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In order to realize the patient privacy protection in medical image, opposite to traditional reversible data 
hiding (RDH) methods which prior to embed message into the smooth area for pursuing high PSNR value, 
the proposed method priors to embed message into the texture area of the medical images for improving 
the quality of the details information and helping accurate diagnosis. Furthermore, in order to decrease 
the embedding distortion while enhancing the contrast of the texture area, this paper also proposes a 
message sparse representation method. Experiments implemented on medical images showed that the 
proposed method enhances the contrast of texture area when compared with previous methods.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Reversible data hiding (RDH) is one kind of information hiding 
techniques with the characteristics such that not only the secret 
message needs to be precisely extracted, but also the cover image 
itself should be restored lossless [1–5]. This reversibility is im-
portant in some special scenarios such as medical imagery [6,7], 
military imagery and law forensics. In these applications, the cover 
is too precious or too important to be damaged.

Most of the state-of-the-art RDH methods are aim to provid-
ing a good performance in higher data embedding capacity and 
lower the distortion of the marked image [8]. Based on this pur-
pose, many RDH methods on images have been proposed. All these 
methods are realized through a process of semantic lossless com-
pression [1,9], in which some space is saved for embedding extra 
data by lossless compressing the image. This compressed image 
should be “close” to the original image, so one can get a marked 
image with good visual quality. The residual part of images, e.g., 
the prediction errors (PE), has small entropy and thus can be easily 
compressed. Therefore, almost all recent RDH methods first gener-
ate PEs as the host sequence [10–15], and then reversibly embed 
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the message into the host sequence by modifying its histogram 
with methods like histogram shifting (HS) [16,17] or difference ex-
pansion (DE) [18]. Usually the prediction errors histogram (PEH) 
has a sharp distribution centered at zero. Another typical tech-
nique to get a good host sequence for RDH is sorting [11,19,20]
or pixel selection [15], which gives priority of modifications to PEs 
in smooth regions. Because the pixels in smooth areas can be ac-
curately predicted, so a sharper histogram can be obtained in such 
areas. In a word, the existing RDH methods used two techniques 
for pursuing high PSNR value, one is give priority of modifications 
to PEs in smooth regions, the other one is sort pixels based on 
smooth degree.

In most literatures on RDH, the quality of the marked image is 
assessed by peak signal-to-noise ratio (PSNR), with which a modi-
fication in smooth region is equally risk as a modification in noisy 
region. Hence, most state-of-the-art RDH schemes prefer to em-
bed data into smooth area, which corresponded to middle region 
of PEH for pursuing high PSNR value. However, PSNR only depends 
on the quadratic sum of difference between original image and 
distortion image and had proved inconsistent with human visual 
perception in image quality assessment research [21]. Recently, in-
stead of pursuing high PSNR value, Wu et al. [22] and Gao et al. 
[23] proposed reversible image data hiding with contrast enhance-
ment, they all improved image visual quality through enhancing 
contrast of cover image. Wu et al.’s method applied HS scheme to 
select two highest bins of image histogram for data hiding and 
repeated this process until embedded all secret data, which in 
essence is a histogram equalization scheme for contrast enhance-
ment. However, it enhances contrast in the global spatial domain 
but cannot restore the details of the image. In some applications, 
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we need enhance the contrast of local area, such as in medical 
image enhancement. Gao et al.’s method embedded the data into 
spatial domain and IWT domain respectively, in which embedding 
procedure in spatial domain is same with Wu et al.’s method by 
adding the controlled threshold denoted by Trce = 0.55 and then 
embedded the other data into the detail subbands. However, due 
to the most of medical images includes a lot of smooth area, so 
the results in Gao et al.’s method are same as Wu et al.’s method 
for Trce less than 0.55.

In addition, in order to avoid hackers or attackers duplicated 
or revised medical information through the internet and to keep 
the medical image quality for accurate diagnosis, reversible data 
hiding plays an important role in medical images. As lot litera-
tures shown, most of the RDH in medical images are all aim to 
achieving high capacity and pursuing high PSNR value, which less 
considered the characteristics of the medical images. Due to ex-
isting large smooth regions in medical images, Osamah et al. [24]
divided medical image into smooth region and non-smooth region 
and applied a high embedding capacity scheme for the smooth 
region while applied traditional DE method for the non-smooth 
region. Similarity, Pai et al. [25] proposed an “region of interest” 
(ROI) based image hiding method which embeds secret data into 
non-ROI by an irreversible image hiding method and in ROIs by a 
reversible image hiding method. For some special medical image, 
Bao et al. [6] proposed tailored reversible data hiding schemes for 
the electronic clinical atlas by exploiting its inherent characteris-
tics, and Huang et al. [26] proposed a histogram shifting method 
for image reversible data hiding for high bit depth (16 bit) medical 
images.

For medical image processing, many literatures have pointed 
out that the change places and profiles are the interesting area in 
the medical image [27], namely, restoring the details information 
can improve image quality and help for accurate diagnosis. Moti-
vated by this idea, this paper aims to enhancing contrast of texture 
area while embedding data reversibly. Based on this goal, opposite 
to traditional RDH methods, the proposed method use two tech-
niques for improving image visual quality. One is give priority of 
modifications to PEs in texture regions by reversibly embedding 
data into two side bins of the PEH, the other one is sort pixels in 
a descending order based on texture degree. In addition, this pa-
per also proposed a message sparse representation method which 
inspirits from the decompression idea, to code the message for 
decreasing the embedding distortion. This work makes two con-
tributions: (1) Propose a message sparse representation method 
to code the message for improving hiding efficiency; (2) Propose 
a novel RDH scheme in medical images that not only can embed 
data reversibly but also can improve the details information of tex-
ture area in subjective perception.

This paper is organized as follows. Section 2 analyzes traditional 
image quality assess metric PSNR. In section 3, we elaborate the 
RDH scheme with enhanced contrast of texture area. The perfor-
mance of the proposed method is evaluated and compared with 
the other methods in Section 4, and conclusion is finally presented 
in Section 5.

2. Analyzing of the PSNR

Peak signal-to-noise ratio (PSNR) is a traditional standard in im-
age quality assessment (IQA). It assesses the quality of distortion 
image through calculating the pixel difference of the original im-
age and distortion image, such as

PSNR = 10 log10
L2

max × M × N
M∑ N∑

[Lin (m,n) − Lout (m,n)]2

, (1)
m=1 n=1
Fig. 1. An example of analyzing PSNR metric.

where Lin is the intensity of original image; Lout is the intensity of 
distortion image; Lmax is the maximum possible pixel intensity of 
the image, normally Lmax = 255.

As mentioned in Section 1, PSNR is often utilized as assessing 
metric in RDH method. However, it can’t consistent with human 
visual system that has been proved in the research area of IQA 
[21]. An example is shown in Fig. 1, which includes one origi-
nal image and three distortion images, three distortion images are 
added with original image’s similarity information, spatial infor-
mation and frequency information respectively based on original 
image [21]. The subjective visual perceptions of three distortion 
images are good, bad and neutral respectively. However, their PSNR 
values are almost same. The reason is PSNR only calculates the 
pixel difference between two images, and it lacks considering the 
structure information between neighbor pixels.

3. Proposed method

As we know, subjective perception is the final standard for as-
sessing image quality. In addition, image processing research had 
indicated that contrast enhancement is one of method for improv-
ing image quality, in which histogram stretching and histogram 
equalization are the two most common methods. In the present 
paper, we propose a RDH method in medical images with texture 
area enhancement based on the idea of histogram stretching. The 
proposed method consists of four parts: 1) rhombus prediction and 
texture-based sorting; 2) embedding scheme and enhancing con-
trast of texture area; 3) message sparse representation; 4) message 
extraction and cover image recovery.

3.1. Rhombus prediction and texture-based sorting

As mentioned in Section 1, many prediction methods have been 
applied to RDH. In order to sort the pixel according to the tex-
ture, this paper uses rhombus prediction pattern [11] to generate 
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Fig. 2. Rhombus prediction pattern.

PEs, which divides all pixels of the cover image into two sets de-
noted as “Cross” and “Dot” as shown in Fig. 2. Two sets in rhombus 
prediction pattern are independent of each other, so it is a twice-
layered embedding scheme. In the first layer, we use the pixels of 
“Dot” set to predict the pixels of “Cross” set, and then embed data 
into the PEs; in the second layer, we predict the “Dot” set with the 
modified “Cross” set and embed data into the PEs. Since the two 
layers’ embedding processes are similar, we only take the Cross 
layer for illustration. The prediction value ûi, j is computed using 
its four nearest Dot pixels 

(
vi, j−1, vi+1, j, vi, j+1, vi−1, j

)
as

ûi, j =
⌊

vi, j−1 + vi+1, j + vi, j+1 + vi−1, j

4

⌋
. (2)

Based on the prediction value ûi, j and original value ui, j , the PEs 
ei, j is computed as

ei, j = ui, j − ûi, j . (3)

Opposite to most state-of-the-art RDH methods which usually 
embed data into smooth area for pursuing high PSNR values, we 
aim to improving details information of texture area in subjec-
tive visual perception. Hence, we prior to embed data into two 
side PEH bins which correspond to texture area. We utilize a pa-
rameter to estimate the texture degree of each pixel, regarded as 
local variance (LV). The LV for pixel ui, j can be computed from the 
neighboring pixels 

(
vi, j−1, vi+1, j, vi, j+1, vi−1, j

)
such that

LV
(
ui, j

) = 1

4

4∑
k=1

(�vk − �v̄k)
2, (4)

where �v1 = |vi, j−1 − vi−1, j |, �v2 = |vi−1, j − vi, j+1|, �v3 =
|vi, j+1 − vi+1, j |, �v4 = |vi+1, j − vi, j−1| and �v̄k = (�v1 + �v2 +
�v3 + �v4)/4. Here, smaller LV value means the smoother area 
and vice versa. The state-of-the-art RDH schemes sorted pixels in 
ascending order of LV values for achieving high PSNR, but proposed 
method sorts pixels in descending order of LV values for improving 
visual quality.

3.2. Embedding scheme and enhancing contrast of texture area

In general, PEH can reflect the smooth and texture area of the 
image, in which smooth and texture area correspond to the mid-
dle and two side bins of the PEH respectively. Hence, we prior to 
select bins at two sides of the PEH for accommodate data by his-
togram shifting (HS) [17] and thus enhance the contrast of texture 
area. There are two key points for selecting bins: the location of 
bins must be close to two sides, and the capacity of bins must 
enough to hide all the message bits. The embedding procedure is 
summarized as five steps as follows.
1) Calculate the PEH. Prediction value ûi, j are obtained by using 
Eq. (2), PE is Calculated by using Eq. (3), and PEH is generated by 
enumerating the numbers of PEs. Denote the number of PE equal 
to ‘E ’ as hist(E), which is just the height of the bin ‘E ’.

2) Select the initial bins. We select the bin Tm that has the 
smallest absolute as the initial bin, such that

Tm = min(|min(ei, j)|,max(ei, j)). (5)

3) Select the last bins. The last bins T p is adaptively selected 
according to the length of the message such that

minimize T p ∈ (0,1,2, . . . , Tm)

subject to (

−T p∑
E=−Tm

hist(E) +
T p∑

E=Tm

hist(E)) > L (6)

where L is the number of bits to be embedded. Note that we set 
hist(E) = 0 if E does not appear.

4) Embed all data into selected bins. All selected bins ±E ∈[±T p,±Tm
]

are vacated and employed for data hiding in descend-
ing order of LV

(
ui, j

)
, in which PEs belonging to ei, j > E (or 

ei, j < −E) are shifted to right (or left) by a shifting distance s, 
then data are embedded into the bin ±E with keeping other bins 
unchanged as follows:

Di, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ei, j + s if (ei, j > E),

ei, j − s if (ei, j < −E),

ei, j + d if (ei, j = E),

ei, j − d if (ei, j = −E),

ei, j Otherwise,

(7)

where s is shifting distance (equal to 1 or 2), Di, j is the modified 
PEs, and d is the message bit (equal to 0 or 1).

5) Calculate marked image Ui, j as Ui, j = Di, j + ûi, j .
In order to demonstrate the embedding processing, an example 

is given in Fig. 3. Assume that there are 160 bits to be hidden, 
and the probability of bit ‘1’ or ‘0’ are all 1/2 because the message 
usually is encrypted before being embedded. We set the shifting 
distance as 1. Firstly, PEH is generated according to Eqs. (2)–(3)
as shown in Fig. 3(a); Secondly, the initial and last bins Tm = 6, 
T p = 5 are obtained according to Eqs. (5)–(6); Thirdly, PEs = ±7
are vacated so that PEs = ±6 bins can be employed for data hiding 
as shown in Fig. 3(b); Fourthly, PEs = ±6 bins are shifted by one 
or zero when hiding data d is ‘1’ or ’0’ as shown in Fig. 3(c); Lastly, 
the progress is repeated for PEs = ±5 bins, PEs = ±6 are vacated 
and the other data are embedded by shifting PEs = ±5 bins by one 
or zero as shown in Figs. 3(d) and (e). Fig. 3(f) shows modified 
PEH after shifting two rounds, in which maximum shifting times 
is fmax = 2. Thus data are hidden and selected bins are stretched 
and equalized simultaneously.

As previous RDH schemes, the overflow/underflow problem of 
the histogram shifting method should be taken into account. Here, 
we define location map like this: if original pixel value is 0/255, we 
label it with ‘0’; if one pixel is modified to 0/255, we label it with 
‘1’ and we use 4 bits to record the number of shifting rounds. The 
location map is compressed and its size denoted as Nflow. In addi-
tion, in order to extract data and recover cover image conveniently, 
the proposed method replaces LSB of the first 55 + Nflow pixels by 
the following auxiliary information: selected initialization bin Tm

and last bin T p , the maximum number of shifting rounds fmax, 
the shifting distance s, payload size of the original message that 
be embedded, size of compressed location map Nflow and com-
pressed location map. The LSB of the first 55 + Nflow pixels SLSB is 
also embedded as one part of the payload.
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Fig. 3. An example of embedding processing in PEH by proposed method.
3.3. Message sparse representation method

The RDH scheme with enhanced contrast of texture area 
method described in section 3.2 aims to embedding data reversibly 
while restoring the details information of the texture area. In order 
to both enhance contrast of texture area and decrease the embed-
ding distortion (ED), we propose a message sparse representation 
method in this section. The message sparse representation will re-
duces the ED by preprocessing the secret message, in which it 
decreases the number of ‘1’s and increases the number of ‘0’s in 
the message.

In general, when L-length binary message m = (m1,m2, · · ·mL)

are reversibly embedded into binary cover x = (x1, x2, · · · xN ) and 
marked cover are regarded as y = (y1, y2, · · · yN) with d modifica-
tions on average, then embedding rate is defined as R = L/N and 
the change rate is defined as � = d/N [28]. Furthermore, we define 
the embedding efficiency as ee = R/�, which means the average 
number of embedded bits in unit distortion. In general, we hope 
to achieve high embedding efficiency for various given embedding 
rates, so when embedding rate R is fixed, change rate � is smaller, 
embedding efficiency is higher. In the proposed PHE method, only 
bit ‘1’ in message causes the change of pixel value while bit ‘0’ 
dose not introduce any change. Hence, change rate � determined 
by the probability of bits ‘1”s that embedded into covers. Without 
loss of generality, the change rate belongs to 0 ≤ � ≤ 1/2.

Now we analyze the influence of � on the embedding distor-
tion (ED) of the proposed method. Assume we embed messages 
into three bins (Tm, Tm − 1, Tm − 2) by 3 rounds. The ED in the 
ith round is labeled as ED(i) for i = 1, 2, 3, and then we have

ED (1) = � · hist(Tm) × 1

ED (2) = � · hist(Tm) × (1 + s)2 + (1 − �) · hist(Tm)

× s2 + � · hist(Tm − 1) × 1

ED (3) = � · hist(Tm) × (1 + 2s)2 + (1 − �) · hist(Tm)

× (2s)2 + � · hist(Tm − 1) × (1 + s)2

+ (1 − �) · hist(Tm − 1) × (s)2 + � · hist(Tm − 2) × 1

where s is shifting distance. In general, the ED caused by em-
bedding messages into positive bins belonging to 

[
Tm, T p

]
can be 

formulated as

ED (P ) = � ·
T p∑

i=Tm

hist (i) × (
1 + (

i − T p
)

s
)2

+ (1 − �)

T p∑
i=Tm

hist (i) × ((
i − T p

)
s
)2 (8)

Note that the selected bins in the proposed method include 
positive bins and negative bins. Then, the ED in negative bins be-
longing to 

[−Tm,−T p
]

also can be formulated as
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Fig. 4. The relationship between change rate � and embedding distortion ED in the 
proposed method.

Fig. 5. The inverse relationship between the parameter k and coding rate R .

ED (N) = � ·
−T p∑

i=−Tm

hist (i) × (
1 + (|i| − T p

)
s
)2

+ (1 − �)

−T p∑
i=−Tm

hist (i) × ((|i| − T p
)

s
)2 (9)

Then, the total ED in selected bins of the PEH 
[±Tm,±T p

]
in 

terms of l2 − error can be formulated as

ED = ED (P ) + ED (N) (10)

Here, we use section 3.2’s example to explain the relationship 
between change rate � and ED in the proposed method. As shown 
as Fig. 4, with the increase of the �, the ED is increased accord-
ingly. Hence, we can decrease the ED by decreasing the �. As 
mentioned before, the distortion in RDH mainly caused by the ‘1’ 
in message. In general, original message are encrypted before em-
bedded into covers, namely, it is a pseudo random sequence, so 
the probabilities of ‘1’ or ‘0’ in message are all 1/2, so we can 
decrease the ED by decreasing the probability of ‘1’s in secret 
message before embedding it into cover image. Inspirit from the 
decomposition idea, this paper proposes a message sparse repre-
sentation method to reduce the number of ‘1’s, which will leads 
extension of the original message. Hence, it needs more covers to 
accommodate the message. We define sparse rate as
Fig. 6. The effect of the message sparse representation method.

Fig. 7. Experiment results of three methods on ‘baboon’ image when embedding rate 
is 0.5 bpp, in which (a) is Original image, (b) is used Sachnev et al. [11] method, 
PSNR = 39.8418 dB, SSIM = 0.9666, RCE = 0.4956, (c) is used proposed method 
with s = 1, PSNR = 33.6694 dB, SSIM = 0.9456, RCE = 0.4895, (d) is used proposed 
method with s = 2, PSNR = 26.8597 dB, SSIM = 0.8333, RCE = 0.4740.

R0 = L/CL, (11)

where L is the length of the original message, CL is the length of 
the sparse representation message. In order to avoid using extra 
bins of PEH, we set CL equal to the cover length of the selected 
bins, such as

CL =
−T p∑

E=−Tm

hist(E) +
T p∑

E=Tm

hist(E), (12)

where Tm is the initialization selected bin and the T p is the last 
selected bin.

The proposed sparse representation consists of two layers: one 
is outer layer which is only code one bit, the other is inner layer 
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Fig. 8. PEH of ‘baboon’ image’s cross set in different embedding rate by proposed method.
which is depends on coded bit in the outer layer, when coded bit 
‘1’ in the outer layer, coded another k bits with reverse zero-run 
length (RZL); otherwise skip 2k zeros. Assume there is a CL-length 
all-zero cover sequence x = (x1, x2, · · · xCL) and to be coded mes-
sage sequence m = (m1,m2, · · ·mL · · ·), and then there are two 
pointers P 1 and P 2 are defined in coding process, P 1 is used to 
label the last cover symbol that has been coded and P 2 is used to 
count the number of message bits that has been coded. The fol-
lowing coding construction is an rate-variable coding method, in 
which the sparse rate is determined by a parameter k, in general 
k ≥ 0. First set P 1 = 0 and P 2 = 0. The encoder reads the message 
bit mP 2+1, and there are two coding cases according to the value 
of mP 2+1.

Case 1. If mP 2+1 = 0, set P 1 = P 1 + 2k , P 2 = P 2 + 1 and one 
bit mP 2+1 is coded. In this case, no cover symbol is modified.

Case 2. If mP 2+1 = 1, read the next k bits 
(
mP 2+2, · · ·mP 2+k+1

)
, 

which can be represented by a decimal integer belonging to [
0,2k − 1

]
, denoted by 

(
mP 2+2, · · ·mP 2+k+1

)
int. Set P 1 = P 1 +(

mP 2+2, · · ·mP 2+k+1
)

int + 1, P 2 = P 2 + k + 1, and flip xP 1 from ‘0’ 
to ‘1’. Thus, k + 1 bits 

(
mP 2+2, · · ·mP 2+k+1

)
are coded, and only 

one cover symbol xP 1 is modified.
Now we use a simple example to show the sparse representa-

tion process of the method above. Example: Take the parameter 
k = 2. Assume the cover length of the selected bins is a 9-length 
all-zero cover, i.e. CL = 9, and the message consists of 7 bits, i.e. 
L = 7, m = [0, 1, 0, 1, 1, 1, 0]. To sparse represent the message, first 
set pointers P 1 = 0 and P 2 = 0, and then do the following three 
steps.
1. Read mP 2+1 = 0, thus set P 1 = P 1 + 22 = 4, and P 2 = P 2 +
1 = 1.

2. Read mP 2+1 = 1. Read the next k = 2 message bits (m3, m4) =
(0, 1), which is interpreted as a decimal integer (0, 1)int = 1. 
Set P 1 = P 1 + (0, 1)int + 1 = 6, P 2 = P 2 + k + 1 = 4, and flip 
xP 1 = x6 to “1”.

3. Read mP 2+1 = 1. Read the next k = 2 message bits (m6, m7) =
(1, 0), which is interpreted as a decimal integer (1, 0)int = 2. 
Set P 1 = P 1 + (1, 0)int + 1 = 9, P 2 = P 2 + k + 1 = 7, and flip 
xP 1 = x9 to “1”.

The coded cover is denoted by y = [0, 0, 0, 0, 0, 1, 0, 0, 1] that is 
obtained by modifying the sixth and ninth bits of the cover x.

Now we analyze the coding rate and distortion in two cases of 
the coding process. In Case 1, we code one bit into a 2k-length 
cover without making any modification; in Case 2, we code k + 1
bits of messages by expending n = (

mP 2+2, · · ·mP 2+k+1
)

int + 1
cover symbols and one modification. Because the message block (
mP 2+2, · · ·mP 2+k+1

)
is random, the probability P (n = j) = 1/2k

for any j ∈ {
1,2, · · · ,2k

}
, and thus the expectation of n is equal to 

(2k + 1)/2. Therefore in Case 2, average k + 1 bits are coded into 
(2k + 1)/2 cover symbols with one modification. Because probabil-
ities of ‘1’s and ‘0’s in message are all 1/2, so the two cases occur 
with equal probability. For one coding step, the average number 
of coded bits is equal to Nmess = k+2

2 , the average number of ex-

pended cover symbols is equal to Ncover = 3·2k+1
4 and the average 

number of modifications is equal to Nmod = 1 . Therefore, the cod-
2
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Fig. 9. Three test magnetic resonance medical images.

ing rate R of the proposed sparse representation can be calculated 
as follows

R = Nmess

Ncover
= 2k + 4

3 · 2k + 1
. (13)

Eq. (13) shows that coding rate R is determined by the pa-
rameter k, in general k ≥ 0. Fig. 5 shows the inverse relationship 
between the parameter k and coding rate R . Here, the parame-
ter k must be an integer k = [0, 1, 2, 3, 4, 5, 6 · · · ], namely, it cor-
responds to the coding rate R = [1.0000, 0.8571, 0.6154, 0.4000,

0.2449, 0.1443 · · · ]. To realize sparse rate R0, we choose two cod-
ing rates R1 (k1) and R2 (k2) separately, satisfying R1 (k1) < R0, 
R2 (k2) > R0. The message is divided into two sets according to 
two weighted coefficients α and β , in which α and β satisfied fol-
lowing equation{

α · R1 (k1) + β · R2 (k2) = R0,

α + β = 1.
(14)

And then length of one part message is L1 = α · L, the other part 
is L2 = β · L, where L is the length of the original message. Two 
parts message m1 and m2 are coded into dm1 and dm2 according 
to coding rates R1 (k1) and R2 (k2) by using sparse representation 
respectively, in which sum of length of m1 and m2 is L and sum of 
length of dm1 and dm2 is CL. Finally, sparse representation mes-
sage dm is obtained by combining dm1 and dm2.

In order to discuss the effect of the message sparse representa-
tion method, we compare the change rate � between non-used 
and used message sparse representation method. As shown in 
Fig. 6, with the change of the coding rate(R), the change rate in 
non-used message sparse representation method is always equal to 
0.5 because original secret message is a pseudo random sequence 
and probabilities of ’1’ or ’0’ in message are all 1/2. However, the 
change rate of used message sparse representation method is be-
low than 0.5 and different in all coding rate. In addition, Fig. 6 also 
shows that the message sparse representation method proposed in 
section 3.3 is very close to the upper bound, which means it has a 
good coding performance.

3.4. Original message extraction and cover image recovery

Section 3.2 illustrates the embedding procedure of Cross layer, 
Dot layer’s embedding scheme uses the modified pixels from the 
Cross set of computing predicted values and original pixels from 
the Dot set for embedding data. The marked image is the modi-
fied Dot and Cross sets. Double decoding scheme is the inverse of 
the double encoding scheme. Here, we only describe the Cross de-
coding scheme which similar to Dot set. Based on this, we first 
summarize five steps for extracting sparse representation message 
and recovering cover image, and then original message are de-
coded by the reverse processing of section 3.3.

1) Read LSB of first 55 + Nflow pixels in marked image to get the 
values of T p and Tm , the maximum shift times fmax, the shifting 
distance s, payload size of the original message that be embedded, 
size of compressed location map Nflow and compressed location 
map.
Fig. 10. Margo interior hepatis marked images by using four RDH methods in 
0.1 bpp, 0.3 bpp, 0.6 bpp and 0.8 bpp respectively.

2) Calculate prediction value ûi, j and local variance (LV) from 
Eq. (2) and Eq. (4), and sort pixels in descending order of LV values.

3) Calculate modified prediction error Di, j = Ui, j − ûi, j . Search 
the scope of modified prediction error H from T p to Tm , every 
time decreases one. Meanwhile, there is also a register f changes 
from 0 to fmax − 1, every time increasing one, such as

e′
i, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Di, j − f × s,dm = 0 if (Di, j = H + f × s),
Di, j + f × s,dm = 0 if (Di, j = −H − f × s),
Di, j − f × s − 1,dm = 1 if (Di, j = H + f × s + 1),

Di, j + f × s + 1,dm = 1 if (Di, j = −H − f × s − 1),

Di, j if (Di, j < H + f × s)
& (Di, j > −H − f × s),

(15)

After looping Tm − T p + 1 times, all sparse representation mes-
sage dm are extracted. In order to recover cover image losslessly, 
prediction errors that larger than Tm or less than −Tm should also 
be recovered as

e′
i, j =

⎧⎪⎪⎨
⎪⎪⎩

Di, j − fmax × s
if (Di, j > Tm + ( fmax − 1) × s + 1),

−Di, j + fmax × s
if (Di, j < −Tm − ( fmax − 1) × s − 1).

(16)

4) Recover the cover image as ui, j = ûi, j + e′
i, j .

5) Replace the LSB of first 55 + Nflow pixels by the SLSB that 
extracted by step 3.

After extracted all sparse representation message dm, we need 
decode dm into original message m. Due to the cover image are 
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Fig. 11. Brain marked images by using four RDH methods in 0.1 bpp, 0.3 bpp, 
0.6 bpp and 0.8 bpp respectively.

recovered and payload size of the original message that be em-
bedded is extracted in step 1, so the two coding rates R1 (k1)

and R2 (k2), two weighted coefficients α and β are all obtained 
by repeating section 3.3. Hence, sparse representation message 
dm is divided into two sets as dm1 = α · dm with parameter k1, 
dm2 = β · dm with parameter k2. Here, we just take one set as il-
lustration, in which set dm′ = dm1 or dm2 and k′ = k1 or k2. In 
fact, the procedure from dm to m is also first initialize pointers 
P 1 and P 2 all as 0, and then read 2k′

length block from dm′ as (
dm′

P 1+1, · · ·dm′
P 1+2k′

)
. We still use two cases to judge whether 

include ‘1’ in block.
Case 1 If symbols in block 

(
dm′

P 1+1, · · ·dm′
P 1+2k′

)
are all ‘0’, so 

the original message mP 2+1 = 0, and then pointers come to P 1 =
P 1 + 2k′

, P 2 = P 2 + 1.
Case 2 If existing ‘1’ symbol in block 

(
dm′

P 1+1, · · ·dm′
P 1+2k′

)
, 

count the number of consecutive ‘0’ symbols until search for first 
‘1’ symbol, regarded as i. Converting i into k′ bits binary sequence 
regarded as ibin, so the original message mP 2+1 = 1 and next 
k′ bits is 

(
mP 2+2, · · ·mP 2+k′+1

) = ibin, and then pointers come to 
P 1 = P 1 + i + 1, P 2 = P 2 + k′ + 1.

After repeated two times procedure from above two cased, all 
original message m are all decoded from sparse representation 
message dm.

4. Experiments and results

In order to illustrate the characteristic of the proposed method, 
we first do experiment on image ‘baboon’ by respectively using the 
Fig. 12. Pelvic cavity marked images by using four RDH methods in 0.1 bpp, 0.3 bpp, 
0.6 bpp and 0.8 bpp respectively.

proposed’s and Sachnev et al.’s [11] methods as shown in Fig. 7. 
The embedding rate is chosen as 0.5 bpp and shifting distance s is 
empirically determined as 1 and 2. Compared with original image 
in Fig. 7(a), Fig. 7(b) shows that marked image by used Sachnev et 
al.’s method [11] is almost unchanged, Figs. 7(c,d) improve the de-
tails information of texture area in subjective perception by used 
the proposed method, such as in fur. That is because Sachnev et 
al.’s method is a typical smooth-priority RDH method, but the 
proposed method is a texture-priority method and can enhance 
contrast of the texture area. In addition, experiment also calcu-
lates the PSNR, SSIM and RCE values by each methods, in which 
SSIM is an image quality assessment (IQA) method that considers 
the structural characteristic of the image and includes structure, 
luminance, and contrast comparison functions [29] and RCE indi-
cates the degree of contrast enhancement between original and 
enhanced images, and is in the range of [0, 1] [30]. The equation 
to compute RCE is given by RCE = (stde − stdo)/(R −1) +0.5, where 
stde , stdo indicate the standard deviations of original and enhanced 
images, respectively, and for a given 8-bit gray level image. Due 
to the definition of the RCE, standard deviations depend on the 
whole image, but the proposed method preferentially modifies the 
two sides bins of PEH and keeps the most of bins unchanged, so 
the proposed method enhances the contrast of local area and can’t 
achieve a high RCE value in whole image.

The proposed method aims at enhancing details information of 
texture area by shifting and embedding data into two side bins 
of PEH. Here, we take Cross set as example which similar to Dot 
set, to describe the changing of PEH with different embedding rate 
when shifting distance s = 1. As shown in Fig. 8, Fig. 8(a) shows 
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Table 1
Margo interior hepatis marked images’s parameter that corresponds to Fig. 10.

RDH Method Figure Number Bpp PSNR SSIM RCE MOS

Sachnev et al. [11] Fig. 10(a) 0.1 60.9414 0.9993 0.5001 70
Fig. 10(b) 0.3 55.5074 0.9981 0.5004 70
Fig. 10(c) 0.6 49.9575 0.9950 0.5001 70
Fig. 10(d) 0.8 46.2389 0.9892 0.4995 70

Wu et al. [22] Fig. 10(e) 0.1 61.1395 0.9996 0.4998 70
Fig. 10(f) 0.3 49.7932 0.9980 0.4985 70
Fig. 10(g) 0.6 48.4439 0.9948 0.4983 70
Fig. 10(h) 0.8 43.3429 0.9900 0.4972 70

Gao et al. [23] Fig. 10(i) 0.1 61.1395 0.9996 0.4998 70
Fig. 10(j) 0.3 49.7932 0.9980 0.4985 70
Fig. 10(k) 0.6 48.4439 0.9948 0.4983 70
Fig. 10(l) 0.8 43.3429 0.9900 0.4972 70

Proposed method, s = 1 Fig. 10(m) 0.1 46.1535 0.9953 0.4991 73.1
Fig. 10(n) 0.3 42.1450 0.9867 0.4984 75
Fig. 10(o) 0.6 41.0813 0.9809 0.4982 75.3
Fig. 10(p) 0.8 40.9609 0.9803 0.4981 77.25

Proposed method, s = 2 Fig. 10(q) 0.1 40.2631 0.9845 0.4984 74.25
Fig. 10(r) 0.3 36.1241 0.9572 0.4972 77.7
Fig. 10(s) 0.6 34.9031 0.9365 0.4973 78.1
Fig. 10(t) 0.8 34.8617 0.9353 0.4973 75

Table 2
Brain marked images’s parameter that corresponds to Fig. 11.

RDH Method Figure Number Bpp PSNR SSIM RCE MOS

Sachnev et al. [11] Fig. 11(a) 0.1 60.9275 0.9994 0.5001 70
Fig. 11(b) 0.3 56.0862 0.9981 0.5004 70
Fig. 11(c) 0.6 51.9114 0.9965 0.5005 70
Fig. 11(d) 0.8 43.6566 0.9880 0.4993 70

Wu et al. [22] Fig. 11(e) 0.1 61.0270 0.9996 0.4999 70
Fig. 11(f) 0.3 53.7873 0.9987 0.4992 70
Fig. 11(g) 0.6 49.8257 0.9972 0.4977 70
Fig. 11(h) 0.8 48.4978 0.9945 0.4977 70

Gao et al. [23] Fig. 11(i) 0.1 61.0270 0.9996 0.4999 70
Fig. 11(j) 0.3 53.7873 0.9987 0.4992 70
Fig. 11(k) 0.6 49.8257 0.9972 0.4977 70
Fig. 11(l) 0.8 48.4978 0.9945 0.4977 70

Proposed method, s = 1 Fig. 11(m) 0.1 42.5853 0.9961 0.4982 78.25
Fig. 11(n) 0.3 37.8646 0.9830 0.4966 76.4
Fig. 11(o) 0.6 37.2743 0.9777 0.4965 78.1
Fig. 11(p) 0.8 37.1981 0.9775 0.4964 80.45

Proposed method, s = 2 Fig. 11(q) 0.1 36.7281 0.9862 0.4967 79.6
Fig. 11(r) 0.3 32.1107 0.9449 0.4943 82.65
Fig. 11(s) 0.6 31.4238 0.9293 0.4943 83.2
Fig. 11(t) 0.8 31.3896 0.9287 0.4942 82.5
the original PEH and Figs. 8(b,c,d) show the modified PEH by the 
proposed method when embedding rates are 0.3 bpp, 0.6 bpp, 
0.99 bpp respectively. Due to the proposed method prior to select 
two side bins of PEH, two side bins are stretched and equalized at 
first. With the increase of embedding rate, the middle bins also be 
selected for stretching and equalizing. When embedding rate close 
to 1, almost all of PEH’s bins are equalized half and stretched dou-
ble.

In practice application, contrast enhancement of texture areas is 
crucial in medical image processing. Hence, we do a series exper-
iments on magnetic resonance medical images that derived from 
National Cancer Imaging Archive (NCIA) [31]. However, due to the 
limitation of the space, we only randomly choose three medical 
images which are named as ‘Margo interior hepatis’, ‘Brain’ and 
‘Pelvic cavity’ to show the experiment results and subjective per-
ception. Three cover test images are shown in Fig. 9. In order to 
demonstrate the performance, we do experiment on three test 
medical images by the proposed method with s = 1 and s = 2, 
Sachnev et al.’s method [11], Wu et al.’s method [22] and Gao 
et al.’s method [23] when embedding rates are 0.1 bpp, 0.3 bpp, 
0.6 bpp and 0.8 bpp respectively, in which Sachnev et al.’s method 
is a typical smooth-priority RDH method, Wu et al.’s and Gao et 
al.’s methods are all contrast-based RDH methods. The marked 
images of three medical images are shown in Figs. 10–12 and cor-
responding parameters are shown in Tables 1–3.

As we know, the quality of an image strongly depends upon 
subjective experiments to provide calibration data. The Mean Opin-
ion Score (MOS) which is between [0, 100] can be used to reflect 
the perceived quality of the image. The higher the MOS value, the 
better of the image quality. Hence, we invited 10 doctors from 
the medical imaging profession in Anhui medical University and 
recruited 10 graduates from the CAS Key Laboratory of Electro-
magnetic Space Information in University of Science and Technol-
ogy of China to score the quality of each marked images. Before 
the experiment, a short training showing the approximate range of 
quality of the images was also presented to each subject. Subjects 
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Table 3
Pelvic cavity marked images’s parameter that corresponds to Fig. 12.

RDH Method Figure Number Bpp PSNR SSIM RCE MOS

Sachnev et al. [11] Fig. 12(a) 0.1 60.2826 0.9995 0.5003 70
Fig. 12(b) 0.3 49.3696 0.9953 0.4996 70
Fig. 12(c) 0.6 41.4475 0.9744 0.4984 70
Fig. 12(d) 0.8 37.9747 0.9518 0.4971 70

Wu et al. [22] Fig. 12(e) 0.1 57.0086 0.9996 0.4993 70
Fig. 12(f) 0.3 46.3418 0.9977 0.4978 70
Fig. 12(g) 0.6 31.6561 0.9717 0.4925 70
Fig. 12(h) 0.8 30.3102 0.9544 0.4738 70

Gao et al. [23] Fig. 12(i) 0.1 57.0086 0.9996 0.4993 70
Fig. 12(j) 0.3 46.3418 0.9977 0.4978 70
Fig. 12(k) 0.6 31.6561 0.9717 0.4925 70
Fig. 12(l) 0.8 30.3102 0.9544 0.4738 70

Proposed method, s = 1 Fig. 12(m) 0.1 42.2367 0.9934 0.4982 70
Fig. 12(n) 0.3 38.2458 0.9766 0.4966 72.5
Fig. 12(o) 0.6 34.8770 0.9390 0.4945 75.6
Fig. 12(p) 0.8 34.2233 0.9276 0.4941 74.15

Proposed method, s = 2 Fig. 12(q) 0.1 36.6018 0.9778 0.4969 71.3
Fig. 12(r) 0.3 32.0908 0.9204 0.4927 73
Fig. 12(s) 0.6 28.3995 0.8101 0.4876 76.5
Fig. 12(t) 0.8 27.6997 0.7784 0.4866 81

Fig. 13. Twenty test medical images.
were shown images in a random order and the randomization was 
different for each subject. Then subjects reported their judgments 
of quality according to each images number. Due to the subjective 
experiments are cumbersome to design and the time is constraint, 
we do our best to ensure that the testing environment was as 
close to the “real-world” as possible. All 20 subjects test 60 im-
ages in Figs. 10–12. Here, we give the average MOS score by 20 
subjects in each image as shown in Tables 1–3. The MOS values 
prove that the proposed method appropriate improve the quality 
of the medical images when compared with other RDH methods. 
From the point of subjective perception and MOS values, we can 
see that with the increment of embedding rate, marked image’s 
texture areas that used Sachnev et al.’s, Wu et al.’s and Gao et al.’s 
methods are almost unchanged, but the proposed method restores 
the details information of texture areas by enhancing contrast. That 
is because most of medical images includes a lot of smooth area, 
such as background, the Sachnev et al.’s method embeds data into 
smooth area (background) priority, so the marked images are not 
perceived by subjective visual. In addition, Wu et al.’s method se-
lects two highest bins of image’s gray histogram to embed data, 
which means enhancing the contrast of background region prior-
ity. Due to Gao et al.’s method embed the data into spatial domain 
and IWT domain respectively, in which embedding procedure in 
spatial domain is same with Wu et al.’s method by adding the con-
trolled threshold denoted by Trce = 0.55. Hence, due to the RCE is 
smaller than Trce in embedding rates 0.1 bpp, 0.3 bpp, 0.6 bpp 
and 0.8 bpp by the Gao et al.’s method, so the results in Gao et 
al.’s method are same as Wu et al.’s method. Different from the 
above three RDH methods, the proposed method uses PEH to se-
lect two side bins which corresponds to texture areas, and embeds 
data into it by adaptive stretching and equalizing the contrast, so 
the proposed method can restore the details information of texture 
areas.

If we compared with results between the proposed method 
with s = 1 and s = 2 as shown in Figs. 10(m–p) and Figs. 10(q–t), 
Figs. 11(m–p) and Figs. 11(q–t), Figs. 12(m–p) and Figs. 12(q–t), 
we can see that texture area’s contrast with shifting distance s = 2
is enhanced more than with s = 1. However, when embedding rate 
is high, such as in 0.8 bpp, since two side bins of PEH had used, 
we have to use smooth area that corresponds to middle bins, so 
two side bins are shifted to sides further. If shifting distance s is 
larger, some pixels on the edge sides bins of PEH may be become 
extreme points that often appeared in contrast enhancement algo-
rithms. Hence, in order to keep quality of the amplifying marked 
image, when embedding rate below than 0.6 bpp, we prefer to 
choose s = 2 or higher, otherwise choose s = 1.

We also calculate the PSNR, SSIM and RCE parameters for all 
marked images as shown in Tables 1–3, in which PSNR and SSIM 
are used to assess marked image’s quality and RCE indicates the 
degree of contrast enhancement between original and enhanced 
images. With the increment of embedding rate, PSNR, SSIM and 
RCE values by four RDH methods are all decreased. When embed-
ding rate is small, such as 0.1 bpp, the difference of PSNR between 
the proposed method and the other three RDH methods is very 
large, which is opposite to the subjective perception in Figs. 10–12. 
That is because most medical images include lot of smooth area, 
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Fig. 14. Average performance comparison of four RDH methods on the twenty test 
medical images, in which (a) used PSNR metric, (b) used SSIM metric and (c) used 
RCE parameter.

so the PEH has a sharper Laplace distribution, but the proposed 
method prior to select two side bins of PEH to hide data, so it 
makes large difference in two side’s pixels. As PSNR largely de-
pends on the quadratic sum of difference between original image 
and distortion image, this large PSNR difference proves PSNR is not 
a strict metric for assessing image quality. In addition, the essence 
of the structural comparison function in SSIM is the cosine value 
of the angle between two images, which reflects the image struc-
ture characteristic. Hence, SSIM can’t completely reflect the quality 
of contrast enhanced images.

At last, in order to demonstrate the overall performance of the 
proposed method with more experiment samples, we do experi-
ment on twenty medical images that derived from NCIA medical 
image set [31] and calculate the mean results by compared with 
Sachnev et al.’s method [11], Wu et al.’s method [22], Gao et 
al.’s method [23] and proposed method when embedding rates 
between [0.1, 1]. Original twenty test medical images are shown 
in Fig. 13 and corresponding calculating parameters are shown in 
Fig. 14, in which Figs. 14(a–c) are the comparison results of em-
bedding rate versus PSNR, SSIM and RCE respectively. Please note 
that the results parameters in Fig. 14 are calculated from the mean 
results of twenty medical images. We can see that the change 
trend in Fig. 14 is similar to Tables 1–3. Due to the RCE is smaller 
than Trce in all embedding rates by the Gao et al.’s method, so the 
results in Gao et al.’s method are same with Wu et al.’s method. 
In addition, we note that the PSNR, SSIM values are almost un-
changed when embedding rate is higher than 0.6 bpp, that is be-
cause we propose a message sparse representation method to code 
the message for decreasing the distortion of the marked images in 
this paper and this strategy is effective in higher embedding rate 
obviously.

5. Conclusion

In this paper, a novel RDH method in medical image with en-
hanced contrast in texture area is proposed. The proposed method 
not only enhances contrast of texture area but also hides se-
cret data into cover image reversibly. In addition, in order to 
further decrease the embedding distortion, this paper also pro-
poses a message sparse representation algorithm that inspirited 
from the decomposition idea, to code the secret message firstly. 
The main strategies employed by the proposed method is prior 
modifying two sides bins of PEH by using HS method. Experi-
mental results confirmed that the marked medical image by the 
proposed method looks more clearly in texture area than other 
typical smooth-priority RDH method and global contrast enhance-
ment RDH method, in which the details information are restored 
clearly even in low embedding rate. Experimental also verifies that 
in some cases PSNR value can’t consistent with subjective visual 
perception and it is not a strict standard for assessing image qual-
ity.

As future work, the hiding efficiency of the proposed method 
will be further investigated for improvement. Message sparse rep-
resentation method may be improved by utilizing other coding 
scheme for further improve performance. In addition, the proposed 
method will be applied to the frequency domain after further con-
sidering other efficient image enhancement method.
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