaintexts. The cloud server
can embed/extract data into/from E(I) with any classical RDH
method for plaintext images. And E(I) can be recovered from
the watermarked image Ew (I) by the cloud and sent back to
the authorized user who anti-transforms it to get the original
image I with the key K. The main contributions of this novel
framework include:

1) the idea of RIT is exploited for RDH-EI, by which the
user can outsource the encrypted image to the cloud in a
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Fig. 1. Comparison between three frameworks of RDH-EI. (a) Framework VRAE. (b) Framework RRBE. (c) RIT-based framework.

form of plaintext and thus it will avoid the attention of the
curious cloud; and

2) in the RIT based framework, the cloud server can easily
embed data into the “encrypted image” by arbitrarily se-
lecting RDH methods for plaintext images such as those
in [4], [6], [7], [10]. In other words, the RDH used by the
cloud is irrelevant with both the sender and receiver, which
is called a client-free RDH-EI scheme by us. “Client free”
is important for the scenarios of public clouds, in which
it is hard for the cloud server to ask the clients how to
encrypt or decrypt their data, because the cloud is thought
to be only semi-honest [23].

III. AN EXAMPLE ON REVERSIBLE IMAGE TRANSFORMATION

In this section, we propose a method of RIT to encrypt spatial
images, which is inspired by the technique of image transfor-
mation proposed by Lee and Tsai [25]. Lee et al.’s method can
transform the original image to a freely-selected target image
with the same size, yielding a secret-fragment-visible mosaic
image defined in [24]. But the original image cannot be restored
in a lossless way. It is not reversible, so it is not suitable for the
scenario of RDH-EI. We will modify Lee et al.’s method to be
reversible and obtain an encrypted image which looks like the
target image.

For color images, we transform the color channel R, G, and
B respectively in the same manner. So we just take gray images
(one channel) as an example to describe the method. For an
original image I , we randomly select a target image J having
the same size with I from an image database.

Firstly, we divide the original image I and the target
image J into N non-overlapping blocks respectively, and
then pair the blocks of I and J as a sequence such that
(B1 , T1), . . . , (BN , TN ), where Bi is an original block of I
and Ti is the corresponding target block of J , 1 ≤ i ≤ N . We
will transform Bi toward Ti and generate a T ′

i similar to Ti .
After that, we replace each Ti with T ′

i in the target image J to
get the transformed image J ′. Finally we embed some accesso-
rial information (AI) into J ′ with an RDH method and generate
the ultimate “encrypted image” E(I). These AI is necessary for
recovering I from J ′. Before being embedded, these AI will

be compressed and encrypted with a key K shared with the
receiver, so only a receiver having K can decrypt E(I).

The proposed transformation process consists of three steps:
block pairing, block transformation and AI embedding. We will
mainly elaborate the first two steps in the sections and the third
step can be implemented by any traditional RDH method.

A. Block Pairing

To make the transformed image J ′ look like target image
J , we hope, after transformation, each transformed block will
have close mean and standard deviation (SD) with the target
block. So we first compute the mean and SD of each block of
I and J respectively. Let a block B be a set of pixels such that
B = {p1 , p2 , . . . , pn}, and then the mean and SD of this block
is calculated as follows:

u =
1
n

n∑

i=1

pi (1)

σ =

√√√√ 1
n

n∑

i=1

(pi − u)2 . (2)

When matching blocks between original image and target im-
age, we hope two blocks with closest SDs to be a pair. In Lee
et al.’s method, the blocks of original image and target image are
sorted in ascending order according to their SDs respectively,
and then each original block is paired up with a corresponding
target tile in turn according to the order. To recover the original
image from the transformed image, the positions of the original
blocks should be recorded and embedded into the transformed
image with an RDH method. If the image is divided into N
blocks, N�log N� bits are needed to record block indexes. Ob-
viously, the smaller the block size is, the better the quality of
transformed image will be, but which will result in a large N .
Therefore, the amount of information used to record the index
for each block may be so large that it will cause much distortion
when embedding these information into the transformed image.
In fact there may not exist enough redundant space to store these
additional information. For instance, if we divide a 1024 × 1024
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Fig. 2. Distribution of SDs of 4 × 4 block for various sizes of natural images.

image into 4 × 4 blocks, 216 × 16 bits are needed to record the
positions of blocks.

To compress the block indexes, we first classify the blocks
according to their SD values before pairing them up. In fact,
we found that the SD values of most blocks concentrate in
a small range close to zero and the frequency quickly drops
down with the increase of the SD value as displayed in Fig. 2,
which is depicted from various sizes of 10 000 images from
the BossBase image database.2 Therefore, we divide the blocks
into two classes with unequal proportions: class 0 for blocks
with smaller SDs, and class 1 for blocks with larger SDs, and
pair up the blocks belonging to the same class. By assigning the
majority of blocks to the class 0, we can avoid the large deviation
of SDs between a pair of blocks and efficiently compress the
indexes at the same time.

In this paper, we propose to divide both the original and target
images into non-overlapping 4 × 4 blocks and calculate the SDs
of each block. We first divide the blocks of original image I into
2 classes according to the quantile of SDs. Denote that the %α
quantile of SDs by Nα . We assign the blocks with SDs∈ [0, Nα ]
to “Class 0,” and blocks with SDs ∈ (Nα,N100 ] to “Class 1.”
And then we will scan the blocks in the raster order, i.e., from
left to right and from top to bottom, and assign a class label, 0
or 1, to each block.

Next, we label the blocks of target image based on the classes’
volumes of original image. Assuming that the ith class in the
original image includes ni blocks for i = 0 or 1, we scan the
target image in the raster order, and label the first n0 blocks with
the smallest SDs as Class 0, and the rest n1 blocks as Class 1. As
a result, each class in the target image includes the same number
of blocks as the corresponding class in the original image. We
pair the original block up with target block in the following
manner. Scan the original image and target image in raster order
respectively and pair the jth block of the class i in the original
image up with the jth block of the class i in the target image for
i = 0, 1 and j = 1, . . . , ni .

2BossBase image database,” Nov. 7, 2014. [Online]. Available: http://agents.
fel.cvut.cz/stegodata/RAWS, accessed on 7 Nov. 2016.

A simple example on the proposed block pairing method is
shown in Fig. 3, in which the image only consists of 10 blocks.
By setting α = 70, we assign 7 blocks with smallest SDs into
class 0, and the rest 3 blocks into class 1 in the original image.
In the target image, although the 8th and 9th block have the
same SD value 5, the 8th block is assigned to class 0 but the 9th
block is assigned to the class 1, because class 0 can only include
7 blocks as determined by the class 0 of the original image.
After labeling the class indexes, we get a class index table (CIT)
for original image and target image respectively, which will be
helpful for understanding the procedure of block pairing.

According to the pairing rule, the first block of the original
image is paired up with the forth block of the target image,
because both of them is the first block of class 1 as shown in the
CIT; the second block of original image is paired up with the
ninth block of target image, because both of them is the second
block of class 1, and so on. The pairing result is listed in Table I,
which can be generated according to the CIT of original image
and the CIT of the target image.

For each pair of blocks (B, T ), as we will see in the next
section, the original block B will be transformed to target block
T by mean shifting and block rotation, yielding T ′. By replacing
each T with T ′ in the target image, the sender will generate the
transformed image. Note that both operations of mean shifting
and block rotation will not change the SD value, so T ′ has the
same SD as B. Therefore, the SDs in transformed image is only
a permutation of those in original image. When classifying the
blocks of transformed image according to %α quantile of SDs,
the receiver can get a CIT that is same with the CIT of target
image as shown in Fig. 3(b) and (c).

Therefore, to restore the original image from the transformed
image, the receiver only needs to know the CIT of the origi-
nal image. In fact, by CIT of original image and the CIT of
transformed image (which is also the CIT of target image), the
receiver can reconstruct Table I perfectly. Then according to the
table he will know how to rearrange the transformed blocks to
restore the original blocks. In the example of Fig. 3, the first
block of the transformed image should be put back to position
3, and the second block should be put back to position 4 as
indicated in Table I.

Note that CIT can be efficiently compressed because the ratio
of 0 and 1 is bias. If the image is divided into N blocks, and
these blocks are divided into two classes with %α quantile
of SDs, we need N · H(α/100) bits to record S, where H
is the binary entropy function. For instance, if we set α = 75
and divide a 1024 × 1024 image into 4 × 4 blocks, we only
need 216 × H(0.75) ≈ 216 × 0.81 bits to record the positions
of blocks, which is much less than 216 × 16 bits used by the
method in [25]. The compressed CIT will be encrypted and
embedded into the transformed image as a part of AI.

B. Block Transformation

By the block pairing method described above, in each pair
(B, T ), the two blocks have close SD values. Therefore, when
transforming B towards T , we only need a mean shifting trans-
formation that is reversible. However, the transformation used in
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Fig. 3. Example of block pairing. (a) Original image. (b) Target image. (c) Transformed image.

TABLE I
BLOCK PAIRING RESULT OF THE EXAMPLE IN FIG. 3

Block index of original image 1 2 3 4 5 6 7 8 9 10
Block index of target image 4 9 1 2 3 10 5 6 7 8

Lee and Tsai’s method [25] is not reversible because it changes
the mean and SD at the same time.

Let the original block B = {p1 , p2 , · · · , pn}, and the corre-
sponding target block T = {p′1 , p′2 , · · · , p′n}. With Eq. (1), we
calculate the means of B and T and denote them by uB and uT

respectively.
The transformed block T ′ = {p′′1 , p′′2 , · · · , p′′n} is generated

by the mean shifting as follows:

p′′i = pi + uT − uB (3)

where (uT − uB ) is the difference between the means of target
block and original block. We want to shift each pixel value of
original block by amplitude (uT − uB ) and thus the transformed
block has the same mean with the corresponding target block.
However, because the pixel value p′′i should be an integer, to
keep the transformation reversible, we round the difference to
be the closest integer as

Δu = round(uT − uB ) (4)

and shift the pixel value by Δu, namely, each p′′i is gotten by

p′′i = pi + Δu. (5)

Note that the pixel value p′′i should be an integer between
0 and 255, so the transformation (5) may result in some over-
flow/underflow pixel values. To avoid such transformed blocks
abstained by (5), we assume that the maximum overflow pixel
value is OVmax for Δu ≥ 0 or the minimum underflow pixel
value is UNmin for Δu < 0. If overflow/underflow occurs in
some blocks, we eliminate them by modifying Δu

Δu =

{
Δu + 255 − OVmax , if Δu ≥ 0

Δu − UNmin , if Δu < 0
. (6)

We use the modified Δu to shift the pixels of block B, and thus
all the pixels’ values are controlled into the range of [0, 255].

However the range of Δu’s value is still very large, which cannot
be efficiently compressed. Thus we further modify Δu as

Δu =

⎧
⎪⎪⎨

⎪⎪⎩

λ × round

(
Δu

λ

)
, if Δu ≥ 0

λ × floor

(
Δu

λ

)
+

λ

2
, if Δu < 0

(7)

in which the quantization step, λ, is an even parameter. Then it
just needs to record Δu

′
= 2|Δu|/λ, by which it has the advan-

tage of not to record the sign of Δu. Because when Δu
′

is an
even number it means Δu ≥ 0 and when Δu

′
is an odd number

it means Δu < 0. Since when λ is large the amount of infor-
mation recording Δu

′
will be small but the offset between the

modified Δu and the original Δu will be large, a tradeoff must
made by choosing λ. We set λ = 8 in the following experiments.

Finally, to maintain the similarity between the transformed
image and target image as much as possible, we further rotate
the shifted block into one of the four directions 0◦, 90◦, 180◦ or
270◦. The optimal direction is chosen for minimizing the root
mean square error (MSE) between the rotated block and the
target block.

After shifting transformation and rotation, we get a new block
T ′. With these new blocks, we replace the corresponding blocks
in the target image and generate the transformed image J ′. The
parameters, Δu

′
and rotation directions, will be compressed, en-

crypted and then embedded into the transformed image J ′ as AI
to output the “encrypted image” E(I) called in this paper image.

The transform and anti-transformation procedures of the pro-
posed method are described in Algorithm 1 and Algorithm 2
respectively.

C. Experimental Results on RIT

In this section experimental results on the proposed RIT
method are presented. 100 pairs of images are randomly chosen
as our test images from the BossBase image database.2 Firstly all
the images are preprocessed to get the same size of 1024 × 1024
pixels.

Since in the RIT method the parameter α has an effect on
the AI payload, we give the experiment to select a better α
to improve the overall performance. The result is depicted in
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Algorithm 1: Procedure of Transformation.
Input: An original image I and a secret key K.
Output: The encrypted image E(I).
1) Select a target image J having the same size as I from

an image database.
2) Divide both I and J into several non-overlapping 4 × 4

blocks. Assuming that each image consists of N
blocks, calculate the mean and SD of each block.

3) Classify the blocks with %α quantile of SDs and
generate CITs for I and J respectively. Pair up blocks
of I with blocks of J according the CITs as described
in Section III-A.

4) For each block pair (Bi, Ti) (1 ≤ i ≤ N ), compute the
mean difference Δui . Add Δui to each pixel of Bi and
then rotate the block into the optimal direction θi

(θi ∈ {0◦, 90◦, 180◦ 270◦}, which yields a transformed
block T ′

i .
5) In the target image J , replace each block Ti with the

corresponding transformed block T ′
i for 1 ≤ i ≤ N and

generate the transformed image J ′.
6) Collect Δui’s and θi’s for all block pairs, and compress

them together with the CIT of I . Encrypt the
compressed sequence and the parameter α by a
standard encryption scheme such as AES with the
key K.

7) Take the encrypted sequence as AI, and embed AI into
the transformed image J ′ with an RDH method such as
the one in [7], and output the encrypted image E(I).

Algorithm 2: Procedure of Anti-transformation.

Input: The encrypted image E(I) and the key K.
Output: The original image I .
1) Extract AI and restore the transformed image J ′ from

E(I) with the RDH scheme in [7].
2) Decrypt AI by AES scheme with the key K, and then

decompress the sequence to obtain CIT of I , Δui , θi

(1 ≤ i ≤ N ) and α.
3) Divide J ′ into non-overlapping N blocks with size of

4 × 4. Calculate the SDs of blocks, and then generate
the CIT of J ′ according to the %α quantile of SDs.

4) According to the CITs of J ′ and I , rearrange the blocks
of J ′ as described in Section III-A.

5) For each block T ′
i of J ′ for 1 ≤ i ≤ N , rotate T ′

i in the
anti-direction of θi , and then subtract Δui from each
pixel of T ′

i , and finally output the original image I .

Fig. 4. The smaller the space occupied by AI is, the better the
encrypted images visual quality will be. For α in the range of
[0.05,0.95], the variation of AI payload seems to be not large.
And it can be seen that when α is 0.75, the AI payload reaches
the valley value. So in the following experiments, α is set 0.75.

To illustrate the visual effect of the RIT method, experimen-
tal results of five pairs of test images labeled as A, B, C, D
and E are given from Fig. 5 to Fig. 8. In Experiment A, we list
the “decrypted images” with the right key and the wrong key

Fig. 4. Effect of AI payload for different α values.

respectively. Because the original image can be losslessly re-
stored with the correct key, we did not list the “decrypted im-
ages” in the rest experiments. We also list the marked images
with RDH in experiment D and E, which will be further dis-
cussed in the next section.

The encrypted images E(I) obtained by RIT look like mosaic
images with their appearance similar to the target images. Since
the difference between the encrypted image and the target image
is small, such visual effect will meet the requirement of cam-
ouflage, which means that the original image content is totally
covered by a target image content. Even if the attacker recog-
nizes the camouflage, without the secret key K of AES, it is also
unfeasible to decrypt the AI that is necessary for restoring the
original image. And thus the attacker only gets a meaningless
image as shown in Fig. 5(e).

The quality of the encrypted image E(I) is measured by
the peak-signal-to-noise ratio (PSNR) defined as PSNR =
10 × log10(

2552

M SE ), where the MSE for an m × n image is
computed by formula MSE = 1

m×n

∑m
i=1

∑n
j=1 (xij − yij)

2

in which xij and yij denote the pixel values of the target image
J and encrypted image E(I), respectively. The result of five
pairs of images listed is displayed in Table II. It can been seen
that AI occupies about 0.521 bits per pixel (bpp) on average.
Such large overhead cause large distortion to some extent, but
the encrypted image E(I) still can keep an acceptable quality
with the PSNR value about equal to 30 dB, which is an accepted
visual effect. Besides we also give the average payload of AI
and PSNR value of 100 randomly selected tested images, 0.529
bpp and 27.2 dB respectively.

IV. RDH IN ENCRYPTED IMAGE

RIT generates an encrypted image E(I), which has the ad-
vantage of keeping a meaningful form of the image compared
to traditional encryption methods. Therefore, it is free for the
cloud server to employ any classical RDH on the encrypted im-
age. Selecting what kind of RDH method depends on whether
to keep the image quality or not. In this section we simply adopt
two RDH methods, one is a traditional RDH that keeps the
quality of images and the other is a unified data embedding and
scrambling method that may greatly degrades image structures
for embedding large payload.
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Fig. 5. Experimental results of test images in Experiment A. (a) Original image. (b) Target image. (c) Encrypted image. (d) Decrypted image (right key).
(e) Decrypted image (wrong key).

Fig. 6. Experiment results of test images in Experiment B (top row) and Experiment C (bottom row). (a) Original image. (b) Target image. (c) Encrypted image.
(d) Original image. (e) Target image. (f) Encrypted image.

A. Traditional RDH on the Encrypted Image

It should be noted that any one of classical RDH method for
plaintext image can be implemented to embed and extract wa-
termark in the encrypted image E(I) in the RIT based scheme.
As an example, we select the method proposed by Dragoi and

Coltuc [7] to embed watermark into the encrypted image. Dragoi
et al.’s method is a typical PEE (prediction error expansion)
based RDH method, in which a new local least square (LLS)
predictor with high prediction accuracy is predicted. Obviously
the smaller the PE is, the higher the quality of marked image
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Fig. 7. Experimental results of test images in Experiment D. (a) Original image. (b) Target image. (c) Encrypted image. (d) Marked image (0.1 bpp). (e) Marked
image (0.5 bpp).

Fig. 8. Experimental results of test images in Experiment E. (a) Original image. (b) Target image. (c) Encrypted image. (d) Marked image (0.1 bpp). (e) Marked
image (0.5 bpp).

will be. The scheme of Dragoi et al. is briefly described as fol-
lows. For each pixel, a least square predictor is computed on a
square block centered on the pixel, which can adaptively make
use of every neighbor pixel’s distinction in a local region. The
most interesting aspect of the approach is the fact that the same

predictor can be realized at the receiver side, avoiding the need
of embedding a large amount of additional information. Hav-
ing predicted the current pixel, the prediction error (PE) will be
shifted for vacating room or be expanded for embedding one
message bit. For more details please refer to [7].
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TABLE II
SPACE OCCUPIED BY AI AND PSNRS OF THE ENCRYPTED IMAGES

Experiment A B C D E

AI (bpp) 0.523 0.499 0.521 0.554 0.508
PSNR (dB) 30.68 30.72 30.95 30.09 30.83

Fig. 9. Average PSNRs between encrypted images and marked images with
different embedding payloads for 100 pairs of test images by applying RDH.

Fig. 10. Illustration of CBP.

We depicted the average PSNR results of 100 test images
between the marked image and the encrypted image given dif-
ferent embedding payloads from 0.05 bpp to 0.5 bpp in Fig. 9.
It can be viewed that the average PSNR of 100 encrypted im-
ages maintains a high value. In Figs. 7 and 8, marked images of
test image D and E after embedding 0.1 and 0.5 bpp payloads
are displayed respectively. For both experiments it is hard to
distinguish the marked image from the encrypted image.

B. Unified Embedding and Scrambling (UES) on the
Encrypted Image

From the result of Table II in Section III-C, the amount of AI
is already large. So it is hard for traditional RDH methods to
earn large embedding capacity while still keeping high visual
quality. To meet the demand of large payloads, the cloud server
can insert watermark with a unified embedding and scrambling

Fig. 11. Illustration of multi-level embedding by UES.

Fig. 12. Average SSIM between encrypted images and marked images with
different embedding payloads for 100 pairs of test images by applying UES.

method called UES [26], which deliberately degrades image
structure. In such way a marked image with meaningless form
may be produced just like the way of traditional encryption
based RDH-EI schemes. In fact, in some application cases, the
cloud server does not need to consider the quality of marked
image as done in all previous RDH-EI schemes [13], [16]–[22],
only if the cloud server can losslessly restore the encrypted
image E(I) and send it back to the users.

The UES scheme consists of checkerboard based prediction
(CBP) tailored for compress coding algorithm. As shown in
Fig. 10, all the pixels are firstly divided into three sets: the
Circle set, the Cross set and the Triangle set. The Circle set will
not be changed, which is reserved as reference points to predict
the pixels belonging to the Cross set and Triangle set. The way
of pixel prediction contains two steps, shown in Fig. 10 (1) and
(2). In the first step the Cross set is predicted by rounding the
result of (8) and in the second step the Triangle set is predicted
by rounding the result of (9)

X =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(NW + SE)/2, if ||NE − SW || > ||NW − SE||
(NE + SW )/2, if ||NE − SW || < ||NW − SE||
(NW + NE

+ SW + SE)/4, otherwise
(8)
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Fig. 13. Distortion of the encrypted image with various payloads by applying UES in the test images of Experiment A. (a) Encrypted image. (b) Marked image
(1.0 bpp). (c) Marked image (1.7 bpp). (d) Marked image (2.4 bpp).

X =

⎧
⎪⎨

⎪⎩

(W + E) /2 , if ||N − S|| > ||W − E||
(N + S)/2 , if ||N − S|| < ||W − E||
(W + N + E + S)/4, otherwise.

(9)
After prediction, data embedding can be executed as follows:
1) compute the prediction errors;
2) compress prediction errors using run-length and Huffman

coding; and
3) directly insert the compressed prediction errors and the

watermark into the predicted locations by replacing the
predicted pixels.

At the receiver side, after extracting the watermark, the de-
coder needs to decompress the prediction error and add it to
predicted pixel value by CBP, which will losslessly generate the
pixel value. Note that the original UES method in [26] is not re-
versible, because, to enlarge payloads, it replaces the prediction
error eij with a truncated value ẽij . Herein, we modify UES to
be reversible by using eij directly.

Since the reference pixels (circle set) remains unchanged both
at embedding and extraction, they can be extracted to make
up a sub-sampled image. Then the sub-sampled image can be
employed by UES again to further embed more data, which
is called two-level embedding. In fact, such process can be
repeated and realize multi-level embedding as shown in Fig. 11,
which will further degrade the visual quality of the image.

Note that the embedding payload of UES can be controlled
by two parameters, the prediction error threshold T determining
which pixel can be replaced by external message and the embed-
ding level L. Obviously the payload increases with the growth
of T and L because more locations can be used for data embed-
ding. We evaluate the quality of image structure subjectively by
visual inspection and objectively measured by SSIM [27] be-
tween marked image and encrypted image. Fig. 12 shows that
the average SSIM values for all test images are gradually de-
creasing with increasing payloads. In addition in Fig. 13 we use
test images in Experiment A as an example to show the distortion
level for various embedding payloads. With the increase of em-
bedding payload, the image become more and more blurred. It
is verified that UES can greatly expand the embedding capacity
available for the cloud server.

V. CONCLUSION AND FUTURE WORK

In this paper we propose a novel framework for RDH-EI based
on RIT. Different from previous frameworks which encrypt a
plaintext image into a ciphertext form, RIT-based RDH-EI shifts
the semantic of original image to the semantic of another image
and thus protect the privacy of the original image. Because the
encrypted image has the form of a plaintext image, it will avoid
the notation of the curious cloud server and it is free for the
cloud sever to choose any one of RDH methods for plaintext
images to embed watermark.

We realize an RIT based method by improving the image
transformation technique in [25] to be reversible. By RIT, we
can transform the original image to an arbitrary selected target
image with the same size, and restore the original image from the
encrypted image in a lossless way. Two RDH methods including
PEE-based RDH and UES are adopted to embed watermark in
the encrypted image to satisfy different needs on image quality
and embedding capacity.

Several interesting problems can be considered in the future,
including how to improve the quality of the encrypted image
and how to extend idea of RIT to audio and video.
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