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Abstract Reversible data hiding schemes compete against each other for a sharply dis-
tributed prediction error histogram, usually realized by utilizing prediction strategies
together with sorting technique that aims to estimate the local context complexity for each
pixel to optimize the embedding order. Sorting techniques benefit prediction a lot by pick-
ing out pixels located in smooth areas. In this paper, a novel entropy-based sorting (EBS)
scheme is proposed for reversible data hiding, which uses entropy measurement to char-
acterize local context complexity for each image pixel. Futhermore, by extending the EBS
technique to the two-dimensional case, it shows generalized abilities for multi-dimensinal
RDH scenarios. Additionally, a new gradient-based tracking and weighting (GBTW) pixel
prediction method is introduced to be combined with the EBS technique. Experimental
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results apparently indicate that our proposed method outperforms the previous state-of-
arts counterparts significantly in terms of both the prediction accuracy and the overall
embedding performance.

Keywords Reversible data hiding · Entropy-based sorting · Gradient-based tracking and
weighting

1 Introduction

Reversible data hiding (RDH) [15, 18, 26] as a new embedding technique has drawn much
attention in the past few years with advantages that not only the secret message can be
precisely extracted, but also the cover itself can be restored losslessly. This important data
hiding technique has been found to be useful in many fields such as medical imagery, mili-
tary imagery and legal imagery, where the cover cannot be damaged during data extraction.
A framework of RDH for digital images is illustrated in Fig. 1.

Until now, in order to facilitate the efficiency of RDH, researchers have proposed many
methods in the past decade. In general, RDH algorithms consist of embedding and extract-
ing. There are three key steps in the process of embedding. The first step is predicting, which
focuses on how to exploit inter-pixel correlations better for deriving a sharp distribution.
The second step is sorting technique, which makes the most of the correlation among neigh-
boring pixels for optimizing embedding order. The third step involves reversibly embedding
the message into the prediction-error (PE) sequence by modifying its histogram [20, 28–30].

The improvement of the prediction is essential for RDH [3–8, 21]. Some predictors
have proposed such as median edge detection (MED) and gradient adjusted prediction
(GAP) [21]. The MED is a non-linear predictor that uses three neighboring pixels to esti-
mate unknown pixel. It detects horizontal or vertical edges using three neighboring pixels
to estimate the predicted value of the current pixels accordingly. The GAP uses seven
neighboring pixels and selects the output based not only on the existence of a horizontal
or vertical edge, but also on its strength. Recently, C. Dragoi and D. Coltuc [6, 7] have
proposed extended gradient-based selection and weighting (EGBSW) and local prediction
(LP) for RDH. The EGBSW algorithm uses a set of four simple linear predictors associ-
ated with the four principal directions and computes the output value as a weighted sum
between the predicted values corresponding to the selected gradients. Then predicted value
is obtained. For the LP [7], a least square predictor is computed on a square block cen-
tered on the pixel and the corresponding prediction error is obtained, which results in good
performance.

Fig. 1 Framework of RDH embedding/extraction
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As a fundamental step to exploit the correlation between neighboring pixels for optimiz-
ing embedding order, sorting [1, 23] algorithm is also essential to enhance the embedding
payload and visual quality. By introducing sorting algorithm, Kamstra and Heijmans [12]
has gained a great improvement in reducing the location map size by sorting pairs of pixels
over previous methods. Sachnev et al. [23] has used local variance values to sort the pre-
dicted errors. They sort the cells in ascending order of the local variance values, which first
embeds the smoother cells with lower local variance values. But in some cases, it does not
work accurately. Mahsa Afsharizadeh [1] extend Sachnev’s method and proposed a new effi-
cient sorting technique, which generating a more accurate sorting procedure. Ou et al. [19]
proposed a simple but efficient sorting method by calculating its local complexity, which is
the sum of absolute differences between diagonal blank pixels in the 4 × 4 sized neighbor-
hood. A small local complexity indicates that the pair is located in a smooth image region
where the pixels can be accurately predicted. However, the characteristic of prediction-error
distribution was not considered in the above-mentioned algorithms.

In this paper, first of all, we propose a new gradient-based tracking and weighting
(GBTW) method based on Rad and Attar’s work [7] for predicting, which uses two or
four neighboring pixels to estimate the unknown pixel. Secondly, we propose a general-
ized normal distribution entropy-based sorting for reversible data hiding. Then, we extend
the one-dimensional entropy-based sorting for two-dimensional (2D) RDH, and deduce the
uniform entropy-based sorting for multi-dimensional RDH.

The paper is organized as follows. Section 2 describes the proposed GBTW algorithm
for reversible data hiding. Section 3 deals with the details of generalized normal distribution
entropy-based sorting. The experimental results are presented in Section 4. In Section 5,
conclusions are briefly drawn based on the experimental results.

2 Prediction using gradient-based tracking and weighting (GBTW)

Naturally, images have an important feature, whose adjacent pixels are highly correlated,
which is continuous tone. However, edges also play a critical role in human visual system
(HVS), which is revealing with jump in intensity. How to use the property to predict pixel
is very important. Rad and Attar [21] have proposed gradient-based tracking and adapting
method (GBTA) that tracks edges in more directions precisely. When the main direction
and sub direction are the same, the predictor just uses one neighboring pixel for prediction.
When they are different, it uses two neighboring pixels. However GBTA did not make full
use of the feature of high correlation between adjacent pixels.

All pixels divided into two sets: the shadow pixel set and the blank set. The shadow
pixels and blank pixels appear alternately. And the number of pixels in the two sets are
equal. In the first round, the shadow set is used for embedding data and blank set for
computing predictions. While in the second round, the blank set is used for embedding
and shadow set for computing predictions. Henceforth, this scheme will be called the
double-layered embedding scheme. So here is a new gradient-based tracking and weight-
ing (GBTW) method for predicting based on GBTA, which using eight neighboring pixels
( ˆNW, N, ˆNE, E, ˆSE, S, ˆSW and W ) to estimate current pixel. Note that the pixel P

in shadow set has eight neighboring pixels, where N,E, S,W belong to blank set, and
ˆNW, ˆNE, ˆSE, ˆSW can be predicted by blank set as follows: ˆNW = (NNW + N + W +

NWW)/4, ˆNE = (NNE + N + E + NEE)/4, ˆSW = (W + S + W + SSW + SWW)/4,
and ˆSE = (E + SEE + SSE + S)/4. Only the pixels in blank set are used to predict the
pixels in shadow set and embedding is done in shadow set, and blank embedding is similar
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to shadow embedding, which can ensure the algorithm reversible. During data hiding in one
set, pixels from the other set are not to be modified. The decoding procedure is an inverse
of the encoding scheme.

By estimating main direction (denoted by θm−d ) gradients in 4 directions (45◦, 90◦, 135◦
and 180◦) and sub-direction (denoted by θs−d ) gradients in 11 directions (θs−d = θm−d −
45◦, θm−d or θm−d + 45◦) as shown in Fig. 2, it tries to track the most correlation pixels and
weight the neighboring pixels according to local gradient to predict current pixel.

GBTW algorithm first computes some parameters to earn the gradient orientation. Main
directions θm−d are computed by using adjacent closest pixels as follows:

m − dmax = max{|P − ˆNE|, |P − N |, |P − ˆNW |, |P − W |} (1)

θm−d =

⎧
⎪⎪⎨

⎪⎪⎩

45◦ m − dmax = |P − ˆNE|
90◦ m − dmax = |P − N |

135◦ m − dmax = |P − ˆNW |
180◦ m − dmax = |P − W |

(2)

After computing, we can get main direction θm−d .
Secondly, the sub-direction θs−d among θm−d − 45◦, θm−d or θm−d + 45◦ is selected,

sub-directions are produced to be more exact in determining the edges. As for, how to get
sub-direction θs−d . For instance, in the Fig. 2, from the beginning of the pixel ˆNE there
are three sub-directions, identification with three red lines. If the absolute |NNE − ˆNE| is
maximum, then the θs−d is 45◦. In the same way, we can get other θs−d . In the predicting
step, two directions which are main direction and sub-direction in term of maximum change
level, are both taken into consideration. That is to say, final direction not only relies on the
main direction but also relies on sub-direction. GBTW produces the prediction in a way
that the pixels in the orthogonal direction of main-direction have more contribution to the
formation of final prediction than the pixels in the orthogonal direction of sub-direction.
GBTW uses four of eight neighboring pixels for final predicting.

For instance, as shown in Fig. 3a, θm−d is 45◦ and θs−d is 0◦. ˆNW and ˆSE are vertical
to θm−d , and N and S are vertical to θs−d . Then the prediction for pixel is computed as:

P̂ = [ωm−d × ( ˆNW + ˆSE) + ωs−d × (N + S)]
2 × (ωm−d + ωs−d)

(3)

Fig. 2 Main direction (short of
θm−d ) gradients in 4 directions
and sub-direction (short of θs−d )
gradients in 11 directions
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Fig. 3 a is main direction (θm−d is 45◦) and sub-direction (θs−d is 0◦). b is an example

Where ωm−d is the weight of ˆNW and ˆSE, ωs−d is the weight of N and S. According to
the experimental results, we suggest that ωm−d : ωs−d is equal to 2:1. We give an example
Fig. 3b. The traditional rhombus prediction algorithm is that center pixel P of the cell can be
predicted from the four neighboring pixels N , E, S, W . The predicted value P̂ is computed
as P̂ = (N + E + S + W)/4 = (85 + 95 + 75 + 78)/4 = 83.25. But the traditional
rhombus prediction algorithm does not making full use of image texture characteristics.
Suppose that the main direction is 45◦ and the sub-direction is 0◦ (see above Fig. 3b),
then prediction P̂ = [ωm−d × (79 + 83) + ωs−d × (85 + 75)]/2 × (ωm−d + ωs−d) =
[2ωs−d × (79 + 83) + ωs−d × (85 + 75)]/2 × (2ωs−d + ωs−d) = 80.67. Obviously, our
algorithm is better than the traditional algorithm.

Generally speaking, the unified formula of prediction is as follows

P̂ = 1

2(ωm−d + ωs−d)
[ωm−d × (Pm−d−orth1 + Pm−d−orth2)

+ ωs−d × (Ps−d−orth1 + Ps−d−orth2)], (4)

where Pm−d−orth1 and Pm−d−orth2 are the pixels in the vertical direction to θm−d ,
Ps−d−orth1 and Ps−d−orth2 are the pixels in the vertical direction to θs−d . In the same way,
we can get other predictors. In detail, all of the predictors about direction are shown in
Table 1.

As shown in Table 1, according to the local gradient estimation, the predictor performs
dynamically. For each pixel prediction just two or four neighbor pixels participate in final
predictor. When the main direction and sub-direction are the same, the predictor estimates
the unknown pixel value to be same as the pixel which keeps the intensity change level and
just uses two neighbor pixels for prediction. When the main and sub-direction are different,
the predictors are much more complex than previous. In these circumstances, four neigh-
bor pixels participate to form the predictor. According to GBTW algorithm premises, the
pixels which participate in order to show the effect of main direction in keeping maximum
change level weighted ωm−d and the other one which participates for effect of sub-direction
weighted ωm−d and divided by 2 × (ωm−d + ωs−d) to form the final predictor.

Next, the prediction-error is computed by:

e = P − P̂ (5)

Finally, the prediction-error sequence e = (e1, · · · , eN ) is derived.
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Table 1 All predictors in different directions

Main-direction Sub-direction Predictor

θm−d = 45◦ θs−d = 0◦ P̂ = [ωm−d×( ˆNW+ ˆSE)+ωs−d×(N+S)]
2×(ωm−d+ωs−d )

θm−d = 45◦ θs−d = 45◦ P̂ = ˆNW+ ˆSE
2

θm−d = 45◦ θs−d = 90◦ P̂ = [ωm−d×( ˆNW+ ˆSE)+ωs−d×(W+E)]
2×(ωm−d+ωs−d )

θm−d = 90◦ θs−d = 45◦ P̂ = [ωm−d×(W+E)+ωs−d×( ˆNW+ ˆSE)]
2×(ωm−d+ωs−d )

θm−d = 90◦ θs−d = 90◦ P̂ = W+E
2

θm−d = 90◦ θs−d = 135◦ P̂ = [ωm−d×(W+E)+ωs−d×( ˆNE+ ˆSW)]
2×(ωm−d+ωs−d )

θm−d = 135◦ θs−d = 90◦ P̂ = [ωm−d×( ˆNE+ ˆSW)+ωs−d×(W+E)]
2×(ωm−d+ωs−d )

θm−d = 135◦ θs−d = 135◦ P̂ = ˆNE+ ˆSW
2

θm−d = 135◦ θs−d = 180◦ P̂ = [ωm−d×( ˆNE+ ˆSW)+ωs−d×(N+S)]
2×(ωm−d+ωs−d )

θm−d = 180◦ θs−d = 135◦ P̂ = [ωm−d×(N+S)+ωs−d×( ˆNE+ ˆSW)]
2×(ωm−d+ωs−d )

θm−d = 180◦ θs−d = 180◦ P̂ = N+S
2

3 Unified entropy-based sorting

In order to hide more data with less visual degradation, we need to change the order to hide
data into the prediction-error. However, how to exploit the correlation among neighboring
pixels for optimizing embedding order? In information theory [24], the entropy refers to
disorder or uncertainty. So it can be used to characterize the randomness of pixels in a certain
image region. For example, if the entropy is higher, which means the pixels in image region
are more random or unpredictability. Consequently, the pixels are hard to predict accurately
in this region. Thus, the prediction-errors can be rearranged by sorting according to entropy.

3.1 Entropy of generalized normal distribution for sorting

The generalized error distribution is a generalized form of the Normal, possesses a natural
multivariate form, has a parametric kurtosis that is unbounded above and possesses special
cases that are identical to the Normal and the double exponential distributions [9]. Given
that the probability density function (PDF) of prediction-error follows generalized normal
distribution or gaussian distribution, we consider using this model to describe the prediction-
error in Fig. 3. Generalized normal distribution density function is defined by Nadarajah
[17] (Fig. 4).

f (e|u, α, β) = β

2α�( 1
β
)
exp

{

−
∣
∣
∣
∣
(e − u)

α

∣
∣
∣
∣

β
}

, (6)

where e is prediction-error with mean u and variance σ 2. α = √
σ 2�(1/β)/�(3/β) is

a scale parameter, playing the role of a variance that determines the width of the PDF,
while β > 0, called the shape parameter, controls the fall-off rate in the vicinity of the
mode (the higher β, the lower the fall-off rate). �(.) denotes the Gamma function such that
�(t) = ∫ ∞

0 xt−1exp(−x)dx. It is easy to see that the (6) reduces to the normal distribution
for β = 2, and Laplacian distribution for β = 1. Figure 4 illustrates some possible shapes
of (6). The effect of the parameters can easily be seen from these graphs. Similar plots can
be drawn for others values of the parameters.
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Fig. 4 The probability density plots of generalized normal distributions and prediction-error distribution of
lena

An entropy of a random variable e is a measure of variation of the uncertainty. Following
Rényi [22], the Rényi entropy is defined by

R(γ ) = 1

1 − γ
log2

{∫

[f (e|u, α, β)]γ de

}

= 1

1 − γ
log2

{
βγ

(2α)γ (�(1/β))γ

2αγ −1/β�(1/β)

β

}

= log2 γ

β(γ − 1)
− log2

{
β

2α�(1/β)

}

, (7)

where γ > 0, γ �= 1, α > 0 and β > 0. According to Shannon [24], the entropy of the
generalized normal random variable e is given by

H(e|u, α, β) = −
∫ +∞

−∞
f (e|u, α, β) log2(f (e|u, α, β))de, (8)

which is the particular case of Rényi entropy for γ ⇒ 1. According to L’Hospital’s rule, if
lim
γ→c

f (γ ) = lim
γ→c

g(γ ) = 0 or ±∞, and lim
γ→c

[f ′(γ )/g′(γ )] exists, and g′(γ ) �= 0 for all

γ then lim
γ→c

[f (γ )/g(γ )] = lim
γ→c

[f ′(γ )/g′(γ )]. Thus, in the limit when γ ⇒ 1 and using

L’Hospital’s rule

lim
γ→1

log2 γ

(γ − 1)
= 1

ln2
(9)

Shannon entropy is easily obtained from the expression for Rényi entropy as follows:

H(e|u, α, β) = 1

βln2
− log2

{
β

2α�(1/β)

}

(10)

where α > 0, β > 0. The entropy depends only on the shape parameter β and the
scale parameter α. We assume e follows zero-mean generalized normal distribution. The
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generalized normal distribution is symmetric with respect to u, hence the odd central
moments are zero. Thus, the n-th moment is given by [2]

E{|e|n} =
{

σ 2�(1/β)

�(3/β)

}n/2
�((n + 1)/β)

�(1/β)
(11)

In order to estimate the parameters β and α, we consider the first two absolute moments.
So we can get Ra(β), which is known as generalized Gaussian function ratio

Ra(β) = E2[|e|]
E[|e|2] = �2(2/β)

�(1/β)�(3/β)
(12)

It seems to be clear that the function Ra(β) and the inverse function Ra−1(β) cannot
be inverted in an explicit form. Hence, we propose a numeric-analytic or approximation
procedure to solve the problem. We should notice that Ra(β) is a function of products of
gamma functions with arguments depending on β . Hence, the Stirling approximation [2] is

well-behaved for values close to the origin, which is �(x) = √
2πxx− 1

2 e−x[1 + O(x−1)].
Then, we can obtain the following approximate equation

�(x) 	 �̃(x) = √
2πxx− 1

2 e−x (13)

Then, by taking the above approximate equation, we propose an approximation such that it
can be inverted and close enough to the actual function as follow

Ra(β) 	 R̃a(β) = �̃2(2/β)

�̃(1/β)�̃(3/β)
= (1/4)3

1
2

β−6
β 2

4+β
β

(14)

The corresponding inverse function for Ra−1(x) is given by

R̃a
−1

(x) = 4 − 3 log2 3

log2(log2(x)) − 1
2 log2 3

(15)

from which it is possible to find an approximated method of moments estimator for β and α.

β̂ = R̃a
−1

{
E2[|e|]
E[|e|2]

}

(16)

α̂ =
√

σ 2�(1/β̂)

�(3/β̂)
(17)

Now, we discuss how to utilize the entropy-based sorting in RDH. Sorting is possible
only when cells are independent. That is to say, embedding data into one cell should not
affect the other cells. Note that the shadow pixel set and the blank set are independent each
other. In the first round, the shadow set is used for embedding data and blank set for sorting.
While in the second round, the blank set is used for embedding and shadow set for sorting.
Specific details are as follows, we can exploit the correlation between neighboring pixels to
estimate the value of u in Fig. 5.

ei−1,j = pi−2,j−1 + pi−2,j+1 + pi,j−1 + pi,j+1

4
− pi−1,j

ei,j+1 = pi−1,j + pi−1,j+2 + pi+1,j + pi+1,j+2

4
− pi,j+1 (18)
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Fig. 5 5×5 template for the
estimation of the mean and
variance

According to the Fig. 5, we can calculate ei+1,j , ei,j−1, ei−2,j−1, ei−2,j+1, ei−1,j+2,
ei+1,j+2, ei+2,j+1, ei+2,j−1, ei+1,j−2 and ei−1,j−2 in the same way. Based on the above,
we can get the absolute central moments by

E[|e|] = 1

12

∑

n,m

|ei+n,i+m| (19)

E[|e|2] = 1

12

∑

n,m

|ei+n,i+m|2 (20)

where n, m ∈ [−2, −1, 1, 2]. Then, by using above equation, we can get β̂ and α̂.
Based on information theory, the entropy of prediction-error in cell (5 × 5) region can be

given by

H(e|u, α̂, β̂) = 1

β̂ln2
− log2

{
β̂

2α̂�(1/β̂)

}

(21)

Further, consider a much bigger region region (≥ 5 × 5 pixels) of the image in Fig. 5.
The entropy of prediction-error can be estimated as:

Hregion(e|u, α̂, β̂) =
∑

region

H(e|u, α̂, β̂) (22)

Observed from (21) and (22), named as one-dimensional entropy-based sorting (EBS).
The EBS has several features. First of all, this value of entropy remains unchanged after data
hiding. Second, if the value of entropy is much lower, which means the pixels in a smooth
image region or regularity region, and it can be predicted accurately. That is to say, entropy
with smaller variance values are better for data hiding. Consequently, the region should be
used preferentially for data embedding.

By setting a threshold λ, the entropy satisfying H(e|u, α̂, β̂) ≤ λ are utilized in data
embedding while the others are skipped. For a specic payload R, λ is determined as the
smallest value such that it can ensure the enough payload. So, threshold is determined by
the specific payload. In the experiment, we firstly set a very small initial threshold λ. If
the prediction-error sequence, which meet the condition H(e|u, α̂, β̂) ≤ λ, can not accom-
modate the payload. Then the threshold λ is increased, until the payload is completely
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Fig. 6 The prediction-error of lena

embedded. Prediction-errors are sorted in ascending order of the entropy. Thus, the embed-
ding process starts from the prediction-error with the smallest entropy value in the sorted
row, and moves on to the next prediction-error until the last bit of data is embedded. As
shown in Fig. 6, the left is the prediction-error of the lena image before sorting and the error
margin is very high. The right is sorted by our EBS and the results can be clearly seen that
both error and entropy are small being sorted in front. The image quality can be improved
significantly, because the message is embedded in the appropriate prediction-error.

3.2 Entropy of multivariate normal distribution model

The prior reversible data hiding (RDH) methods are 1-dimension. Ou et al. [19] propose
2-dimensions RDH, which take every two adjacent prediction-errors as a unit to generate
a sequence consisting of prediction-error pairs, then obtain a 2-dimensional prediction-
error histogram (2D PEH), and finally, embed data by using pairwise prediction-error
expansion(PEE). Ou et al. [19] have proposed scheme outperforms state-of-the-art 1-
dimension RDH algorithms. In this paper, we propose a 1-dimension entropy-based sorting
for reversible data hiding, which uses entropy measurement to characterize local context
complexity for optimizing embedding order, and can significantly improve the performance
of RHD. Then, we extend the 1-dimension entropy-based sorting to 2-dimensions entropy-
based sorting, which can improve the performance of 2-dimensions RDH. Futhermore, we
deduce the uniform d-dimensions entropy-based sorting framework for d-dimensions RDH
scenarios.

In this section, we deduce the uniform entropy-based sorting for d-dimensional RDH.
Suppose that prediction-error e = (e1, e2, ..., ed)′ follows the d-dimensional general-
ized normal distribution, and the density function of the multivariate generalized normal
distribution is defined by [17]

f (e|u, �, β) = �(d
2 )

π
d
2 �( d

2β
)2

d
2β

β

|�| 1
2

×exp

{

−1

2
[(e − u)′�−1(e − u)]β

}

(23)
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where β is the shape parameter, with mean u and covariance matrix
(21/β�(m+2

2β
)�)/(m�( m

2β
)). In addition, noting that the covariance matrix is given by �

only in the case of the Gaussian distribution (β = 1). According to the formula of entropy,
there does not appear to exist a closed form expression for the entropy of multivariate
generalized normal distribution. However, in order to simplify and reduce the complexity
of the problem, we take β = 1 as a particular case of multivariate generalized normal.
When β = 1 is corresponding to the multivariate normal distribution

f (e|u, �) = 2π− d
2 |�|− 1

2 exp

(

−1

2
(e − u)′�−1(e − u)

)

(24)

where the mean is given by

u = (u1, u2, ..., ud)′ (25)

and the covariance is defined by

Cov(e, e) = E[e − u][e − u]′ = � (26)

� = E[(e − u)(e − u)′]

=

⎛

⎜
⎜
⎜
⎜
⎝

c1,1 .... c1,i ... c1,d

... .... ... ... ...

ci,1 .... ci,i ... ci,d

... .... ... ... ...

cd,1 .... cd,i ... cd,d

⎞

⎟
⎟
⎟
⎟
⎠

(27)

In particular, ci,j > 0. When d = 1, c1,1 = σ 2 in the usual notation. The symmetric matrix
� := (ci,j ) is positive-definite, since the matrix (< xi, xj >) is positive-definite for any
finite set of linearly independent xi in a real inner product space (X,< ., . >).

�−1 = (E[(e − u)(e − u)′])−1

=

⎛

⎜
⎜
⎜
⎜
⎝

α1,1 .... α1,i ... α1,d

... .... ... ... ...

αi,1 .... αi,i ... αi,d

... .... ... ... ...

αd,1 .... αd,i ... αd,d

⎞

⎟
⎟
⎟
⎟
⎠

(28)

we have c:,i = E[(ei − ui)(e − u)′] and αj,: · c:,i = δi,j .
So the entropy of multivariate normal can be calculated as

H(e|u, �) = −
∫ +∞

−∞
...

∫ +∞

−∞
f (e|u, �) log2(f (e|u, �))de

= −
∫

f (e|u, �)

[
1

2
log2(2π)d |�|

+ log2 ε ·
(

−1

2
(e − u)′�−1(e − u)

]

de

= 1

2
log2(2π)d |�| + 1

2
log2 ε · E[(e − u)′�−1(e − u)]

= 1

2
log2(2π)d |�| + 1

2
log2 ε · d

= 1

2
log2[(2πε)d |�|] (29)
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Because e = (e1, e2, ..., ed)′ is a random vector, and � = E[(e − u)(e − u)′]. Then we
proof E[(e − u)′�−1(e − u)] = d as follows

(e − u)′�−1(e − u) = (e − u)′

⎛

⎜
⎜
⎝

α1,:
αj,:
...

αd,:

⎞

⎟
⎟
⎠ (e − u)

= (e1 − u1)α1,: · (e − u)

+(e2 − u2)α2,: · (e − u) + ...

+(ed − ud)αd,: · (e − u) (30)

E[(e − u)′�−1(e − u)] = α1,: · E[(e1 − u1)(e − u)]
+α2,: · E[(e2 − u2)(e − u)] + ...

+αd,: · E[(ed − ud)(e − u)]
= α1,: · c:,1 + α2,: · c:,2... + αd,: · c:,d
= d (31)

Then we get the entropy of multivariate normal distribution, which fit for d-dimensional
RDH.

Now we use a simple 2-dimensional RDH example to illustrate the d-dimensional
processes of the method described above. Ou et al. [19] have proposed pairwise prediction-
error expansion technique used for 2-dimensional RDH, by considering every two adjacent
prediction-errors together {(e1,1, e2,2), ...(ei,j , ei+1,j+1), ...}. In this case, 1-dimensional
entropy-based sorting can not work well, so we need to design sorting algorithm for 2-
dimensional RDH. For example, considering this situation, the entropy of ei,j is high, but
the entropy of ei+1,j+1 is low. If we use 1-dimensional entropy-based sorting to determine
whether to embed, the result is ei+1,j+1 suitable for embedding rather than ei,j . But it does
not fit well with algorithm proposed in paper [19]. Consequently, we take every two adja-
cent prediction-errors ei,j and ei+1,j+1 as a whole. The entropy of ei,j and ei+1,j+1 are both
low having priority. In fact, adjacent prediction-errors are usually highly correlated. And
the density function of 2-dimensional normal distribution can be given by

f (e|u, �) = 2π−1|�|− 1
2 exp

(

−1

2
(e − u)′�−1(e − u)

)

(32)

Where e = (ei,j , ei+1,j+1)
′, u = (u1, u2)

′, � is covariance.

u1 = ei−1,j + ei,j+1 + ei+1,j + ei,j−1

4
(33)

u2 = ei,j+1 + ei+1,j+2 + ei+2,j+1 + ei+1,j

4
(34)

ei−1,j = pi−2,j−1 + pi−2,j+1 + pi,j−1 + pi,j+1

4
− pi−1,j (35)

ei+2,j+1 = pi+1,j + pi+1,j+2 + pi+3,j + pi+3,j+2

4
− pi+2,j+1 (36)

Then we can calculate ei,j−1, ei,j+1, ei+1,j and ei+1,j+2 in the same way in Fig. 7.

� =
(

c1,1 c1,2
c2,1 c2,2

)

=
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

(37)
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Fig. 7 6×6 template for the
estimation of the mean and
variance

So the differential entropy of 2-dimensional normal distribution can be given by

H(e|u, �) = 1

2
log2(2πε)2|�|

= 1

2
log2[(2πε)2σ 2

1 σ 2
2 (1 − ρ2)] (38)

Further, consider a much bigger region R (≥ 6 × 6 pixels) of the image. The entropy of
prediction-error can be estimated as:

HR(e|u, �) =
∑

R

1

2
log2[(2πε)2σ 2

1 σ 2
2 (1 − ρ2)] (39)

where, ρ is the correlation within two adjacent prediction-errors ei and ei+1, which is
computed by

ρ = | ∑N−1
i=1 (ei − ē)(ei+1 − ē)|

√

(
∑N−1

i=1 (ei − ē)2)

√

(
∑N−1

i=1 (ei+1 − ē)2)

(40)

where ē is the mean of e = (e1, · · · , eN ), and ρ ranges from 0 to 1, and the larger the value,
the more correlated the two prediction-errors.

In 2-dimensional RDH example, a novel way is presented in this paper to determine
whether a pairwise should be embedded to calculate its local entropy. We take every two
adjacent prediction-errors as a unit to generate two-dimensional differential entropy for sort-
ing. A small HR(e|u, �) indicates that the 2-dimensional prediction-error is located in a
smooth image region and should be used preferentially for data embedding. The simplicity
and efficiency are the main advantages of entropy-based sorting strategy. The EBS tech-
nique also work well in d-dimensional RDH scenarios, so we call it unified entropy-based
sorting.

4 Application, experiment and analysis

In this section, we apply GBTW and EBS algorithms to the Sachnev et al. [23], Ou et al. [19]
and Zhang et al. [31] method. It is stressed that the embedding and extraction procedures are
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same with the algorithms in [19, 23, 31]. We just replace or add the prediction and sorting
algorithm in experiments. Then experimental results of the proposed GBTW and EBS for
RDH scheme are presented.

4.1 The GBTW predicting and EBS for Sachnev et al. [23]

Double-layered embedding method have been proposed by Sachnev et al. [23], with all pix-
els divided into two sets: the shadow pixel set and the blank set (see Fig. 8). In the first
round, the shadow set is used for embedding data and blank set for computing predictions.
While in the second round, the blank set is used for embedding and shadow set for com-
puting predictions. Since the two layers embedding processes are similar in nature, we only
take the shadow layer for illustration.

We implemented these methods on the computer with Intel core i3 and 4 GB RAM.
The program developing environment is MATLAB R2011b based on Microsoft Windows
7 operating system. In the experiment, in order to simplify the complexity of GBTW, we
that ωm−d : ωs−d = 2 : 1. The size of R region is 5 × 5 pixels. Test image is shown in
Fig. 9.

Our method is being compared with other six recent works of Sachnev et al. [23], Hu
et al. [11], Luo et al. [16], Wang et al. [27], Lee et al. [13], Thodi et al. (P3) [25]. The
comparison results are shown in Fig. 10a and b. For our method, we vary the embedding
rate from 0.1 BPP to 0.6 BPP with step size 0.1.From the Fig. 10a and b, one observes that
our proposed method outperforms the previous state-of-arts counterparts significantly. Our
algorithm consists of two parts. One is the prediction algorithm, and the other is the sorting
algorithm. In order to demonstrate the performance of our GBTW prediction algorithm and
EBS sorting algorithm, we design contrast experiment as shown in Fig. 10c and d. The com-
bination of our GBTW prediction algorithm and EBS sorting algorithm with Sachnev et al.
[23], there will be four cases as Sachnev+EBS, Sachnev+GBTW, Sachnev+GBTW+EBS
(short for proposed I). Observing form Fig. 10c and d, we can see that if embedding rate
is smaller, the effect achieved by EBS algorithm is more obvious. For Sachnev+EBS and
Sachnev+GBTW method, better results are earned compared with the Sachnev et al. [23]
method, respectively, in Fig. 10c and d. Both of these two cases indicate that the GBTW
and EBS strategy for RDH are efficient. Compared with Sachnev et al. [23] method, the
Sachnev+GBTW+EBS (proposed I) method has a higher PSNR about 3.5 dB to 5 dB on
average, especially under low embedding rates.

Fig. 8 The image divided into two sets: the shadow pixel set and the blank set
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Fig. 9 Test image Lena, Boat, Baboon, Pepper, Barbara and Tiffany

4.2 Recursive histogram modification using GBTW and EBS in RDH

Zhang et al. [31] has proposed a histogram modification method for RDH, which embeds
the message by recursively utilizing the decompression and compression processes of an
entropy coder. In this paper, we add the GBTW and EBS in Zhang et al. [31] algorithm.

Embedding Procedures

• Firstly, use the GBTW prediction strategy in Section 2, and a prediction-error
sequence e = {e1, · · · , ei , · · · , ed} is obtained from the cover.

• Secondly, for each ei , using 1-dimensional normal distribution entropy-based sorting
in Section 3, calculate its entropy HR(e|u, σ ), find the smallest value λ, so that there
are enough pairs to embed the payload.

• Thirdly, according to the OHM [10, 22] data embedding step, process the prediction-
error pairs satisfying HR(e|u, σ ) < λ to embed the payload. Then the message can
be optimally embedded in the marked sequence.

Extracting Procedures

• Firstly, we use the GBTW prediction and scan order strategy to obtain the marked
prediction-error e = {e′

1, · · · , e′
i , · · · , e′

N } .
• Secondly, for each e′

i , we compute its normal distribution entropy HR(e′|u, σ )) . If
another other is the same as the one used in the embedding phase, calculating its
entropy.

• Finally, processing the pairs that satisfying HR(e′|u, σ ) < λ, and according to the
OHM [22] data extraction step to recover the original image.

Test image is shown in Fig. 9. Observing form Fig. 11, one can find our method is
being compared with the other six recent works of Zhang et al. [31], Hu et al. [11], Luo
et al. [16], Wang et al. [27], Lee et al. [13], Thodi et al. (P3) [25]. The comparison results
are shown in Fig. 11a and b. The combination of our GBTW prediction algorithm and
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Fig. 10 a and b is performance comparison between our method and six methods of Sachnev et al. [23],
Hu et al. [11], Luo et al. [16], Wang et al. [27], Lee et al. [13], Thodi et al. (P3) [25]. c, d is embed-
ding performance comparisons with Sachnev et al. [23], Sachnev+EBS, Sachnev+GBTW, proposed I
(Sachnev+GBTW+EBS)

EBS sorting algorithm with Zhang et al. [31], there will be four cases as Zhang +EBS,
Zhang+GBTW, Zhang+GBTW+EBS (short for proposed II). For Zhang+GBTW+EBS
method, an average 1.06 dB PSNR gains is earned compared with the Zhang et al. [31]
method, and compared with Sachnev et al. [23], the gains of PSNR is much higher, about
2.5 dB to 3.5 dB on average, especially under high embedding rates. For Zhang+EBS and
Zhang+GBTW method, an average about 0.3 dB and 0.6 dB PSNR gains is earned com-
pared with the Zhang et al. [31] method, respectively, in Fig. 11c and d. Both of these two
cases indicate that, to some extent, the GBTW and EBS strategy for RDH are efficient.

4.3 Entropy-based sorting for pairwise prediction-error expansion RDH [19]

Now we will describe in detail the embedding and extraction procedures. The shadow
and blank layers are embedded equally. Notice that here, it is the same as the method of
Ou et al. [19].
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Fig. 11 a and b is performance comparison between our method and six methods of Zhang et al. [31],
Hu et al. [11], Luo et al. [16], Wang et al. [27], Lee et al. [13], Thodi et al. (P3) [25]. c, d, e and f
is embedding performance comparisons with Zhang et al. [31], Zhang+EBS, Zhang+GBTW, proposed II
(Zhang+GBTW+EBS)

Embedding Procedures

• Firstly, predicting shadow pixels in the scan order by GBTW, then we can get
the prediction-error pair sequence (ei,j , ei+1,j+1) as mentioned above. For each
(ei,j , ei+1,j+1), we calculate its entropy HR(e|u, �).

• Secondly, we empty LSBs of some first-line pixels to make room for the embed-
ding of the parameters. Find the smallest value λ, so that there are enough pairs to
embed the payload. Using LSB replacement, embed the values of λ, the compressed
location map size and the message size into LSBs of some first-line pixels.

• Thirdly, processing the prediction-error pairs that satisfying HR(e|u, �) < λ to
embed the payload. The modifications on these pairs are based on the proposed
pairwise PEE. After this step, the shadow layer embedding is completed.
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Table 2 Experimental results

Methods Embedding Ou [19] Ou [19] Ou [19] Ou [19] +GBTW

bits +EBS +GBTW +EBS

Lena 10000 59.75 61.05 59.75 60.24

Lake 10000 58.72 58.65 58.64 58.98

Pepper 10000 56.22 58.26 57.40 58.56

Cornfield 10000 61.55 62.77 61.87 62.31

Extracting Procedures

• Firstly, by reading LSBs of some first-line pixels, determining the values of the
parameters. Using the same prediction and scanning order to obtain the marked
prediction-error pairs sequence (e′

i,j , e
′
i+1,j+1) .For each (e′

i,j , e
′
i+1,j+1), computing

its entropy which is the same as the one used in the embedding phase.
• Secondly, processing the pairs that satisfying HR(e′|u, �) < λ, we can get entropy.

The recovery of these pairs is implemented by the inverse mapping of the pro-
posed pairwise PEE. After the embedded payload is extracted, the location map and
replaced LSBs can be obtained.

• Finally, recovering the first-line pixels by the extracted LSBs to recover the original
shadow pixels.

The experiment, as shown in Table 2, is enforced on four standard 512 × 512 sized
gray-scale images: Lena, Lake, pepper and cornfield as shown in Fig. 12. For comparison,
only low payload cases are considered. That is, the embedding size is 10,000 bits. It should
be noted that 10,000 bits are not maximum capacity of our method. The reason is that the

Fig. 12 Test image Lena, Lake, pepper and cornfield
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Fig. 13 Embedding performance comparisons with Proposed III (Ou et al. [19] +GBTW+EBS), Ou et al.
[19], Luo et al. [16], Li et al. [14]

payload of contrast method Ou et al. [19] is about 50000 bits. So, we choose the same
embedding rate to compare the performance of different algorithms. According to Table 2,
one can see that the proposed method outperforms these state-of-the-art works. Our method
can provide a larger PSNR whatever the test image or payload is. Moreover, experimental
results show that proposed III (Ou et al. [19] +GBTW+EBS) method provides an average
increase in PSNR of 0.49 dB for Lena, 0.26 dB for Lake, 2.34 dB for Pepper and 0.76 dB
for Cornfield. Our method gains 0.96 dB PSNR in average, compared with Ou et al. [19]
in Fig. 13. For the test image Lena and Lake, proposed III method yields a superior perfor-
mance to Luo et al. [16] and Li et al. [14]. Compared the existing embedding techniques, the
technique proposed in this paper has a more solid theoretical model. There are two features
in our method. Firstly, the sharply distributed prediction error histogram can be obtained
by our proposed GBTW prediction method. The sharper the histogram is, the more payload
that can be embedded. Therefore, our proposed method have higher payloads. Secondly, the
set of sorted prediction errors by our EBS method can be efficiently used for low distortion
data hiding. Our method exploited over the sorted prediction errors produces excellent ratio
between capacity and distortion.

5 Conclusion

In this paper, we propose a normal distribution entropy-based sorting for reversible data hid-
ing, which uses entropy to characterize the texture of image. Lower entropy means a pixel
lies in a smooth image region or regularity region,thus the prediction-error is more accu-
rate. Consequently, the region should be used preferentially for data embedding. Then, we
extend the one-dimensional entropy-based sorting to 2-dimensional (2D) RDH, and deduce
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the uniform entropy-based sorting for multi-dimensional RDH. Compared with other exist-
ing sorting methods, the proposed scheme can achieve higher accuracy of sorting and adapt
to different dimensions embedding algorithms. So entropy-based sorting is the key step to
enhance the embedding payload and visual quality. Secondly, we propose a new gradient-
based tracking and weighting (GBTW) method for predicting, which uses eight neighboring
pixels to estimate unknown pixel. It’s a highly efficient adaptive predictor. Experimental
results show that the proposed method has better results compared to the methods of Sach-
nev et al. [23], Hu et al. [11], Luo et al. [16], Wang et al. [27], Lee et al. [13], Thodi et al.
(P3) [25].
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