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Abstract In most literatures on reversible data hiding (RDH), the visual quality of marked
images is only assessed by PSNR, and the smoothness-priority-based sorting technique is
efficient for improving PSNR. However, modifications in smooth areas are conflict with
other criterion of visual quality such as Just Noticeable Difference (JND). To reconcile this
contradiction, we propose a twice sorting scheme, in which the pixels are first sorted and
divided into several levels with a smoothness criterion, and then sorted twice with JND in
each level. According to the sorted order, message bits are embedded into the predicted
errors of pixels based on rhombus prediction. Experimental results show that this novel
method significantly outperforms previous JND-related RDH schemes on not only PSNR
but also SSIM and JND distortion.
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1 Introduction

Reversible data hiding (RDH) is one kind of information hiding techniques with the char-
acteristics such that not only the secret message needs to be precisely extracted, but also
the cover itself should be restored losslessly. This reversibility is important in some spe-
cial scenarios such as medical imagery [1], military imagery and law forensics. In these
applications, the cover is too precious or too important to be damaged.

So far, many RDH methods on images have been proposed. All these methods are real-
ized through a process of semantic lossless compression [15, 18, 19], in which some space is
saved for embedding extra data by lossless compressing the image. This compressed image
should be “close” to the original image, so one can get a marked image with good visual
quality. The residual part of images, e.g., the prediction errors (PE), has small entropy and
thus can be easily compressed. Therefore, almost all recent RDH methods first generate
PEs as the host sequence [3, 4, 6, 8, 12, 13], and then reversibly embed the message into the
host sequence by modifying its histogram with methods like histogram shifting (HS) [7, 9]
or difference expansion (DE) [10, 14]. Usually the PEs has a sharp distribution centered at
zero. A more accurate prediction technique can generate PEs with a sharper histogram that
is more suitable for RDH.

Many prediction methods have been applied to RDH, such as JPEG-LS prediction [13],
rhombus prediction [12], two dimensional prediction [8], and local optimized prediction [3].

Another efficient technique to get a good host sequence for RDH is sorting [12]
or pixel selection [6], which gives priority of modifications to PEs in smooth regions.
Because the pixels in smooth areas can be accurately predicted, so a sharper histogram
can be obtained in such areas. Obviously, from the view of human visual system (HVS),
the changes in smooth areas are more noticeable. However, in most literatures on RDH,
the quality of the marked image is only assessed by peak signal-to-noise ratio (PSNR),
with which a modification in smooth region is equally risky as a modification in noisy
region. That is why smoothness-based sorting technique is efficient for state-of-the-art RDH
schemes. However there is an obviously conflict between such sorting criterion and the HVS
model.

Therefore, some researchers proposed to assess RDH schemes according to not only
PSNR but also other criteria of HVS such as Just Noticeable Difference (JND) [5, 11].
JND denotes the smallest change in a pixel value that human eyes can perceive. In [5],
Jung et al. proposed to predict pixel value in a local causal window and calculated JND in
spatial domain, and then, according to JND, selected PEs for embedding data. Qin et al. [11]
proposed a similar method but calculated JND in DCT domain. However, both methods in
[5] and [11] cannot keep high PSNR and small JND at the same time.

In fact, according to PSNR, one should first embed data into smooth areas, while accord-
ing to HVS, one should first embed data into noisy areas. To reconcile this contradiction,
we here propose a twice-sorting scheme for RDH, in which the pixels are first sorted and
divided into several levels according to a smoothness criterion. Within each level, we sort
the pixel again with JND, and then embed data into the PEs of pixels according to the
finally sorted order. The experimental results show that this novel scheme significantly out-
performs previous JND-based methods [5, 11] when assessing them with not only PSNR
but also structural similarity (SSIM) [16] and JND.

This paper is organized as follows. In Section 2, after briefly introducing the rhombus
predicting model, we elaborate the twice-sorting scheme. The performance of the proposed
method is evaluated and compared with the other methods in Section 3, and conclusion is
finally presented in Section 4.
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2 Proposed method

2.1 Rhombus prediction

In this paper, we use rhombus prediction [12] to produce PEs, so we first briefly introduce
rhombus prediction.

As shown in Fig. 1, the rhombus prediction pattern divides all pixels of the cover image
into two sets denoted as ”Cross” and ”Dot”. Note that two sets are independent of each
other, so it is a twice-layered embedding scheme. In the first layer, we use the pixels of
“Dot” set to predict the pixels of “Cross” set, and then embed data into the PEs; in the
second layer, we predict the “Dot” set with the modified “Cross” set and embed data into
the PEs. Since the two layers’ embedding process are similar, we only take the Cross layer
for illustration. The prediction value ûi,j is computed using its four nearest Dot pixels(
vi,j−1, vi+1,j , vi,j+1, vi−1,j

)
:

ûi,j =
⌊

vi,j−1 + vi+1,j + vi,j+1 + vi−1,j

4

⌋
. (1)

Based on the prediction value ûi,j and the original value ui,j , the PE ei,j is computed as

ei,j = ui,j − ûi,j . (2)

As mentioned before, not all pixels’ PEs will be used to embed data. The pixels usually
are sorted and selected with some smoothness scores. We will also sort the pixels with JND
scores. Both scores on the pixel ui,j will be estimated by its neighboring pixels belonging
to the “Dot” set. A framework of the embedding process is shown in Fig. 2.

Fig. 1 Rhombus prediction pattern
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Fig. 2 Framework of cross set’s embedding process

2.2 Smoothness sorting

We measure the smoothness with the local variance (LV) [12]. The LV for pixel ui,j can be
computed from the neighboring pixels

(
vi,j−1, vi+1,j , vi,j+1, vi−1,j

)
such that

LV
(
ui,j

) = 1

4

4∑

k=1

(�vk − �v̄k)
2 , (3)

where �v1 = ∣
∣vi,j−1 − vi−1,j

∣
∣, �v2 = ∣

∣vi−1,j − vi,j+1
∣
∣, �v3 = ∣

∣vi,j+1 − vi+1,j

∣
∣, �v4 =∣

∣vi+1,j − vi,j−1
∣
∣ and �v̄k = (�v1 + �v2 + �v3 + �v4) /4.

The pixels are sorted in ascending order of LV values. For example, assume
that there are ten pixels of “cross set” {u1, · · · , u10} with corresponding LVs
{2.5, 1.25, 5, 2, 6.25, 2.25, 2.5, 0.25, 5.5, 4} which is shown in Fig. 3a. After sorted, the set
of pixels is {u8, u2, u4, u6, u1, u7, u10, u3, u9, u5}.

Fig. 3 Example of the twice-sorting scheme
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Furthermore, we divide the pixels into several levels according to LVs. To do that, we first
divide the LVs into some intervals with equi-length. By denoting the interval length with
P , the LV intervals have the following form: [LVmin, LVmin + P), [LVmin + P,LVmin +
2P) · · · . In the above example, we take P = 2, and thus the LV intervals are [0.25, 2.25),
[2.25, 4.25), [4.25, 6.25), [6.25, 8.25). The sets of LVs in these intervals are {0.25, 1.25, 2},
{2.25, 2.5, 2.5, 4}, {5, 5.5}, {6.25}, according to which the 10 pixels are divided into four
levels such that {u8, u2, u4}, {u6, u1, u7, u10}, {u3, u9}, {u5} as shown in Fig. 3b.

2.3 JND sorting

In order to keep the quality of marked image according to the HVS model, we further sort
the pixels with JND. The JND value is proportion to the limitation of human perception,
so the pixels with bigger JND value are better for data hiding. Therefore, pixels are sorted
in descending order of the JND value. Here, JND is derived from the frequency domain by
discrete consine transform (DCT) [17] which is also used in Qin et al’s method [11]. We
use the JND of pixels in “dot set” to estimate the JND of pixels in “cross set”. To do that,
we first sample all pixels of “dot set” and get a sub-image denoted as Iv . As show in Fig. 4.
The procedure of estimating the JND of “cross set” is as follows.

1) Cover image is divided into cross set {ui,j } and dot set {vi,j }. Collect all vi,j ’s to get
the sub-image Iv as Vi,j .

2) Divide Iv into 8 × 8 non-overlapping blocks V
(t)
i,j . Conducting DCT on each block and

calculate DCT coefficient matrix C
(t)
i,j = DCT (V

(t)
i,j ).

3) Each block’s DCT coefficient C
(t)
i,j adds with corresponding element of Watson matrix

that represents the largest tolerable variation of each DCT coefficient to achieve largest
imperceptible degree [11]. It can be expressed as

C
′(t)
i,j =

[∣∣
∣C(t)

i,j

∣∣
∣ + Wi,j

]
· sign

[
C

(t)
i,j

]
, (4)

where Wi,j is taken from the following Watson matrix [17]

W =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1.40 1.01 1.16 1.66 2.40 3.43 4.79 6.56
1.01 1.45 1.32 1.52 2.00 2.71 3.67 4.93
1.16 1.32 2.24 2.59 2.98 3.64 4.60 5.88
1.66 1.52 2.59 3.77 4.55 5.30 6.28 7.60
2.40 2.20 2.98 4.55 6.15 7.46 8.71 10.17
3.43 2.71 3.64 5.30 7.46 9.62 11.58 13.51
4.79 3.67 4.60 6.28 8.71 11.58 14.50 17.29
6.56 4.93 5.88 7.60 10.17 13.51 17.29 21.15

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

(5)

Fig. 4 Procedure of calculating cross set’s JND estimation
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4) Largest imperceptible degree for each block is calculated by IDCT such that V
′(t)
i,j =

IDCT (C
′(t)
i,j ). Then, combine all block’s V

′(t)
i,j to V ′

i,j .

5) JND value of pixel vi,j of sub-image Iv is calculated by Ĵ (vi,j ) =
∣
∣
∣V ′

i,j − Vi,j

∣
∣
∣.

6) Finally the JND of pixel ui,j in cross set is estimated by the JND of pixels in the dot set
around ui,j . Taking Fig. 1 as an example, the JND of ui,j is estimated by

Ĵ (ui,j ) = Ĵ (vi,j−1) + Ĵ (vi−1,j ) + Ĵ (vi,j+1) + Ĵ (vi+1,j )

4
(6)

Following the example in Fig. 3, we assign each pixel in Fig. 3b a JND value. Assume that
the ten pixels have JND values {4.1, 7.8, 3.1}, {5.1, 5.7, 5.7, 5.3}, {7.2, 7.4}, {5.1} as shown
in Fig. 3c. In each level, we sort the pixels according to JND values in descending order.
The finally sorted order is {u2, u8, u4, u1, u7, u10, u6, u9, u3, u5} as shown in Fig. 3d.

After achieving sorted index of pixels, we embed data into PEs of these pixels one by
one according to the order.

2.4 Data embedding

To embedding data into the PEs with expansion technique [13], we first set two threshold
values T1 and T2. PEs belonging to [T1, T2] can be expandable for embedding message bits,
and those not belonging to [T1, T2] are going to be shifted to make vacancies for expansion.
The message bit m ∈ {0, 1} is embedded with following manner

Di,j =
⎧
⎨

⎩

2ei,j + m if ei,j ∈ [T1, T2]
ei,j + T2 + 1 if ei,j > T2 ≥ 0

ei,j + T1 if ei,j < T1 < 0
, (7)

where ei,j is the PE of pixel ui,j and Di,j is the modified PE.
After embedding data, the cover pixel value ui,j is modified to Ui,j such as

Ui,j = Di,j + ûi,j . (8)

Note that, as other RDH schemes, we also use a location map to record the positions
of overflow/underflow such that a pixel value, equal to 0/255, is needed to be changed
to −1/256. The location map is compressed and it’s size is Nf low . In addition, in order
to extract message and recover cover image conveniently, proposed method records the
least significant bits (LSB) of the first 48+Nf low pixels to obtain a binary sequence SLSB ,
and then replaces LSB of the first 48+Nf low pixels by the auxiliary information as: two
threshold values T1 and T2, interval length P , payload size, size of compressed location
map Nf low and compressed location map. Here, the LSB of the first 48+Nf low pixels SLSB

is also embedded as one part of the payload.

2.5 Data extraction and cover restoration

Due to using the rhombus prediction pattern, two sets (Cross set and Dot set) are indepen-
dent. Hence, the double decoding scheme is the inverse of the double encoding scheme,
namely, if Cross set is embedded firstly and the Dot set is recovered firstly. Computations
for the Dot and Cross decoding schemes are similar. We just take Cross set for example.

1. Read LSB of the first 48 pixels of marked image to get the values of two thresh-
old values T1 and T2 , interval length P , payload size, size of compressed location
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map Nf low . Then, read LSB of the next Nf low pixels of marked image to obtain the
compressed location map.

2. The same results of prediction value, local variance and JND value for the modified
pixels can be acquired at the receiver side similarly as embedding process.

3. According to the interval length P , we can reproduce twice sorted order similarly as
embedding process. Combined with payload size, the receiver can one by one calculate
all modified PE by

Di,j = Ui,j − ûi,j . (9)

4. According to modified PE Di,j , all embedded message bits are calculated as

m = Di,j mod 2 , (10)

in which the last 48+Nf low bits are the SLSB .
5. According to the two threshold values T1 and T2, the PE is recovered as

ei,j =
⎧
⎨

⎩

⌊
Di,j /2

⌋
if Di,j ∈ [2T1, 2T2 + 1]

Di,j − T2 − 1 if (Di,j > 2T2 + 1)&(T2 ≥ 0)

Di,j − T1 if (Di,j < 2T1)&(T1 < 0)

(11)

6. The pixel is recovered as
ui,j = ûi,j + ei,j . (12)

7. Replace the LSB of the first 48+Nf low pixels by the sequence SLSB which are
extracted in step 4.

3 Experimental results

In order to evaluate visual quality of marked image, two image quality metrics, i.e.,
PSNR and SSIM [16] were firstly used in this paper. PSNR is a traditional image
quality metric which depends on the quadratic sum of difference between original
image and marked image and it doesn’t consider the characteristics of the HVS. As
mentioned in Section 1, PSNR only calculates the pixel intensity difference between
two images, and smoothness-priority-based sorting technique is efficient for improving
PSNR.

The SSIM considers the structural characteristic of the image and includes structure,
luminance, and contrast comparison functions [16]. The essence of the structural compari-
son function in SSIM is the cosine value of the angle between two images, which reflects
the image structure sensitivity characteristic of the human visual perception. It has been
proved that SSIM was developed from the characteristics of the HVS. Thus SSIM and JND
are both based on HVS model and are both prefer to embedding data into texture area.

In addition, we establish a new image quality metric based on JND. As described above,
JND presents the smallest change in a pixel value that the human eyes can perceive. It means
the higher the JND value, the larger the tolerable for imperceptible by visual perception. We
present JND distortion (JNDD) as a new image quality metric for RDH, which is defined as

JNDD = 1

M × N

∑
∣∣Ui,j − ui,j

∣∣

J (ui,j )
, (13)

where ui,j is cover image pixel, Ui,j is the modified pixel, J (ui,j ) is the JND value of the
cover image, M and N are the size of cover image. The smaller JNDD means less visual
distortion caused by data embedding.
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The present twice-sorting scheme can reconcile the contradiction between smoothness-
priority-based sorting technique for pursuing high PSNR and texture-priority-based sorting
technique based on HVS by adjusting the interval length P . In order to evaluate the impact
of interval length P on three image quality metrics, we apply the proposed method to test

Fig. 5 The impact of interval length P on three image quality metrics, in which Fig (a,c,e) embedding rate
is 0.2bpp and Fig (b,d,f) embedding rate is 0.5bpp
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Fig. 6 Eight test images
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Fig. 7 Performance comparison using PSNR metric

image ”Lena” with different interval length P when embedding rate is 0.2bpp and 0.5bpp
respectively in Fig. 5. One can see from that, as expected, with the increase of the interval
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Fig. 8 Performance comparison using SSIM metric

length P , PSNR and JNDD value are decreased while SSIM value is increased. Note that
the decreasing of JNDD value means increasing of performance in JNDD image quality
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Fig. 9 Performance comparison using JNDD metric

metric. Hence, the result means the performance of JNDD and SSIM are increased while
performance of PSNR is decreased. It is consistent with the change trend in Fig. 5. That is
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because with the increase of the interval length P , the greater effect of the JND sorting. In
this case, data are embedded into texture area preferentially. It is consistent with SSIM and
JNDD metrics while contradict with PSNR metric. Hence, interval length P can be chosen
according to the image quality metric.

In addition, eight 256×256 sized test images including Lena, Candy, Peppers, Lake,
Baboon, Einstein, Boat and Airplane are also used in our experiments (see Fig. 6) [2]. In
order to demonstrate the performance, the proposed method is compared with two JND-
related RDH methods: Jung et al.’s method [5], and Qin et al.’s method [11].

Both Jung et al.’s and Qin et al.’s methods used the causal window to calculate prediction
value. They proved that causal window size B=3 and edge threshold T=200 are optimal
choice. Therefore, we set B=3 and T=200 in the comparison experiments. In our proposed
method, expansion region [T1, T2] is empirically determined as [−1, 0] as initial values and
it can be changed according to the embedding capacity [12], twice-sorting interval P is
empirically determined as 0.5 by considering both the running time and experiment effect.
Here, three image quality metrics of PSNR, SSIM and JNDD were also used in comparative
experiment.

Figures 7, 8 and 9 are the comparison results of embedding rate versus PSNR, SSIM
and JNDD respectively. For all images, the proposed method outperforms Jung et al.’s and
Qin et al.’s methods in PSNR, SSIM and JNDD.

4 Conclusion

So far, most RDH schemes are only assessed by PSNR. To improve PSNR, smooth regions
are more suitable for data embedding and thus smoothness-based sorting technique is effi-
cient, which however is obviously conflict with other criterion of HVS such as JND. To
make a reasonable tradeoff between PSNR and JND, we propose a twice-sorting scheme, in
which the pixels are first sorted based on a smoothness criterion and then sorted based on
JND. The experiment results show that the proposed method can significantly outperforms
previous JND-related methods.
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