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Abstract—So far, the most effective model for adaptive
steganography is to minimize a well-defined distortion function,
in which the distortion function determines the modification
probability (MP) of each pixel. We found that the MPs of some
pixels calculated by a group of steganographic methods may be
very different even though these methods have close performances
in resisting the detection of steganalysis. We call such pixels as
controversial pixels, and consider that steganalysis is not sensitive
to such pixels. Therefore we can assign more payloads to the
controversial pixels by increasing MPs on them to generate a
new steganographic distortion function. We call this evolutionary
strategy as the rule of Controversial Pixels Prior (CPP). Taking
the state-of-art methods {WOW, UNIWARD} and {HILL, MVG}
as two pairs of examples, we show that the principle of CPP can
improve the security of state of the art steganographic algorithms
for spatial images.

Index Terms—Steganography, evolutionary, distortion func-
tion, controversial pixels, modification probability, steganalysis

I. INTRODUCTION

Steganography is a technique for covert communication,

which aims to hide secret messages into ordinary digital

media without drawing suspicion [1], [2], [16]. Designing

steganographic algorithms for various cover sources is chal-

lenging due to the fundamental lack of accurate models.

Currently, the most successful approach to design content

adaptive steganography is based on minimizing the distortion

between the cover and the corresponding stego object. The

distortion is obtained by assigning a cost to each modified

cover element (e.g., pixel in spatial domain image), and the

messages are embedded while minimizing the total distortion

which is the sum of costs of all modified elements.

The first method based on the framework of minimizing

distortion is HUGO (highly undetectable stego) [3]. HUGO

defines the pixel’s distortion by the changing amplitude of

steganalyzer’s features caused by modifying the current pix-

el, and pixels that make the feature vectors deviated more

will have higher costs. The features of steganalyzer SPAM

(subtractive pixel adjacency matrix) [4] is used in HUGO.

Steganalyzer’s features are usually generated by exploiting

correlations between the predicted residuals of neighboring

pixels [4], [23]. Because the pixels in smooth areas can be

accurately predicted, the modifications in such areas will be

easily detected by steganalyzers. Therefore the embedding

changes of HUGO will be gathered within textured regions.

However, HUGO can be detected by steganalyzer with higher

dimension of features, such as SRM (spatial rich models) [6].

In SRM, the predicted residuals are generated in various

directions and manners, so the correlations between pixels can

be further exploited. If the pixel can be accurately modeled

in any direction, it should be considered as a smooth point

and assigned larger cost. With this insight, WOW has been

proposed [5], which assigns high costs to pixels that are more

predictable by a bank of directional filters. WOW improves the

security of HUGO under the detection of SRM (spatial rich

models) [6]. UNIWARD (universal wavelet relative distortion)

[7] generalizes the cost function of WOW to make it simpler

and more suitable for embedding in an arbitrary domain,

including spatial domain and DCT domain for JPEG images.

Hence UNIWARD has a similar performance compared to

WOW in spatial domain. Li et al. proposed the method HILL

[8], which improves WOW by spreading the costs with a low-

pass filter. In HILL [8], the local modification probabilities are

evened out and thus the modifications cluster in the complex

areas.

The above methods design cost function in an ad hoc

or empirical manner. Sedighi et al. proposed model-driven

approaches [9], [11], in which Multivariate Gaussian (MG) or

Multivariate Generalized Gaussian (MVG)’s distribution was

used to model noise residuals of pixels by assuming them to

be independent but have varying variances. The models are

established by estimating the variances and then the costs are

computed by minimizing the power of an optimal statistical

test. In fact, small costs will be assigned to residuals modeled
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with large variances, which just are the highly textured regions.

As summarized in [10], the above adaptive steganographic

schemes obey the following two rules:

1) Complexity Prior. This rule means that the staganogra-

pher should give priority for modification to the complex

areas that are hard to be modeled. In fact, all the methods

in [3], [5], [7]–[9], [11] define cost functions by investi-

gating how to reasonably define the complex degrees of

pixels in the sense of resisting detection.

2) Cost Spreading. Spreading rule means that the costs of

modifying two neighboring elements should be similar. In

other words, an element with high modification-priority

should spread its high-rank to neighborhood, and vice

versa. This rule was first successfully used in HILL [8]

to improve WOW [5], and then the same idea is used in

[12] to improve MVG.

All of the above methods are based on the concept of

minimizing the sum of costs of all changed pixels, which

called additive distortion model. In additive distortion model,

the modifications on pixels are assumed to be independent.

Intuitively, the neighboring embedding changes will interact,

thus non-additive distortion model may be more suitable for

adaptive steganography. However, it is not clear of how to

define costs for non-additive model. Although non-additive

elements have been considered in the designs of HUGO,

it does not provide stronger undetectability than algorithms

based on additive model. Recently, the first effective principle

on how to exploit the power of non-additive distortion was

found independently by Denemark et al. [14] and Li et al. [13],

which implies that synchronizing the modification directions

of neighboring pixels can significantly improve the security

under detection. The idea used in [14] and [13] can be

summarized as the following rule.

3) Modification Direction Synchronizing (MDS). This rule

is for non-additive distortion model, which means that

changing the neighboring pixels in the same directions,

i.e., +1 or -1 at the same time, will introduce smaller

costs. This rule is also called Clustering Modification

Directions (CMD) in [13].

In this paper, we propose a novel rule for improving

the security of adaptive steganography from a very different

perspective. We notice that many steganographic methods in

the framework of minimizing distortion have been presented,

and some of them have comparable security performances

in resisting detection while they assigning the same pix-

el with very different modification probabilities because of

defining distortion in different manners. We call such pixels

as controversial pixels. We consider that these controversial

pixels have potential to accommodate more payloads, and

thus the undetectability can be improved by giving priority of

modifications to such controversial pixels. We call this novel

rule as:

4) Controversial Pixels Prior (CPP). This rule is for

improving several comparative adaptive steganographic

methods. According to the CPP rule, the controversial

pixels, i.e., the pixels are signed very different modifica-

tion probabilities by several comparable adaptive stegano-

graphic methods, can be given priority for modifications.

With CPP rule, we first improve WOW and UNIWARD

who have almost the same performances as shown in Table I.

Although HILL [8] is somewhat better than ternary MVG [11]

under SRM as shown in Fig. 11, we found that they could also

be improved by our proposed CPP rule, especially for large

relative payloads, which verifies that our CPP rule is effective.

The rest of this paper is organized as follows. After prelim-

inaries in section II, we make a description on our proposed

CPP rule in section III. In section IV and section V, further

explorations on the CPP rule have been given and {WOW,

UNIWARD}, {HILL, MVG} are taken as two groups of

examples to demonstrate the advantages of our CPP rule. The

paper is concluded in section VI.

II. THE FRAMEWORK OF MINIMAL-DISTORTION

STEGANOGRAPHY

In this paper, matrices, vectors and sets are written in bold-

face, and k-ary entropy function is denoted by Hk(p1, . . . , pk)
for
∑k

i=1 pi = 1.

The cover sequence is denoted by x = (x1, x2, ..., xn),
where the signal xi is an integer, such as the gray value

of a pixel. The embedding operation on xi is formulated

by the range Ii. An embedding operation is called binary

if |Ii| = 2 and ternary if |Ii| = 3 for all i. For exam-

ple, the ±1 embedding operation is ternary embedding with

Ii = {xi − 1, xi, xi + 1}.

In the model established in [19], the cover x is assumed to

be fixed, so the distortion introduced by changing x to y =
(y1, y2, ..., yn) can be simply denoted by D(x, y) = D(y).
Assume that the embedding algorithm changes x to y ∈ Y with

probability π(y) = P (Y = y) which is called modification

probability (MP), and thus the sender can send up to H(π)
bits of message on average with average distortion Eπ(D)
such that

H(π) = −
∑
y∈Y

π(y) log π(y), Eπ(D) =
∑
y∈Y

π(y)D(y). (1)

For a given message length L, the sender wants to mini-

mize the average distortion, which can be formulated as the

following optimization problems:

minπ Eπ(D), (2)

subject to H(π) = L. (3)

Following the maximum entropy principle, the optimal π has

a Gibbs distribution [19]:

πλ(y) =
1

Z(λ)
exp(−λD(y)), (4)

where Z(λ) is the normalizing factor such that

Z(λ) =
∑
y∈Y

exp(−λD(y)). (5)

The scalar parameter λ > 0 can be determined by the payload

constraint (3). In fact, as proven in [18], the entropy in (3)
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is monotone decreasing in λ, thus for a given L in feasible

region, λ can be fast determined by binary search.

Specially, if the embedding operations on xi’s are inde-

pendent mutually, the distortion introduced by changing x
to y can be thought to be additive, and be measured by

D(y) =
∑n

i=1 ρ
(i)(yi), where ρ(i)(yi) ∈ R is the cost of

changing the ith cover element xi to yi (yi ∈ Ii, i = 1, 2 . . . n).

In this case, the optimal π is given by

π(yi) =
exp(−λρ(i)(yi))∑

yi∈Ii exp(−λρ(i)(yi))
, i = 1, 2, . . . , n. (6)

For additive distortion, there exist practical coding methods

to embed messages, such as STCs (Syndrome-Trellis Codes)

[19], which can approach the lower bound of average distortion

(2).

III. STEGANOGRAPHY BASED ON RULE OF CPP

In this section, we will propose a steganographic enhancing

method by using the rule of CPP, which generates a new

distortion function from several existing ones. As shown in

Eq.(6), the distortion can be converted into MP which then

determines the payloads assigned to each pixel. Therefore, we

will fix our attention on the modification probabilities when

searching for controversial-pixels.

The framework of the proposed method is depicted in Fig.

1. Firstly, for a given relative payload, γ bit per pixel (bpp),

we set a referenced relative payload γ′. And then we compute

MPs with the M existing distortion functions respectively by

using Eq.(6) and γ′. Secondly, we label the controversial-

pixels according to the MPs. Thirdly, we adjust the MPs with

the rule of CPP. Fourthly, the adjusted MPs are converted into

a new distortion function. Finally, the messages are embedded

with STC according to the new distortion function. Next, we

will take ±1 embedding in spatial images as an example to

describe the above processes in details.

The ±1 embedding is ternary with range I = {−1, 0,+1},

where 0 means the pixel values keep invariant. If the MP of

pixel xi is pi, and thus the probability to keep xi invariant is

πi(0) = 1−pi. We assume that the modifications, +1 and −1,

have the same probability, i.e., πi(+1) = πi(−1) = 1
2pi. In

fact, in most adaptive steganogaphic schemes [3], [5], [7]–[9],

[11], +1 and −1 on a pixel are assigned the same cost so they

have the same probability.

Assume that there are M steganographic schemes with

comparable performances, and each of them is defined by an

additive distortion function Dk for 1 ≤ k ≤ M . The cover

is a spatial image consisting of N pixels {x1, . . . , xN}. For

the referenced message length L′ = γ′N and the distortion

function Dk, we can calculate the MPs of the N pixels,

denoted by pk = {pk,1, pk,2, ...pk,N}, 1 ≤ k ≤ M with Eq.

(6). Collect all the probabilities obtained from the M distortion

Fig. 1. The flowchart of proposed CPP based method.

functions, we get a N ×M matrix R.

R = [r1, r2, ..., rN] =

⎡
⎢⎢⎢⎢⎣
p1,1, p1,2, . . . , p1,N

p2,1, p2,2, . . . , p2,N
... . . .

...

pM,1, pM,2, . . . , pM,N

⎤
⎥⎥⎥⎥⎦
N×M

Here the ith column ri = {p1,i, p2,i, p3,i, ..., pM,i}T consists

of the M MPs on pixel xi obtained by the M distortion

functions.

In order to describe the divergence among the elements of

ri, we calculate the variance:

vi =
1

M

M∑
k=1

(pk,i − p̄i)
2, (7)

where p̄i = 1
M

∑M
k=1 pk,i is the mean of all the elements of

the ith column. We call vi the “probability variance” (PV) of

the pixel xi. The bigger the vi is, the more controversial the

modification probability of pixel xi will be. The pixels with

large PV values are those so-called controversial pixels in our

scheme. Although these steganographic schemes have similar

performances in resisting detection of steganalysis, they assign

very different MPs on the controversial pixles, which implies

that steganalysis is not sensitive to such pixels. So we can

assign more payloads to the controversial pixels by increasing

MPs on them.

Denote the (1 − α)% quantile of V = {v1, v2, ...vN}
by Tα. We define the pixels with PVs larger than Tα as

the controversial pixels. In other words, the pixels with top

α% PVs are selected as controversial pixels. We call α as

controversial threshold and we will discuss how to set α in

next section. We fix our attention only on these controversial
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pixels and adjust their modification probabilities according to

the PVs. To do that, we set

v′
i =

{
vi if vi > Tα

0 otherwise
1 ≤ i ≤ N, (8)

and adjust the modification probabilities by

p′
i = p̄ie

v′
i , 1 ≤ i ≤ N. (9)

By Eq. (9), we first set the modification probability of xi to

be the mean of ri. And then, if xi is a controversial pixels, its

MP is increased by multiplying evi ; otherwise, its MP keeps

to be p̄i because v′
i = 0.

Note that, for ±1 embedding, when the MP pi = 2
3 , the

pixel xi has the largest average payload log2 3. Therefore we

limit the adjusted MPs by

p′′
i = min

{
p′
i,

2

3

}
, 1 ≤ i ≤ N. (10)

To embed message with STCs, we should convert the MP

to a distortion function. Denote πi(+) = πi(−) = p′′
i /2 and

πi(0) = 1 − p′′
i . By Eq. (6), the corresponding distortion

function ρi(l) (l ∈ I) satisfies

πi(l) =
exp(−λρi(l))∑
t∈I exp(−λρi(t))

, l ∈ I; 1 ≤ i ≤ N. (11)

To solve ρi(l) from Eq. (11), without loss of generality, we

can set λ = 1 because λ is monotone decreasing w.r.t. the

message length as proven in [18]. We set distortion as

ρi(l) = ln
πi(0)

πi(l)
, l ∈ I, 1 ≤ i ≤ N. (12)

We call ρi(l) in Eq. (12) as adjusted distortion fuction, and it

can be easily verified that the adjusted distortion satisfies Eq.

(11).

Finally, we obtain a new steganographic algorithm deter-

mined by the adjusted distortion function (12), according to

which we embed γN bits of message with STCs. Note that

the optimal referenced relative payload γ′ is usually not equal

to the target relative payload γ. We will discuss how to set γ′

in the next section. The details of the CPP based method is

described in Algorithm 1.

IV. IMPROVING WOW AND UNIWARD WITH THE RULE

OF CPP

In this paper, the security of all steganographic schemes will

be evaluated using a steganalyzer that is a detector trained

on a given cover source and its stego version embedded

with a fixed payload. The detector will be trained by using

state-of-the-art 34,671-dimensional SRM feature set [6] with

the ensemble classifiers [21]. The performance on resisting

detection is evaluated by the testing error which is computed

as the mean value of the false positive rate and the false

negative rate, averaged over 10 random splits of the data set.

Larger classification error rate means stronger security. All the

Algorithm 1 CPP Based Steganography

Input: A cover image x with N pixels x1, . . . xn; L bits of

message M which determines the target relative payload

γ = L/N ; M comparable distortion functions for adaptive

steganography.

Output: The stego image y.

1) Set referenced relative payload γ′ and controversial

threshold α according to the target relative payload γ.

2) For the M distortion functions, compute the MPs of

pixels, pk = {pk,1, pk,2, ...pk,N}, 1 ≤ k ≤ M , by Eq.

(6) according to the referenced relative payload γ′.
3) Calculate PV vi for 1 ≤ i ≤ N with Eq. (7), and

then select the pixels with top α% PVs as controversial

pixels.

4) Adjust the MPs with Eq. (8)-(10), and then calculate the

adjusted distortion function with Eq. (12).

5) Embed the L bits of messagesM into cover image x with

STCs according to the adjusted distortions, and finally

output the stego image y.

steganalysis experiments are based on the BOSSbase database

ver.1.01 [20] containing 10,000 512 × 512 8-bit gray-scale

images coming from eight different cameras.

In this section, we apply the rule of CPP to the stegano-

graphic schemes WOW [5] and UNIWARD [7] by setting

M = 2 in Algorithm 1.

A. Distortion Functions in WOW and UNIWARD

The distortion function of WOW [5] is designed with the

help of a group of directional filters, which are denoted

by D(k)(k = 1, . . . n). Define a quantity called embedding

suitability and denote it by ξ
(k)
i,j . It is computed as the weighted

absolute values of the filter residual differences between a

cover image and the image after changing only one pixel.

Since the absolute values of the filter residuals are selected

as weights, and the filter residual differences have the same

form as a rotated directional filter, the embedding suitabilities

can be computed by:

ξ(k) � (ξ
(k)
i,j )(n1×n2) = |X ⊗ D(k)| � |D(k)| (13)

The underlying assumption is that if the filter residual is

small in one of the directions, the corresponding pixel is

predictable, and thus should be assigned a high cost.

The distortion function of UNIWARD [7] depends on the

choice of a directional filter bank and one scalar parameter.

The smoothness of a given image X is evaluated along the

horizontal, vertical, and diagonal directions by computing the

directional residuals W(k) = K(k) ⊗ X which has n1 × n2
elements.

For a pair of cover and stego images, X and Y, their uvth
wavelet coefficient in the kth subband of the first decomposi-

tion level can be denoted with W(k)
uv (X) and W(k)

uv (Y), k =
1, 2, 3, u ∈ {1, . . . , n1}, v ∈ {1, . . . , n2}. The UNIWARD
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(a) Full-size image 1013.pgm (b) α = 3

(c) α = 5 (d) α = 10

Fig. 3. The location of the top α% controversial pixels to a sample cover image (a) with α = 3 (b), α = 5 (c),and α = 10 (d) respectively, where the dark
points represent the controversial pixels and the gray points represent general ones, respectively.
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(b) The testing error–α curve for 0.4bpp

Fig. 4. The change trends of testing error w.r.t. α at relative payload 0.2 bpp and 0.4 bpp when applying CPP to WOW and UNIWARD.

distortion function is the sum of relative changes of all wavelet

coefficients with respect to the cover image:

D(X,Y) �
3∑

k=1

n1∑
u=1

n2∑
v=1

|W(k)
uv (X) − W(k)

uv (Y)|
σ + |W(k)

uv (X)| , (14)

where σ > 0 is a constant stabilizing the numerical calcula-

tions.

Obviously, the distortion function of UNIWARD bears some

similarity to WOW in the sense that the embedding costs

of those two steganography are both computed from three

directional residuals. Therefore, UNIWARD and WOW have

comparative performance in resisting the detection of SRM as

shown in Table I, which satisfies the assumption of the rule

of CPP.

B. Setting Controversial Threshold α

To apply Algorithm 1, we only need to set the parameters

α and γ′. To discuss how to esitmate the optimal α, we first
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(a) Full-size image 1013.pgm

0.05 0.1 0.15 0.2 0.25 0.3

(b) The values of probability variances for CPP

Fig. 2. The values of probability variances for improving WOW and
UNIWARD with CPP (0.4 bpp).

TABLE I
TESTING ERRORS OF SRM FOR DETECTING WOW AND UIWARD.

Relative
Payload (bpp)

0.05 0.1 0.2 0.3 0.4 0.5

UNIWARD 0.454 0.402 0.324 0.261 0.207 0.164
WOW 0.457 0.407 0.322 0.263 0.213 0.169

set γ′ = γ in the experiments of this subsection, i.e., set the

referenced relative payload equal to the given relative payload.

In Fig. 2, we visualize the values of PV, vi’s, which shows

that the most controversial-pixels cluster in complex area. On

the other hand, we give Fig. 3 to observe the distribution

of the controversial pixels for setting different threshold α,

which shows that controversial pixels may spread to smooth

areas when α is large. When embedding a short message,

the modifications in complex regions are enough to carry the

payload. Therefore, we guess that, for a small relative payload,

we only need small threshold α, which is verified by following

experimental results. Fig. 4(a) shows that the largest testing

error appears at α = 2 for relative payload γ = 0.2 while Fig.

4(b) shows that the largest testing error appears at α = 8 for

γ = 0.4.

We list the optimal α for different relative payload γ in

TABLE II
THE OPTIMAL PARAMETER α FOR IMPROVING WOW AND UNIWARD.

Relative
Payload (bpp)

0.05 0.1 0.2 0.3 0.4 0.5

Optimal α 0.8 1.7 3.8 6.1 8.5 11.4

Table II. To observe the relation between α and γ, we make a

scatter plot in Fig. 5 for the values of Table II , which shows

the optimal α increases with γ and they have a strongly linear

relation. Therefore we establish the following linear regression

model between α and γ.

α = 23.38γ − 0.67, (15)

by which we can estimate the optimal α for a given relative

payload γ.

Relative Payload γ
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Fig. 5. The scatter plot of (γ, α) for improving WOW and UNIWARD with
CPP.

C. Setting Referenced Relative Payload γ′

In Algorithm 1, from a referenced relative payload γ′, we

get an adjusted distortion function Eq. (12), by which we

can embed message with any relative payload belonging to a

reasonable range. Therefore, the question is what is the optimal

γ′ for a given relative payload γ? In the above subsection, we

set γ′ = γ. Next, we will discuss whether it is just the optimal

setting.

Fig. 6(a) and Fig. 6(b) shows how the SRM’s testing errors

changes with γ′ for a given relative payload γ. Table III lists

the values of optimal γ′ for each given γ, which shows that

the optimal γ′ is usually a little smaller than γ. And Fig. 6

also show that, by setting γ′ = γ, we can get a sub-optimal

solution which is very close to the optimal solution. Therefore,

for simplicity, we proposed to set γ′ = γ.

TABLE III
THE OPTIMAL γ’ FOR DIFFERENT γ (bpp) FOR IMPROVING WOW AND

UNIWARD.

Relative Payload γ 0.1 0.2 0.3 0.4 0.5
Optimal γ’ 0.097 0.194 0.290 0.387 0.484
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(b) 0.4 bpp

Fig. 6. The change trends of testing errors w.r.t. referenced relative payload γ′ for different relative payloads.

D. Performance Comparison

In this section, we compare the security of WOW, spatial

UNIWARD and the method improved by the rule of CPP.

When applying CPP, we set γ′ = γ and determine α by Eq.

(15) for a given relative payload γ. The results are depicted

in Fig. 7, which shows that CPP can enhance the ability

of resisting detection of WOW and UNIWARD for various

relative payloads.

Payload(bpp)
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Fig. 7. Comparison between WOW, UNIWARD and the improved method
by CPP under detection of SRM.

V. IMPROVING HILL AND MVG WITH THE RULE OF CPP

In this section, we apply CPP to HILL [8] and MVG [11].

Note that Sedighi et al. recently proposed an improved version

of MVG in [11]. In this paper,we use the old version of MVG

[11], because of the following reason. The performance of

HILL [8] and MVG in [11] are not so close like that of WOW

and UNIWARD, which departures from the assumption of

CPP such that the M candidates of steganographic algorithms

are comparable. By this example, we want to show that the

principle of CPP still can enhance the security even if the

performance of the existing steganographic algorithms are not

so consistent.

A. Cost Function in HILL and MVG

HILL [8] is an improved method based on WOW. The

definition of distortions in HILL follows the spreading rule (

or clustering rule) [10]. The cost value of a pixel is weighted

by its neighboring cost values, and the mutual dependencies

among cost values are taken into consideration.

In HILL, the directional filter D(k) can be replaced by any

high-pass filter H(k), regardless of whether directional or non-

directional, to locate the less predictable area. And since the

elements in the second term |D(k)| are all non-negative, the

filter |D(k)| can be substituted with a low-pass filter to make

it more flexible for use. Besides, when the low pass-filter is

central symmetric, correlation can be replaced by convolution.

Thus, the new designed embedding suitability is no longer

the weighted filter residual difference, but the smoothed filter

residual. It can be interpreted as using a high-pass filter and

then a low-pass filter to locate the less predictable regions.

Hence the process of obtaining cost value can be further

simplified as:

� =
1

|X ⊗ H(1)| ⊗ L1

⊗ L2 (16)

where L1 and L2 are two low-pass filters.

MVG [11] is entirely model driven. In the approach of

MVG, modification probabilities of cover pixels are derived

from the cover model to minimize the power of an optimal

statistical test. MVG can be summarized as two steps: First,
the sender estimates the cover model parameters, the pixel

variances, when modeling pixels as a sequence of independent

but not identically distributed generalized Gaussian random

variables. Second, the modification probabilities for changing

each pixel are computed by solving a pair of non-linear

algebraic equations for minimizing the total KL divergence

between the cover object and stego object.

B. Setting Parameters α and γ′

To apply CPP to HILL and MVG, we also need to determine

the parameters α and γ′ in Algorithms 1.

To determine α, we give the scatter plot of optimal α for

corresponding relative payload γ in Fig. 8, which also shows
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Fig. 8. The scatter plot of (γ, α) for improving HILL and MVG with CPP.

a strong linear relation. By the values depicted in Fig. 8, we

establish the following linear regression model to estimate α.

α = 22.42γ − 0.19. (17)

It is interesting that, the model (17) is so similar to the model

(15). Both of these two linear models have intercepts very

close to zero and slopes close to twenty.

To determine γ′, we list the optimal γ′ for various relative

payload γ under the detection of SRM in Table IV, which

shows that the optimal γ′ increases with γ. And Fig.9 shows

that, when γ′ = γ, we can get a nearly optimal performance,

so we also set γ′ = γ as what we have done for improving

WOW and UNIWARD.

C. Discussion on Basic Modification Probability

In Eq. (9), we first set the basic modification probability

as p̄i = 1
M

∑M
k=1 pk,i, which is the average modification

probability obtained by several comparable steganographic

algorithms, and then we adjust the modification probability

according to PV. The assumption behind such setting is that

the performance of the M steganographic algorithms are

comparable. But in the present example, HILL outperforms

MVG as shown in Fig. 11. Therefore, intuitively, we should

compute the basic modification probability with weights bi-

ased to HILL. In other words, if the modification probabilities

obtained by HILL and MVG are denoted by pHILL
i and pMVG

i

respectively, we should calculate p̄i by

p̄i = δpHILL
i + (1 − δ)pMVG

i , (18)

with δ > 0.5.

We depict the changing trends of testing errors along

with the weight δ for relative payload 0.2 bpp and 0.4 bpp

respectively in Fig. 10, which shows that the value of δ will
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significantly influence the performance, but the optimal setting

is also δ = 0.5 although HILL and MVG in [11] are not

so comparable. Therefore, we still use Eq. (9) to calculate

modification probability when applying CPP to HILL and

MVG.

TABLE IV
THE OPTIMAL γ’ OF DIFFERENT γ (bpp) FOR IMPROVING HILL AND

MVG.

Relative Payload γ 0.1 0.2 0.3 0.4 0.5
Optimal γ’ 0.096 0.191 0.288 0.384 0.482

D. Performance Comparison

We compare the performance of HILL, MVG and the cor-

responding CPP enhanced method for resisting the detection

of SRM in Fig. 11, which shows that the security of HILL and

MVG can also be improved by the rule of CPP. Therefore, we

conclude that the rule of CPP will be effective as long as the

performance of the candidates of steganographic algorithms

are close to each other. On the other hand, the promotion of

performance is not as significant as it for WOW and UNI-

WARD, which implies that the assumption of “performance

being comparable” is important for CPP. In fact, because there

exist some differences between the performances of HILL and

MVG, the concept of controversial-pixels defined in this paper

maybe not so reasonable in this case.

Payload(bpp)
0.1 0.2 0.3 0.4 0.5

S
R

M
 t
e
st

in
g
 e

rr
o
r(

%
)

15

20

25

30

35

40

45

CPP(HILL,MVG)
HILL
MVG

Fig. 11. Comparison between HILL and MVG and the improved method
with CPP under the detection of SRM.

VI. CONCLUSION

Currently, the most effective model for adaptive steganog-

raphy is to embed messages while minimizing a carefully de-

fined distortion function. In recent advances, a novel stegano-

graphic method is usually obtained from an existing one by

modifying the latter distortion function according to some

rules. For instance, HILL [8] can be viewed as an improved

version of WOW [5] by smoothing its distortion function with

the spreading rule. The non-additive distortion based methods

[13], [14] are obtained by modifying the additive distortion

function defined in MVG or HILL according to the rule of

modification direction synchronizing.

In the present paper, we proposed the rule of Controversial-

Pixels Prior, with which we generate a new steganographic

distortion function by modifying a group of previous ones that

have comparable performance. Taking {WOW, UNIWARD}
and {HILL, MVG} as two pairs of examples, we show that

the rule of CPP can improve the security of state of the art

steganographic algorithms.

So far, we only use the CPP rule to improve steganography

in spatial images with additive distortion for ±1 embedding.

In out future work, we will try to apply CPP rule to steganog-

raphy in other cover formats such as JPEG images or video

and other modification manners such as binary or pentary

embedding. Furthermore, a more interesting direction is to

improve non-additive distortion based steganography with the

rule of CPP.
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