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Abstract Until now, most reversible data hiding techniques have been evaluated by peak
signal-to-noise ratio(PSNR), which based on mean squared error(MSE). Unfortunately,
MSE turns out to be an extremely poor measure when the purpose is to predict perceived
signal fidelity or quality. The structural similarity (SSIM) index has gained widespread pop-
ularity as an alternative motivating principle for the design of image quality measures. How
to utilize the characterize of SSIM to design RDH algorithm is very critical. In this paper,
we propose an optimal RDH algorithm under structural similarity constraint. Firstly, we
deduce the metric of the structural similarity constraint, and further we prove it does’t hold
non-crossing-edges property. Secondly, we construct the rate-distortion function of optimal
structural similarity constraint, which is equivalent to minimize the average distortion for
a given embedding rate, and then we can obtain the optimal transition probability matrix
under the structural similarity constraint. Comparing with previous RDH, our method have
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gained the improvement of SSIM about 1.89 % on average. Experiments show that our
proposed method outperforms the state-of-arts performance in SSIM.

Keywords Reversible data hiding · Structural similarity · Recursive code construction ·
Convex optimization

1 Introduction

Reversible data hiding (RDH) [3, 12, 15, 16, 20] as a special branch of information hiding,
it is not only concerned about the users embedding data, but also pay attention to the carriers
themselves. It requires the carriers to be completely recovered after extracting the embedded
message, which has been found to be useful in many fields, such as, medical imagery and
legal. In the past few years, reversible hiding has been considerably developed. Scholars
have proposed a variety of reversible hiding algorithms for digital images, digital videos,
audios, and other carriers. Most RDH algorithms consist three key steps. The first step is
predicting, which focuses on how to better exploit inter-pixel correlations to derive a sharply
distributed one. The second step is sorting technique, which exploits the correlation between
neighboring pixels for optimizing embedding order. The third step reversibly embeds the
message into the prediction-error by modifying its histogram.

Until now, in order to facilitate the efficiency of RDH, researchers have proposed many
methods in the past decade. In general, RDH algorithms roughly fall into three categories:
the compression appending framework [3], the histogram shift (HS) technique [12] and the
difference expansion (DE) scheme [20]. In [3], Fridrich et al. proposed to find the space
by compressing proper bit-plane with the minimum redundancy. In their method, unless the
image is noisy, the lowest bit-plane is compressed and embedded with a hash value. How-
ever, the above [3] method cannot yield a satisfactory performance, since the correlations
among a bit-plane is too weak to provide a high embedding capacity. HS technique is first
proposed by Ni et al. [12] and this type of schemes are implemented by modifying the image
histogram of a certain dimension. In [20], Tian introduced a DE technique, which discovers
extra storage space by exploring the redundancy in the image content. He employ the DE
technique to reversibly embed a payload into images. The DE can achieve high embedding
capacity and keep the distortion low, while comparing with the lossless-compression-based
schemes [3] and HS-based scheme [12], the DE method performs much better by providing
a higher embedding capacity while keeping the distortion low. Unlike in DE where only the
correlation of two adjacent pixels is considered, the local correlation of larger neighborhood
is exploited in prediction-error expansion (PEE) [21], and thus a better performance can be
expected. PEE is currently a research hot spot and the most powerful technique of RDH.

Almost RDH techniques have been evaluated by PSNR. The PSNR is based on
MSE. What is the MSE? The definition of MSE between x = (x1, x2, · · · , xN) and
y = (y1, y2, · · · , yN) is MSE(x, y) = 1/N

∑N
i=1(xi − yi)

2, and PSNR is PSNR =
10log10(L2/MSE). where L is the dynamic range of allowable image pixel intensities. The
MSE has many attractive features. Firstly, the MSE is very simple, and satisfy properties
of convexity, symmetry, and triangular inequality. All Lp norms are excellent distance met-
rics in N-dimensional Euclidean space, especially in the context of optimization. Secondly,
the MSE has a clear physical meaning, which is the natural way to define the energy of the
error signal. Thirdly, the MSE is a desirable measure in the statistics and estimation frame-
work.The MSE has become a convention in many applications. Unfortunately, MSE turns
out to be an poor measure when the purpose is to predict perceived signal fidelity or quality
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[20, 21]. There are several implicit assumptions when using MSE, such as signal fidelity is
independent of temporal or spatial relationships among the original signal, the error signal
and the samples of the original signal, and is independent of the signs of the error signal
samples. However, It is a pity that not one of assumptions hold when we using MSE to mea-
sure the visual perception of image fidelity. The other reasons lead MSE to be poor measure
can be found in paper [23].

Due to the limitations or poor performance of MSE, what is the alternative? Recently,
the SSIM as novel image fidelity or similarity measures, which was originally motivated by
the observation that natural image signals are highly structured, has attracted a great deal
of attention [1, 23]. The human visual system (HVS) is the principle philosophy of SSIM
approach, which is highly sensitive to the structural distortions and automatically compen-
sates for the nonstructural distortions. The basic ideas of SSIM approach is simulating the
HVS functionality, which prove highly effective for measuring the similarity. Therefore, the
SSIM has gained widespread popularity as an alternative motivating principle for the design
of image quality measures in many applications, such as image fusion, image compression,
video hashing, chromatic image quality, retinal and wearable displays, and ratedistortion
optimization in standard video compression [1, 23, 25] . However, how to utilize the char-
acteristics of SSIM to design RDH algorithm is very critical. In practice, SSIM is often
used as a black box in optimization tasks as merely an adhesive control unit outside the
main optimization module. Brunet et al. [1] construct a series of normalized and general-
ized (vector-valued) metrics based on the important ingredients of SSIM, and show that
such modi?ed measures are valid distance metrics and have many useful properties, such
as quasi-convexity, a region of convexity around the minimizer, and distance preservation
under orthogonal or unitary transformations.

In this paper, we propose an optimal structural similarity constraint for RDH algorithm
by utilizing the characterize of SSIM. Firstly, SSIM(x, y) is not a metric, we should design
the corresponding structural similarity constraint in order to approach the upper bound of
the payload. Based on Brunet et al. [1], we deduce the metric of the structural similarity
constraint, and further we prove it does’t hold non-crossing-edges property. In this condi-
tion, we use the Earth Movers Distance strategy in [18] to estimate the optimal transition
probability matrix. Secondly, we construct the rate-distortion function of optimal structural
similarity constraint, which is equivalent to minimize the average distortion for a given
embedding rate, and then we can obtain the optimal transition probability matrix under the
structural similarity constraint. Experiments show that our proposed method can be used to
improve the performance of previous RDH schemes evaluated by SSIM, especially under
high embedding rates. Both of this indicate that our proposed OSSC algorithm is obvious
effect for RDH.

The paper is organized as follows. Section 2 describes the proposed optimal structural
similarity constraint for reversible data hiding. The simulations done using the proposed
technique and the obtained results are presented in Section 3. In Section 4, onclusions are
briefly drawn based on the results.

2 Optimal structural similarity constraint (OSSC) for RDH

2.1 The fundamental of stuctural similarity index

In the paper [23], Wang et al. has proposed the SSIM for image quality assessment,
which compares local patterns of pixel intensities that have been normalized for luminance,
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contrast and structure. Suppose that x ∈ RN+ and y ∈ RN+ are local image signals, which
are taken from two images in the same location. The SSIM index separates the task of simi-
larity measurement into three comparisons: luminance, contrast and structure, and the three
components are relatively independent.The first is luminance similarity l(x, y), which is
relevant with the mean intensity ux, uy and qualitatively consistent with Weberslaw.

l(x, y) = 2uxuy + c1

u2x + u2y + c1
(1)

The second is contrast similarity function c(x, y), Which is relevant with the variance σx, σy

and consistent with the contrast-masking feature of the HVS.

c(x, y) = 2σxσy + c2

σ 2
x + σ 2

y + c2
(2)

The third is structure similarity is s(x, y), Which is conducted on these normalized signals
(x − ux)/σx and (y − uy)/σy .

s(x, y) = σx,y + c3

σxσy + c3
(3)

where ux, uy , σx, σy , and represent, respectively, the mean and variance of x and y. σx,y

represent the covariance between x and y. The constants c1, c2, c3 are included to avoid
instability when u2x + u2y , σ

2
x + σ 2

y and σxσy are very close to zero, respectively. Then, we
combine the three comparisons of luminance, contrast and structure, and get the SSIM index
function.

SSIM(x, y)= 2uxuy + c1

u2x + u2y + c1
× 2σxσy + c2

σ 2
x + σ 2

y + c2
× σx,y + c3

σxσy + c3
(4)

The SSIM index is computed locally within a sliding window that moves pixel-by-pixel
across the image.The boundedness of SSIM is 1 ≥ |SSIM(x, y)|. Only if x = y ,the
SSIM(x, y) = 1. That is to say, the closer that x and y are to each other, the closer
SSIM(x, y) is to 1. Besides SSIM have symmetrical SSIM(x, y) = SSIM(y, x).

2.2 The metric of stuctural similarity index

Based on (4) , we should design the corresponding structural similarity constraint in order
to approach the upper bound of the payload. Does the SSIM(x, y) is a distortion metric ?
A metric D(x, y) must satisfy four rules for all x, y, z ∈ RN+ , as follows:

• nonnegativity: D(x, y) ≥ 0.
• symmetry: D(x, y) = D(x, y).
• identity:D(x, y) = 0 if and only if x = y.
• triangular inequality: D(x, y) + D(y, z) ≥ D(x, z).

Clearly, the SSIM index is not a metric, because x = y ⇒ SSIM(x, y) = 0 and
SSIM(x, y) + SSIM(y, z) ≥ SSIM(x, z) is not established. However, what’s the metric
can be used to characterize the structural similarity constraint? We will find a way to shape
it to form a metric. Based on (4), we set c3 = c2/2, then we can get SSIM(x, y) as follows:

SSIM(x, y) = 2uxuy + c1

u2x + u2y + c1
× 2σx,y + c2

σ 2
x + σ 2

y + c2
(5)
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Given x, y ∈ R, R is a normed space,a normalized metric or relative distance is a metric of
the form

dn(x, y) = ‖x − y‖
(‖x‖p + ‖y‖p)

q
p

(6)

dn(x, y) is a metric for q = 1 and for all p ≥ 1. Brunet et al. [1] construct a series of
normalized and generalized metrics based on the important ingredients of SSIM, and show
that such modified measures are valid distance metrics and have many useful properties.
Considering set q = 1 and p = 2, which leads to

d1(ux, uy) =
√

‖ux − uy‖2
(‖ux‖2 + ‖uy‖2 + c1)

=
√

1 − 2uxuy + c1

u2x + u2y + c1
(7)

d2(x − ux, y − uy) =
√

‖(x − ux) − (y − uy)‖2
(‖x − ux‖2 + ‖y − uy‖2 + c2)

=
√

σ 2
x − 2σx,y + +σ 2

y

σ 2
x + σ 2

y + c2

=
√

1 − 2σx,y + c2

σ 2
x + σ 2

y + c2
(8)

Observing (8), it is not difficult to find that the relationship among SSIM(x, y), d1(ux, uy)

and d2(x − ux, y − uy). which can be writen by

2uxuy + c1

u2x + u2y + c1
= 1 − d1(ux, uy)

2 (9)

2σx,y + c2

σ 2
x + σ 2

y + c2
= 1 − d2(x − ux, y − uy)

2 (10)

based on SSIM(x, y) = (1 − d1(ux, uy)
2)(1 − d2(x − ux, y − uy)

2),we can get
√
1 − SSIM(x, y) =

√
1 − d2

1 + d2
2 − d2

1d
2
2 (11)

‖d(x, y)‖2 = 1 − SSIM(x, y) (12)

If ux = uy and x − ux = y − uy , then SSIM(x, y) = 1, so we can have

‖d(x, y)‖2 = ‖x − y‖2 + c

‖x‖2 + ‖y‖2 + c
(13)

where c ≥ 0. Now, we should verify the ‖d(x, y)‖2 whether met the criteria of metric.

• Firstly, because 1 ≥ |SSIM(x, y)| and ‖d(x, y)‖2 = 1−SSIM(x, y), so ‖d(x, y)‖2 ≥
0.

• Secondly, because SSIM(x, y) = SSIM(y, x) and 1 − SSIM(x, y) = 1 −
SSIM(y, x), so we can get ‖d(x, y)‖2 = ‖d(y, x)‖2.

• Thirdly, if and only if x = y, the SSIM(x, y) = 1 and ‖d(x, y)‖2 = ‖d(y, x)‖2 = 0.
• The last is triangular inequality. Refer to the method in D. Brunet’s paper [1], we can

prove the property of triangular inequality: ‖d(x, y)‖2 + ‖d(y, x)‖2 ≥ ‖d(y, x)‖2.
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So the ‖d(x, y)‖2 is a metric, which can be used to characterize the property of SSIM(x, y).
The ‖d(x, y)‖2 hold many mathematical properties such as convexity, quasi-convexity, and
generalized convexity, which can be derived from SSIM.

2.3 Using earth movers distance to solve the structural similarity constraint
for RDH

How to get the optimal transition probability matrix for a given embedding rate RDH under
structural similarity constraint? Kalker and Willems [8] formulated the RDH as a special
rate-distortion problem. For independent and identically distributed (i.i.d.) host signals, the
upper bound of the payload and a distortion constraint is given by Kalker and Willems [8].
They obtained the rate-distortion function under a given distortion constraint, as follows:

ρrev(�) = maximize{H(Y)} − H(X) (14)

where X and Y denote the random variables of the host signal and the marked signal respec-
tively. The maximum entropy is over all transition probability matrices PY |X(y|x) satisfying
the distortion constraint

∑
x,y PX(x)PY |X(y|x)D(x, y) ≤ �. D(x, y) is the distortion met-

ric. Consequently, the optimal transition probability matrix (OTPM) PY |X(y|x) for (14)
implies the optimal modification manner on the histogram of the host signal X. For a binary
host sequence, i.e., x ∈ 0, 1, Kalker and Willems [8] proposed a recursive code construction
and Zhang et al. [15, 31] improved the recursive code construction to approach the rate-
distortion bound. For some gray-scale signals and specific distortion metrics D(x, y), such
as square error distortion D(x, y) = (x − y)2 or L1-Norm D1(x, y) = |x − y|,the OTPM
has a Non-CrossingEdges property [11]. Using this NCE property, the optimal solution on
PY |X(y|x) can be analytically derived by the marginal distributions PX(x) and PY (y). In
[7], Hu et al. proposed a fast algorithm to estimate the optimal marginal distribution PY (y)

for both the distortion constrained problem (14) and its dual problem, i.e., the embedding
rate constrained problem. However, for some distortion metrics, such as Hamming distance,
the NCE property no longer holds and the OTPM can not be obtained analytically.

Property 1 (Non-Crossing-Edges (NCE) property) : Given an optimal PY |X , for any two
distinct possible transition events PY |X(y1|x1) > 0 and PY |X(y2|x2) > 0, if x1 < x2, then
y1 ≤ y2 holds.

Lin et al. [11] has been proved that when the distortion metrics D(x, y) = (x − y)2 or
D(x, y) = |x − y|, the transition probability matrix PY |X(y|x) has the NCE property. Does
‖d(x, y)‖2 = (‖x − y‖2 + c)/(‖x‖2 + ‖y‖2 + c) meet the criteria of NCE ?

∂‖d(x, y)‖2
∂x

= 2(x2 − y2 − c)

(x2 + y2 + c)2
(15)

∂‖d(x, y)‖2
∂x

{
≥ 0, x ≥ √

y2 + c

< 0, x <
√

y2 + c
(16)

When the x ≥ √
y2 + c, the ∂‖d(x, y)‖2/∂x ≥ 0 ⇒ ‖d(x, y)‖2 is increasing function.

On the other hand, when the x <
√

y2 + c, the ∂‖d(x, y)‖2/∂x < 0 ⇒ ‖d(x, y)‖2
is strictly decreasing function. For any PY |X(y1|x1) > 0 and PY |X(y2|x2) > 0, if
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max(

√
y2
1 + c,

√
y2
2 + c) ≤ x1 < x2 ⇒ ‖d(x1, y1)‖2 ≤ ‖d(x2, y1)‖2, ‖d(x1, y2)‖2 ≤

‖d(x2, y2)‖2. In the paper [11], Lin define a function g(x, y) = −log2P
†
Y (y) −

λ‖d(x, y)‖2. If we want to prove the NEC property, only need to prove formula
holds g(x1, y1) + g(x2, y2) ≥ g(x1, y2) + g(x2, y1). That is to say −λ‖d(x1, y1)‖2 −
λ‖d(x2, y2)‖2 ≥ λ‖d(x1, y2)‖2 − λ‖d(x2, y1)‖2, and this problem is equivalent to
‖d(x2, y1)‖2 − ‖d(x1, y1)‖2 ≥ ‖d(x2, y2)‖2 − ‖d(x1, y2)‖2, which does not always holds.
So the ‖d(x, y)‖2 does not meet the criteria of NCE. If the NCE property no longer hold
and then the optimal transition probability matrix cannot be obtained analytically. How-
ever, how to efficiently solve the problem, realizing the optimal modification for gray-scale
signals, i.e., x ∈ {0, 1, · · · , B − 1} remains a problem

Fortunately, the Earth Movers Distance (EMD) proposed by Rubner et al. [18] is defined
as the minimal cost that must be paid to transform one histogram into the other, where there
is a ground distance between the basic features that are aggregated into the histogram. Fig-
uratively speaking, the EMD gains its name from the intuition that given two distributions,
one can be seen as a mass of earth properly spread in space, the other as a collection of
holes in that same space [5]. Then, the EMD measures the least amount of work needed to
fill the holes with earth, where a unit of work corresponds to transporting a unit of earth by
a unit of ground distance. The EMD has many advantages over other similarity measures
for distributions [22]. Firstly, the EMD matches perceptual similarity better than bin-bybin
distances for histogram matching. Secondly, the cost of moving “earth” reflects the notion
of nearness properly, without the quantization problems of most current measures. Thirdly,
computing the EMD is based on a solution to the wellknown transportation problem from
linear optimization, for which efficient algorithms, e.g., simplex methods, are available [2]
(Fig. 1).

In this paper, we formulate the EMD in the specific context of RDH, where the EMD is
employed to optimal transition probability matrices PY |X(y|x). Assume that a memoryless
source produces the host sequence x = (x1, x2, · · · , xN) with the identical distribution
PX(x) such that x ∈ {0, 1, · · · , B − 1}, where B ≥ 1 is an integer. The message is usually
encrypted before being embedded, so we assume that the secret messagem = (m1, m2, · · · )
is a binary random sequence with mi ∈ {0, 1}. Through slightly modifying its elements to
produce the marked-sequence y = (y1, y2, · · · , yN). Based on the property of SSIM(x, y),
we selected ‖d(x, y)‖2 as structural similarity distortion constraint. R = L/n is embedding
rate in RDH. Based on ρrev(�) = maximize{H(Y)}−H(X), the mathematical model can

Fig. 1 EMD between two equal signatures as a transportation problem
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be equivalent to minimize the average distortion for a given embedding rate R , which is
formulated as:

EMD(X, Y ) =
∑M−1

x=0
∑N−1

y=0 PY |X(y|x)‖d(x, y)‖2
∑M−1

x=0
∑N−1

y=0 PY |X(y|x)

min EMD(X, Y )

s.t. − ∑N−1
y=0 PY (y) log2(PY (y)) ≥ R − HX

∑M−1
x=0 PX(x)PY |X(y|x) = PY (y),∀y

∑N−1
y=0 PY |X(y|x) = 1, ∀x

PY |X(y|x) ≥ 0, ∀x, y

(17)

where the PY |X(y|x) is transition probability matrix, ‖d(x, y)‖2 structural similarity dis-
tortion measures. PX(x) is the constant parameters are the source distribution. Figuratively
speaking, constraint PY |X(y|x) ≥ 0 allows moving supplies from X to Y and not vice
versa. Constraint

∑M−1
x=0 PX(x)PY |X(y|x) = PY (y) limits the clusters in Y to receive no

more supplies than their weights, and the marginal distribution PY (y) can be got by the fast
algorithm in [8]. Constraint

∑N−1
y=0 PY |X(y|x) = 1 forces to move the maximum amount

of supplies possible. We call this amount the total flow. Once the transportation problem is
solved, and we have found the optimal flow PY |X(y|x).

Property 2 (metric transitivity) : The ground distance ‖d(x, y)‖2 = (‖x−y‖2+c)/(‖x‖2+
‖y‖2 + c) is a metric and the total weights of the distributions X and Y are equal, then
EMD(X, Y ) holds the property of metric.

Obviously, EMD(X,Y)=EMD(Y,X) and EMD(Y,X)≥ 0, so we only need to prove that the
triangle inequality holds [18]. Without loss of generality we consider the flowX ⇒ Y ⇒ Z.
We assume supplies from xi to yj to zk , then we have ‖d(xi, yj )‖2 + ‖d(yj , zk)‖2 ≥
‖d(xi, zk)‖2. Supposing âi,j is an optimal matching to change X into Y , b̂j,k is an opti-
mal matching to change Y into Z and hi,k is an optimal matching to change X into Z.
Consequently, the composite hi,k is derived from the âi,j and b̂j,k as the sum of interval
intersections

hi,k =
n∑

j=1

∣
∣
∣
∣
∣

[
i−1∑

i′=1

âi′,j ,
i∑

i′=1

âi′,j

]

∩
[

k−1∑

k′=1

b̂j,k′ ,
k∑

k′=1

b̂j,k′

]∣
∣
∣
∣
∣

(18)

Because of the distributions X, Y and Z have equal weights. So we can proof as follow

EMD(X, Z) ≤
∑

i,k

hi,k‖d(xi, zk)‖2

≤
∑

i,j

âi,j‖d(xi, yj )‖2 +
∑

j,k

b̂j,k‖d(yj , zk)‖2 (19)

= EMD(X, Y ) + EMD(Y, Z)

Therefore, the EMD is a true metric, which allows endowing optimal histogram modifica-
tion with a metric structure.



Multimed Tools Appl

The EMD(X,Y) can be modeled as a solution to a transportation problem, which is
a special case of linear programming (LP) problems. One such efficient algorithm is the
transportation simplex. As a general description of linear programming problem [2, 14].

min Eemd = dT P
s.t. AP = b

P ≥ 0
(20)

where A ∈ Rm×n, d = [‖d(x, y)‖2] ∈ Rn×1 and P = [PY |X(y|x)] ≥ 0. The optimization
procedure of the simplex method is first illustrated with the assumption that the rows of
A are linearly independent, which A = m. So, the first m columns are assumed to be
linearly independent and denoted as AB , and the other columns called as ANB . Then we

have A = [AB,ANB ]. Further let d = [
dT

B,dT
NB

]T
and P = [

PT
B,PT

NB

]T
, where PT

B are
basic variables and PT

nb non-basic variables. Then the matrix description can be given by

(
1 −dT

B −dT
NB

0 AB ANB

)
⎛

⎝
Eemd

PB

PNB

⎞

⎠ =
(
0
b

)

(21)

Based on the above, the algebraic operations performed by the simplex method are
expressed in matrix form by premultiplying both sides of the original set of equations by
the appropriate matrix. Consequently, the desired matrix form of the set of equations after
any iteration is

(
1 0 dT

BA
−1
B ANB − dT

NB

0 Im A−1
B ANB

)
⎛

⎝
Eemd

PB

PNB

⎞

⎠ =
(
dT

BA
−1
B b

A−1
B b

)

(22)

As shown in [2, 14], the sufficient conditions which lead to the conclusion that the solution
is global optimal are A−1

B b ≥ 0 and dT
BA

−1
B ANB − dT

NB ≤ 0. However, the above two
requirements are not necessarily guaranteed. Firstly, the A−1

B b ≥ 0 is equivalent to state that
P ≥ 0, which can be satisfied by introducing artificial variables. Secondly, dT

BA
−1
B ANB −

dT
NB ≤ 0 needs an iterative procedure of switching basic and non-basic variables. Until it

satisfies the requirement that dT
BA

−1
B ANB − dT

NB ≤ 0, a global optimal solution is reached.
Otherwise, keep switching another pair of basic and non-basic variables, until an optimal
result has been obtained. It is worth noting the above equation are based on the assumption
that A = m. However, it is not always A = m in some cases, and AB does not exist inverse
matrix A−1

B . Artificial variables described in [2, 14] is effectively method, which facilitates
the selection of the m basic variables as well as solving the problem caused by redundant
constraints. The modified form in equation can be given by

min Eemd = dT P + γ [1, 1, ..., 1]ImPA

s.t. AP + ImPA = b
P ≥ 0

(23)

where γ is an unspecified large positive number, if γ > max(dT ) will make solutions
including nonzero artificial variables not the optimal solutions. PA are referred to as artifi-
cial variables. Therefore, the constraint matrix changes to [A, Im] and rank([A, Im]) ≥ m,
which can guarantee the inverse matrix A−1

B . Consequently, we can obtain the optimal solu-
tion P = [PXY (xy)] to Eq.23 by using the procedures described in the previous subsection.
Based on PY |X(y|x), PX(x) and PY (y), we can calculate the optimal transition probability
matrix PX(x)PY |X(y|x) = PXY (xy) and PX|Y (x|y) = PXY (xy)/PY (y).
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2.4 Recursive code construction for RDH

Recursive code construction (RCC) has first proposed by Kalker andWillems [8] and devel-
oped by Zhang et al. [31] for RDH. By RCC, we divide the host sequence into disjoint
blocks and embed the message by modifying the histogram of each block. We first divide
the host sequence x into g disjoint blocks, in which the first g − 1 blocks have the same
length K , and the last block has the length Llast , and thus N = K(g − 1) + Llast . To finish
the embedding, we have to set Llast to be larger than K . The ith cover block is denoted by
xi , and the corresponding stego block is denoted by yi , i = 1, . . . , g. We embed the message
into each block by an embedding function Emb(), such that (Mi+1, yi) = Emb(Mi , xi),
with i = 1, . . . , g and M1 = m [5]. In other words, the embedding process in the ith block
outputs the message to be embedded into the (i + 1)th block. The Mi+1 consists of the
the rest message bits and the overhead information, O(xi), for restoring xi . The message
extraction and cover reconstruction are processed in a backward manner with an extraction
function Ext(), such that (Mi , xi)=Ext(Mi+1, yi), with i = g, . . . , 1.

Now we consider a sender with a distortion constraint �. To maximize the embedding
rate, we use EMD to estimate the optimal transition probability matrix PY |X(y|x) of prob-
lem (14) according to � and the host distribution PX(x), and then we can calculate the
transition probability matrix PY |X(y|x). The embedding and extracting processes will be
realized by the decompression and compression algorithms of an entropy coder (e.g., arith-
metic coder) with PY |X(y|x) and PX|Y (x|y) as parameters. We denote the compression
and decompression algorithms by Comp() and Decomp() respectively. For simplicity, we
assume Y is just a random variable satisfying the optimal marginal distribution PY (y) that
is determined by PY |X(y|x) and PX(x). Therefore, the rate-distortion bound (14) can be
rewritten as

ρrev(�) = maximize{H(Y)} − H(X)

= H(Y) − H(X)

= H(Y |X) − H(X|Y ). (24)

On the other hand, in a K-length block of the code construction, we modify the host signal
x to y according to the optimal transition probability PY |X(y|x), so the average distortion d

is given by d = ∑
x,y PX(x)PY |X(y|x)D(x, y). Note that PY |X(y|x) is the solution of (14)

under the condition
∑

x,y PX(x)PY |X(y|x)D(x, y) ≤ �, so we have d ≤ �.
In a K-length block, the average number of embedded message bits is given by∑B−1
x=0 PX(x)H(Y |X = x) and the average capacity cost for reconstructing this block is

given by
∑B−1

y=0 PY (y)H(X|Y = y), so the embedding rate R in one block is given by

R =
B−1∑

x=0

PX(x)H (Y |X = x) −
B−1∑

y=0

PY (y)H (X|Y = y)

= H(Y |X) − H(X|Y ). (25)

Thus, we get R = ρrev(�). Therefore, RCC can approach the ratedistortion bound (4) [26].
Data Embedding Process: The embedding is done by substituting signals of the cover

with sequences obtained by decompressing the message bits in accordance with the the
optimal transition probability matrix. In other words, for each bin x, x ∈ {0, . . . , B − 1},
we decompress a part of the message sequence according to the distribution PY |X(y|x),
and then substitute all host signals equal to x with the decompressed sequence. Thus, the
histogram of the cover block is modified in a bin by bin manner. In each host block xi ,
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the embedding function Emb() executes two tasks. One task is to embed some bits of the
message and generate the stego-block yi by decompressing the message sequence according
to PY |X(y|x). The other task is to produce the overhead information O(xi) for restoring the
host block xi by compressing it according to yi and PX|Y (x|y). The overhead information
will be embedded into the next block xi+1 as a part of Mi+1 (see Fig. 2).

Data Extraction and Cover Restoration Processes: The data extraction and cover restora-
tion are processed in a backward manner, such that (Mi , xi )=Ext(Mi+1, yi ) for i =
g − 1, . . . , 1. From the (i + 1)th stego block, we can extract the overhead O(xi ), by which
we reconstruct the ith cover block xi . With the help of xi , we can extract the message from
yi by decompressing it according to the the optimal transition probability matrix PY |X(y|x).
In each stego block yi , the extraction function Ext() also executes two tasks. One task
is to decompress the overhead information extracted from yi+1 according to PX|Y (x|y)

and restore the host block xi . The other task is to extract the message by compressing yi

according to xi and PY |X(y|x).

3 Application, experiment and analysis

3.1 Prediction and double-layered embedding method

In this paper, we employ double-layered embedding method [19]. All pixels are divided into
two sets: the shadow pixel set ( Dot) and the blank set ( Five Star ) (see Fig. 3). In the first
round, the shadow set is used for embedding data and blank set for computing predictions,
while in the second round, the blank set is used for embedding and shadow set for computing
predictions. Since the two layers embedding processes are similar in nature, we only take
the shadow layer for illustration.

Next, the prediction-error is computed by:

xe = P − P̂ (26)

P̂ = pi−1,j + pi,j+1 + pi+1,j + pi,j−1

4
(27)

Finally, the prediction-error sequence xe = {xe
1, · · · , xe

N } is derived.

Fig. 2 Illustration of recursive code construction
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Fig. 3 The image divided into two sets: the Dot pixel set and the Five Star set

3.2 Experiment, analysis and comparison

In fact, the size of distortion metrics ‖d(x, y)‖2 is related to the size of prediction-error.
We define xe

min = min{xe
1, · · · , xe

N } and xe
max = max{xe

1, · · · , xe
N }, so the prediction-

error range form xe
min to xe

max . In experiments, we truncate the prediction-error by this
way: xe

T h = {xe|xe ≥ T h}, where T h ≥ |xe
min|. Therefore, the size of distortion metrics

‖d(xe, ye)‖2 is (xe
max − xe

T h) × (xe
max − xe

T h).
The flow chart of embedding and extracting is in Fig. 4. The details Procedures of optimal

structural similarity constraint as follows:
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Fig. 4 The flow chart of OSSC

In practice, one usually requires a single overall quality measure of the entire image. We
use a mean SSIM (MSSIM) index to evaluate the overall image quality

MSSIM(X, Y ) = 1

M

M∑

i=1

SSIM(xi, yi) (28)

where X and Y are the reference and the distorted images, respectively. xi and yi are the
image contents at the j th local window. M and is the number of local windows of the image.

We implemented these methods on the computer with Intel core i3 and 4GB RAM.
The program developing environment is MATLAB R2011b based on Microsoft Windows
7 operating system. In the experiment, in order to simplify the complexity of OSSC, let
c = 200. We implemented the proposed code construction with arithmetic coder as the
entropy coder. In the experiment, we set the block length K = 7000 and the length of the
last block Llast = 4000, and T h = max{400−R × 800, 10} Test image is shown in Fig. 5.
Besides, we select some images (Fig. 6) from the LIVE (Laboratory for Image and Video
Engineering) [24] database to test our OSSC algorithm.

Observing from Fig. 7a, b, c and d, we compare our OSSC method with Zhang et al.
[31]. Figure 7a, b, c and d illustrates that if embedding rate is larger, the effect brought by
our algorithm is more obvious. Comparing with Zhang et al. [31] , our method have gained
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Fig. 5 The test image Lena, barbara, cornfield and boat

Fig. 6 The test image flowersonih, lighthouse, manfishing and carnivaldolls in LIVE database
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Fig. 7 Embedding performance comparisons with Zhang et al. [31] and Sachnev et al. [19]
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of MSSIM is much more higher, about 0.01 to 0.02 on average. Especially under large
embedding rates. In Fig. 7e, f, g and h, we compare our OSSC method with Zhang et al.
[31], which illustrates that if embedding rate is larger, the effect brought by our algorithm
is more obvious. Comparing with Zhang et al. [31] , our method have gained of MSSIM is
much more higher, about 0.02 to 0.03 on average. Especially under large embedding rates.

Observing from Table 1, we compare our method with Zhang et al. [31] method in dif-
ferent embedding rate. Comparing with the Zhang et al. [31] method, our OSSC method
gains 0.77 %, 2.97 %, 2.14 %, 1.68 %, 1.24 %, 1.09 %, 3.00 %, 3.16 %, 1.67 %, 1.95 %,
1.34 %, 1.44 % in test image lena, barbara, corneld, boat, man, cablecar, owersonih, light-
house, manshing, sailing, carnivaldolls, house, respectively. For our method, an average
1.89 % gains is earned compared with the Zhang et al. [31] method. Especially under high
embedding rates. Both of this indicate that to some extent, the OSSC strategy for RDH is
efficiency

Besides the MSSIM, our method can achieve good performance performance in the term
of PSNR. Observing form Fig. 8, one can find our method is being compared with the
other five recent works of Gui et al. [4], Sachnev et al. [19], Hu et al. [6], Peng et al.
[13]. The comparison results are shown in Fig. 8a and b. In conclusion, compared with the
state-of-the-art works [4, 6, 13, 19, 24], the superiority of the propose method is experi-
mentally verified. It demonstrates the effectiveness of the proposed SSIM-based embedding
strategy.

Reversible data hiding, as a fragile watermarking technique, is largely used for data
integrity authentication, and data annotation. It requires the cover itself to be completely
recovered after extracting the embedded message, which is very useful in fileds like medical
imagery, military imagery and law forensics. In recent years, the hotspots of reversible data
hiding has been directed to the capacity-distortion performance. Until now, almost reversible
data hiding techniques competes each other by the capacity-distortion curve. Such as [3, 4,
7, 10–12, 16, 17, 19–21, 27, 31]. Reversible data hiding embeds messages into the smooth
regions of an image because of good rate distortion compromise, while the statistical invis-
ibility and security properties for reversible data hiding are some kinds of less concerned
by most researchers. Actually the invisibility and security concerns are very good research
directions for reversible data hiding, through which we can get better balance among the

Table 1 series Table 1: OSSC Embedding performance comparisons with Zhang et al. [31]

Image Embed-Rate Zhang et al. Proposed Improvement Increased Percentage

1 lena 0.96 0.9088 0.9158 0.0070 0.77 %

2 barbara 0.85 0.8992 0.9259 0.0267 2.97 %

3 cornfield 0.95 0.9339 0.9539 0.0200 2.14 %

4 boat 0.95 0.9064 0.9216 0.0152 1.68 %

5 man 0.90 0.9189 0.9303 0.0114 1.24 %

6 cablecar 0.95 0.9520 0.9624 0.0104 1.09%

7 flowersonih 0.85 0.9187 0.9462 0.0275 3.00 %

8 lighthouse 0.96 0.8804 0.9082 0.0278 3.16 %

9 manfishing 0.95 0.9264 0.9419 0.0155 1.67 %

10 sailing 0.96 0.8919 0.9093 0.0174 1.95 %

11 carnivaldolls 0.95 0.9487 0.9611 0.0124 1.34 %

12 house 0.96 0.9066 0.9197 0.0131 1.44 %
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Fig. 8 a and b is performance comparison between our method and six methods of Zhang et al. [31], Gui
et al. [4], Sachnev et al. [19], Hu et al. [6], Peng et al. [13]

three properties and make reversible data hiding more applicable. We are highly encouraged
to discuss deeply into these aspects in our later work.

4 Conclusion

In this paper, we utilize the characterize of SSIM to design RDH algorithm, and propose an
optimal RDH algorithm under structural similarity constraint. Firstly, SSIM is often used as
a black box in optimization tasks as merely an adhesive control unit outside the main opti-
mization module. we deduce the metric of the structural similarity constraint, and further we
prove it does’t hold NCE property. Secondly, we construct the rate-distortion function under
structural similarity distortion constraint, which can obtain the optimal transition probability
matrix. Experiments show that our proposed OSSC method is effective.
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