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 

I. INTRODUCTION 

ignal processing in encrypted domain (SPED) for privacy 

preserving has attracted considerable research interests in 

recent years [1]. In cloud computing and delegated 

calculation, users who are unwilling to reveal contents of the 

original signal may send an encrypted copy to a remote server. 

The server has to accomplish signal processing in the 

encrypted domain [2]. Many approaches have been proposed 

for different applications, for example, compressing encrypted 

images [3], signal transformation in ciphertexts [4], pattern 

recognition in encrypted domain [5], watermarking in 

encrypted multimedia [6], data searching in encrypted dataset 

[7], etc. Reversible data hiding in encrypted images (RDH-EI) 

is another topic of SPED [8].  

RHD-EI allows a server to embed additional message into 

an encrypted image uploaded by the content owner, and 

guarantees that the original content can be losslessly recovered 

after decryption on the recipient side. Generally, reversibility 

is closely related to the embedding payload. If the original 

image can be losslessly recovered when the payload does not 

exceed the achievable capacity, we say it is reversible. 

Meanwhile, RDH-EI protocols are always designed for natural 

images. Since a natural image always contains large smooth 

areas, i.e., redundancies, one can embed data into the original 

image and losslessly recover it [8-22]. Unlike robust 

watermarking, reversible data hiding are widely used when 

                                                           
 

This work was supported by Natural Science Foundation of China (Grant 
61572308, Grant U1536108, Grant 61525203, Grant 61572452, and Grant 

61472235) 

Z. Qian and X. Zhang are with School of Communication and Information 
Engineering, Shanghai University, 200444, China;  

H. Zhou and W. Zhang are with the School of Information Science and 

Technology, University of Science and Technology of China, Hefei, 230026, 
China.  

Corresponding author: Zhenxing Qian, Phone/Fax: 86-21-66137235; email: 

zxqian@shu.edu.cn  
 

perfect image reconstruction and data extraction are 

emphasized while robustness against malicious attacks is not 

considered [23]. 

RDH-EI is useful in many applications [8-22]. For example, 

in cloud storage as shown in Fig. 1, an image owner may store 

images in the cloud. Before uploading the images, the owner 

encrypts the contents to preserve privacy. For management 

purposes, the cloud administrator can embed labels, such as 

user information, timestamps and remarks, into the ciphertexts. 

Therefore, labels are attached inside these ciphertexts, and 

storage overheads can be saved. The embedded information 

can also be extracted exactly by the administrator or 

authorized users. Meanwhile, when an authorized user 

downloads the encrypted image containing additional message 

from the cloud, RDH-EI protocol also guarantees that the 

original content can be losslessly recovered after decryption. 

 
Fig. 1 An example of RDH-EI application 
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Fig. 2 General framework of RDH-EI 

Emerging works on RDH-EI are reviewed in Section II. 

While most of the related works are applicable to 

uncompressed images, this paper focuses on RDH in 

encrypted JPEG bitstream, the most popular image format, 

aiming at providing an RDH-EI approach with separable 

extraction capability, high embedding capacity, and secure 

encryption. We first propose an encryption scheme for 

enciphering JPEG bitstreams. Based on JPEG encryption, a 

reversible data hiding method is developed for service 

providers to embed additional bits. Finally, we propose an 

iterative algorithm to recover the original image. In this work, 

lossless recovery is required. Although JPEG encoding itself is 

lossy, users always hope not to introduce further degradation 

to a JPEG image while uploading. That is why lossless 

recovery is required. 

Compared with our previous work of RDH-EI for JPEG 

bitstreams [12], the present method has three contributions. 

First, data extraction and image recovery can be separated, 

while both features in [12] must be realized jointly. Second, a 

rearrangement and enciphering algorithm is proposed to avoid 

leaking of image contents, making the present method securer 

than the previous JPEG encryption algorithm proposed in [12]. 

Third, an algorithm for compression and iterative recovery is 

proposed to reversibly hide data into an encrypted bitstream. 

As a result, a larger embedding payload is achieved. The rest 

of the paper is organized as follows. Previous works related to 

RDH-EI are surveyed in Section II. The proposed system is 

developed in Section III. Section IV provides experimental 

results and analyses. The paper is concluded in Section VIII. 

II. RELATED WORKS 

Generally, an RDH-EI framework has three parties, content 

owner, data hider and recipient, as shown in Fig. 2. To 

preserve privacy, the content owner encrypts an original image 

using an encryption key, and uploads the encrypted copy to a 

remote server. On the server side, the data hider embeds 

additional messages into the encrypted image using an 

embedding key to generate a marked version. The recipient 

can losslessly recover the original image using the encryption 

key after downloading the marked version. There are two 

different cases: both the data hider and recipient can extract 

the hidden message; and only the recipient can extract the 

message, hence two types of technique: separable RDH-EI 

and joint RDH-EI. 

A. Separable RDH-EI 

The word separable means separating data extraction from 

image recovery, i.e., additional messages can be extracted 

directly from the marked encrypted image without revealing 

the image content. Only those who have the embedding key 

can extract the messages from a marked encrypted image. 

A separable RDH-EI method was first proposed in [13]. 

The data hider permutes and divides the encrypted pixels into 

segments, and compresses several LSB-planes of each 

segment to fewer bits using a pseudo-randomly generated 

matrix. As a result, spare room in each segment is created to 

accommodate additional messages. On the recipient side, 

LSBs of each segment are estimated using the MSBs of the 

neighboring pixels. After comparing the estimated bits with 

the extracted vectors, the recipient can recover the original 

contents. Since the additional message can be extracted 

directly from LSBs of the encrypted images, data extraction 

and image recovery are therefore separable. This method was 

improved in [14] by selecting appropriate bitplanes in the 

encrypted image, leading to a higher embedding capacity. In 

[15], distributed source coding (DSC) is used to achieve 

separable RDH-EI. The data hider compresses some selected 

bits in the encrypted image to create room for the additional 

hidden message. In this method, the Slepian-Wolf encoder 

based on low density parity check (LDPC) is used. With the 

DSC based embedding, a much higher capacity is obtained.  

With a different idea, [16] creates room for embedded data 

in a plaintext image by embedding LSBs of some pixels into 

other pixels using traditional RDH for plaintext images. The 

pre-processed image is then encrypted by the content owner to 

construct an encrypted image. Positions of these evacuated 

LSBs in the encrypted image are used to accommodate 

additional messages. A large payload, up to 0.5 bit-per-pixel, 

can be achieved. Similarly, another method based on 

estimation was proposed in [17], in which a large portion of 

pixels are used to estimate the rest before encryption. Final 

version of the encrypted image is formulated by concatenating 

the encrypted estimating errors with the encrypted pixels. On 

the server side, additional bits are embedded into the 

encrypted image by modifying the estimation errors. In [18], 

an RDH-EI method based on patch-level sparse representation 

was proposed to explore correlations between neighboring 

pixels. After self-embedding encoded residual errors and a 

learned dictionary into the original image, the data hider can 

embed more secret messages into the encrypted image. 

Another RDH-EI approach was realized using histogram shift 

and spatial permutation [19]. The method simultaneously 

prepares room before image encryption and hides data into the 

encrypted image using histogram modification based RDH. 

The separable methods proposed in [16]~[21] have high 
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embedding rates and good recovery capability. However, they 

all require extra RDH operations before image encryption, 

thus contradict the very purpose of RDH-EI, since the extra 

operations are performed to the plaintext rather than encrypted 

images. 

There are also some interesting works based on 

commutative encryption and data hiding [24-26], where 

commutative means that the orders of encryption and data 

hiding/extraction can be swapped. Although some have 

separable features, commutative RDH is different from the 

framework proposed in the present paper. 

B. Joint RDH-EI 

In joint RDH-EI, the additional message can only be 

extracted by the recipient after image decryption, along with 

image recovery, while the data hider cannot perform 

extraction. 

A feasible method was first proposed in [8], in which the 

content owner encrypts an original image using a stream 

cipher, and the data hider embeds additional messages into 

ciphertext blocks by flipping three least significant bits (LSB) 

of half the pixels in each block. When extracting the additional 

messages, the recipient decrypts the marked encrypted image 

and generates two candidates for each block by flipping LSBs 

again. Since the original block is much smoother than the 

interfered, the embedded bits can be extracted and the original 

image perfectly recovered. This joint RDH-EI method 

depends on the size of each block. As long as the block size is 

appropriately chosen, errors of extraction and recovery can be 

avoided. This method was improved in [9] by exploiting 

spatial correlation between neighboring blocks and using a 

side-match algorithm to achieve a higher embedding rate. The 

flipping based approach was further improved in [10], in 

which multiple neighboring pixels in different locations are 

used to reduce error rates in extraction and recovery. 

Recently, a new joint RDH-EI method was proposed in [11]. 

Data embedding is realized through a public key modulation 

mechanism. On the recipient end, a two-class SVM classifier 

is designed to distinguish encrypted and non-encrypted image 

patches. Consequently, the recipient can jointly extract the 

additional messages and recover the original image. This 

method provides a higher embedding capacity.  

C. RDH-EI for JPEG Bitstream 

As most RDH-EI methods are designed for uncompressed 

spatial-domain images, [12] proposes an approach capable of 

reversely hiding messages into encrypted JPEG bitstreams. 

This scheme aims at encrypting a JPEG bitstream into a 

properly organized structure and embedding additional 

messages into the encrypted bitstream by slight modifications. 

During the bitstream encryption, all appended bits of the 

Huffman codes are encrypted with a stream cipher, and all 

Huffman codes are kept unchanged. After encryption, the file 

size is preserved, and the format is compliant to common 

JPEG decoders. On the server side, the bitstream of every 

other block is selected as a candidate. If all AC coefficients of 

a candidate block are zero, the block is skipped. Additional 

bits are then encoded by LDPC-based error correction codes 

(ECC), and embedded into the useful candidate bitstream by 

flipping the LSBs of the encrypted appended bits of the AC 

coefficients in each candidate block. On the recipient side, 

LSBs of the appended bits of each candidate bitstream are 

flipped again to estimate the additional bits using a predefined 

blocking artifact function and an ECC decoder. Meanwhile, 

the original bitstream can be losslessly recovered according to 

the extracted bits. 

In [27] and [28], some interesting ideas of RDH were 

proposed for JPEG images by combining image scrambling 

and data embedding. By scrambling the JPEG structure, 

additional message is embedded into the encrypted bitstream. 

However, in these methods data embedding must be combined 

with image encryption, which is different from general 

RDH-EI framework depicted in Fig. 2. 

Limited by JPEG compression, large embedding capacity 

cannot be achieved. In [12], about 750 bits are embedded into 

the JPEG bitstream of a 512×512 grayscale image. The joint 

RDH-EI method requires a combined data extraction and 

image recovery. That may become a problem since the 

database administrator cannot read the hidden messages from 

the marked encrypted bitstream. As format compliance is 

required in JPEG encryption [29], it is difficult to design a 

secure encryption algorithm for JPEG. The algorithm 

previously presented in [12] is not secure enough. Analyses in 

[27] show that the principal structure of the original image can 

be estimated from the encrypted bitstream if all Huffman 

codes are kept unchanged. In view of these drawbacks, we 

provide a new encryption scheme for JPEG bitstream, and 

propose a separable RDH-EI approach for the encrypted 

bitstream. In the proposed method, data extraction and image 

recovery are separated, higher embedding capacity is achieved, 

and security of JPEG encryption enhanced. 

III. PROPOSED FRAMEWORK 

The framework of the proposed method is depicted in Fig. 3. 

The JPEG RDH-EI workflow includes three parties: content 

owner, data hider, and recipient.  

Given a JPEG bitstream and an encryption key, the content 

owner generates a ciphertext bitstream after syntax parsing 

and encryption. In the process, the file size is kept unchanged 

and the format is compliant to common JPEG decoders. 

When a remote server receives the encrypted bitstream, the 

data hider parses the bitstream and hides additional messages 

in it using an embedding key. After the marked encrypted 

bitstream is constructed, the file size and format compliance 

are preserved. In this scheme, the server can extract additional 

messages from the marked encrypted bitstream using the 

embedding key. 

On the recipient side, the additional messages can also be 

extracted from the received bitstream if the embedding key is 

available. A recipient with only the encryption key can view 

an approximate image by a direct decryption. If both the 

encryption and embedding keys are available, the recipient can 

losslessly recover the original bitstream after decrypting the 

marked encrypted JPEG bitstream. 
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Fig. 3 Framework of the proposed method 

 

 
Fig. 4 Simplified syntax of JPEG baseline. SOI, EOI and EOB stand for start-of-image, end-of-image and end-of-block respectively. 

Acronyms in the parentheses are used in the discussion for brevity.  

 

A. JPEG Encryption and Decryption 

In this section, we develop an encryption/decryption 

algorithm for baseline JPEG bitstreams. The encryption aims 

at preserving file size of the bitstream, avoiding leakage of 

image contents, and keeping the encrypted bitstream 

compliant to the common JPEG decoder. JPEG compliance 

here means an encrypted bitstream with suffix ―.jpg‖ or ―.jpeg‖ 

can be directly decoded by commonly-used JPEG decoders 

[29]. 

1) JPEG Encryption 

Before encryption, the content owner parses the JPEG 

bitstream according to the simplified syntax of baseline [30], 

as shown in Fig. 4. We consider the syntax for compression of 

grayscale images. The JPEG format contains a start-of-image 

(SOI) marker, a JPEG header, the entropy encoded data, and 

an end-of-image (EOI) marker. The second layer from the top 

in Fig. 4 indicates that the entropy encoded data contains 

entropy-coded segments of all blocks. If a grayscale image 

sized H×W can be divided into N non-overlapping 8×8 blocks, 

there would be N entropy-coded segments, each corresponds 

to one block. The neighboring segments are separated by the 

end-of-block (EOB) markers. We denote each entropy-coded 

segment as ECSi i=1, 2, …, N.  

Each entropy-coded segment contains codes of DC and AC 

coefficients, as shown in the third layer of Fig. 4. Denote the 

codes of DC and AC coefficients in the i-th segment as DCC
<i>

 

and ACC
<i, j>

, respectively, where i=1, 2, …, N and 0 ≤ j < 64. 

In the fourth layer, both codes of DC and AC coefficients 

contain Huffman code and appended bits. Let DCH
<i>

 and 

DCA
<i>

 be the Huffman codes and appended bits for DC 

coefficient, ACH
<i, j>

 and ACA
<i, j>

 for AC coefficient, 

respectively. Thus, each entropy-coded segment can be 

represented by  

ECSi={DCC
<i>

, ACC
<i, 1>

, ACC
<i, 2>

,…, EOB} 

={{DCH
<i>

, DCA
<i>

}, {ACH
<i, 1>

, ACA
<i, 1>

},  

{ACH
<i, 2>

, ACA
<i, 2>

}, …, EOB}. 

With an encryption key Kenc, the content owner 

pseudo-randomly selects entropy-coded segments 

corresponding to L blocks from the entropy encoded data, 
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where 1<L<N. The encryption key Kenc is private to the 

content owner. Since all DC coefficients are encoded by 

DPCM starting from the first block, this block must be 

selected so that the encrypted bitstream can be correctly 

decoded by a JPEG decoder. Denote indexes of the selected L 

blocks as {S(1), S(2), …, S(k), …, S(L)}, and the remaining 

N–L blocks as {R(1), R(2), …, R(N–L)}. S(∙) and R(∙) are 

selection functions: S(1)=1, 1<S(k)<N (k=2, 3, …, L), and 

1<R(i)<N (i=1, 2, …, N–L).  

Next, the content owner generates a new bitstream 

including an SOI marker, a new JPEG header, entropy-coded 

segments of the selected L blocks, an EOI marker, and 

padding bits. Two integers h and w, which are multiples of 

eight and satisfy h×w=64L, are chosen to specify the size of a 

new image. The new JPEG header is modified to store the size. 

Compressed bits of the remaining N–L blocks are recomposed 

to construct the padding bits, whose syntax is illustrated in Fig. 

5. These padding bits include two parts. The first part consists 

of the entropy code of DC coefficient and Huffman codes of 

all AC coefficients in the remaining blocks. The second part 

consists of the appended bits of all AC coefficients in the 

remaining blocks. We denote the padding bits as 

P={CC, AP} 

where 

CC={{DCC
<R(1)>

, ACH
<R(1), 1>

, ACH
<R(1), 2>

, …, EOB}, …,  

{DCC
<R(N–L)>

, ACH
<R(N–L), 1>

, ACH
<R(N–L), 2>

, …, EOB}} 

AP={{ACA
<R(1), 1>

, ACA
<R(1), 2>

, …}, …,  

{ACA
<R(N–L), 1>

, ACA
<R(N–L), 2>

, …}} 

As a result, when modifying AP to accommodate additional 

messages by a data hider, no Huffman codes are destroyed. 

This is why ACHs are separated from ACAs to make sure 

there is no Huffman code inside AP.  

Assume there are M bits in the padding data and P=[p1, 

p2, …, pM]. With the encryption key Kenc again, the content 

owner generates a key stream K=[k1, k2, …, kM] using a stream 

cipher algorithm such as RC4 and SEAL. The padding bits are 

then encrypted to P'=[p1', p2', …, pM'] where  

Mikpp iii  1   ,'     (1) 

In the same way, the content owner also encrypts all appended 

bits of the DC and AC Huffman codes inside the L selected 

segments. 

Next, we embed the encrypted padding bits P' and the 

parameters H and W into the reserved application segments, 

marked as APPn in the JPEG header, in the same way as [32]. 

After the processing, an encrypted JPEG bitstream is 

generated. The encrypted bitstream has the same amount of 

data as the original, and is compliant to the JPEG standard. As 

all bits between SOI and EOI are strictly structured following 

the JPEG syntax, the bitstream can be decoded to an image 

sized h×w using commonly-used JPEG decoders.  

An example of the proposed JPEG encryption is shown in 

Fig. 6, in which (a) is a 512×512 image Peppers decoded from 

a plaintext JPEG bitstream, and (b) a 256×256 image decoded 

from an encrypted JPEG bitstream. In Fig. 6(b), contents of 

the original image cannot be recognized for three reasons. 

First, the bitstream segments of L blocks are randomly 

selected from the original bitstream. Second, since the DC 

coefficients are represented by differential values, decoding 

DC codes in the selected segments gives results different from 

the original DC values. Third, as the appended bits of all 

coefficients are encrypted by a stream cipher, the decoded AC 

coefficients are different from the original values. 

  
(a)                      (b) 

Fig. 6 Encryption of JPEG bitstream: (a) image decoded from the 

plaintext JPEG bitstream; (b) image decoded from the encrypted 

bitstream 

 

 

 
Fig. 5 Syntax of the new JPEG bitstream 
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Entropy code of DC coefficient (DCC) and the AC 

Huffman codes (ACH) of the remaining blocks 
AC appended bits (ACA) of 

the remaining blocks 

     ……  Entropy-coded segments of the selected blocks 

ECS S(1),…,S(L) 

…… 
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Fig. 7 Procedure of JPEG decryption 

2) JPEG Decryption 

When deciphering the encrypted bitstream, the new JPEG 

header and entropy encoded data can be extracted by parsing 

the bitstream. Meanwhile, the padding bits P'=[p1', p2', …, pM'] 

can be extracted from the reserved application segments 

marked as APPn in the JPEG header. With the encryption key 

Kenc, the appended bits of L selected entropy-coded segments 

and the padding bits P={CC, AP} can be deciphered in the 

same way as (1).  

From the JPEG header, we extract the DC and AC Huffman 

tables. With these tables, we parse the Huffman codes in CC 

and the appended bits in AP to reconstruct the N–L remaining 

entropy-coded segments ECSu, u=R(1), R(2), …, R(N–L). 

Meanwhile, the L selected entropy-coded segments ECSv 

(v=S(1), S(2), …, S(L)) are extracted from the new entropy 

encoded data. With the encryption key Kenc, the original 

indexes of the selected blocks can be recovered. 

After that, the original JPEG bitstream is reconstructed 

containing SOI, the JPEG header, the decrypted 

entropy-coded segments, and EOI. The selected ECSu 

(u=R(1), R(2), …, R(N–L)) and the remaining ECSv (v=S(1), 

S(2), …, S(L)) are sequentially put back to the original 

positions, and the JPEG header is modified to restore the 

original image size H×W. The decryption procedure is 

depicted in Fig. 7. 

B. Data Hiding in Encrypted JPEG Bitstream 

Based on the JPEG encryption algorithm, the content owner 

enciphers the JPEG bitstream and uploads the encrypted copy 

to a remote server. On the server side, the data hider extracts 

the encrypted padding bits from the header and embeds an 

additional message M into the encrypted padding bits. The 

procedure is depicted in Fig. 8. We denote all encrypted AC 

appended bits inside the encrypted padding bits as A, i.e., 

encrypted bits of AP, which contains m bits. Although it is 

difficult to identify the value of m directly from the encrypted 

padding bits, two solutions are provided at the end of this 

subsection.  

The data hider evenly divides the binary vector A into s 

groups {A1, A2, …, As}, where s=m/n, n=β∙e, β is a positive 

integer, and e is the average number of appended bits of all 

AC coefficients inside each block. The value of e is identified 

by parsing all AC appended bits in L selected entropy-coded 

segments. Assuming there are ma such bits, the value of e is 

calculated by e=ma/L. 

Subsequently, the data hider constructs a kn binary matrix 

H by 

],[ rkkk  QIH     (2) 

where Q is a pseudo-randomly generated binary matrix, and 

r=n–k. Many algorithms like RC4 and SEAL can be used to 

generate Q. 

For each group At (t=1, 2, …, s), the data hider further 

computes 

   (1), (2),..., ( ) (1), (2),..., ( )
T T

t t t t t tk n B B B H A A A  (3) 

in which all calculations are binary arithmetic. Thus, each 

group At containing n bits is compressed to a vector Bi with k 

bits. After compressing all groups from m bits to ks bits, the 

additional message M containing m–ks bits are appended to 

generate  

Pm={CC, {B1, B2, …, Bs, M}}. 

The structure is depicted in Fig. 8.  

With an embedding key Kemb, the data hider shuffles Pm to 

produce a sequence E. These bits are then embedded into the 

reserved application segments marked as APPn in JPEG 

header. This way, a marked encrypted JPEG bitstream 

containing additional messages is generated. 

To extract the additional messages, one can reshuffle the 

padding bits of the marked encrypted bitstream using the 

embedding key Kemb, and obtain the additional messages by 

extracting the last mks bits. Since extraction is done in the 

encrypted domain without revealing image contents, the 

proposed RDH-EI method is therefore separated from image 

recovery. 

Next, we explain how the parameter m is estimated. There 

are two possible solutions. A simple solution is to transmit the 

parameter m along with the encrypted JPEG bitstream, by 

embedding it inside the reserved application segments marked 

as APPn in JPEG header. Another is to estimate the length of 

encrypted padding bits. If there are ns bits in L selected 

entropy-coded segments and nr bits in the N–L remaining 

segments, m can be estimated by m=[λ∙(nr/ns)∙ma], where [∙] is 

a rounding operator, and λ a scaling factor (0<λ<1) used to 

avoid modifying the encrypted Huffman codes during data 

hiding.  

SOI Entropy Encoded Data 
 

EOI Deciphered Padding Bits 

CC AP 

Decrypted Entropy Encoded Data 

Recovered Header … SOI  EOI            … 

JPEG Header 

    ……  Entropy-coded segments of the selected blocks 
ECS S(1),…,S(L) 

    ……  Entropy-coded segments of the remaining blocks 
ECS R(1),…,R(N-L) 

…… 

…… …… 

…… 
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Fig. 8 Procedure of data embedding 

C. Iterative Recovery of Original Image 

 
Fig. 9 Flow chart of iterative recovery 

On the recipient side, the marked encrypted JPEG bitstream 

can be directly decoded by the JPEG decoder to construct an 

encrypted image of a smaller size. With the embedding key 

Kenc, the recipient can parse and decipher the marked 

encrypted JPEG bitstream using the proposed JPEG 

decryption algorithm described in Section III-A. Since only 

the AC appended bits of the remaining entropy-coded 

segments were modified in data hiding, an approximate image 

with reduced quality can be reconstructed after decryption. 

With both the encryption and embedding keys, the recipient 

can losslessly recover the original JPEG image. Although the 

compression algorithm in (3) is irreversible, we have several 

solutions to identify the original bits according to the changes 

of blocking artifacts. A flowchart of the recovery is shown in 

Fig. 9.  

The recipient first parses and extracts the encrypted padding 

bits E from the marked encrypted JPEG bitstream and 

reshuffles E to restore Pm using the embedding key Kemb, 

where  

Pm={CC, {B1, B2, …, Bs, M}}. 

According to the binary matrix H, the recipient generates a 

binary matrix G,  

],[ rr
T

rk  IQG     (4) 

where r=n–k and n=βe. For each group Bt, the recipient 

calculates 

   

( ) ( ) ( )

1 2

(1), (2),..., ( )

(1), (2),..., ( ),0,...0 , ,...,

c c c

t t t

t t t r

n

k a a a

  

  

A A A

B B B G
 (5)

 

where [a1, a2, …, ar] is an arbitrary binary vector, and Ai
(c)

 the 

2
r
 possible candidates for each group At , t=1, 2, …, s, and c=1, 

2, …, 2
r
.  

With the encryption key Kenc, the candidate vectors At
(c)

 are 

decrypted to plaintext candidates Dt
(c)

 using the stream cipher 

algorithm. According to the syntax of the recomposed JPEG 

bitstream, lossless recovery is equivalent to identifying the 

suitable one from the 2
r
 possible plaintext candidates to 

recover the padding bits. 

Assume that the AC appended bits in each candidate Dt
(c)

 

belongs to several entropy-encoded segments, i.e., 

Dt
(c)

={F, ACAP
<t1>

, ACAP
<t2>

, …, ACAP
<tl>, F}. 

Here F stands for the fragment AC appended bits of a segment, 

and ACAP
<ta>

 for the candidate of all AC appended bits in the 

ta-th remaining segment, t=1, 2, …, s, ta∈{R(1), R(2), …, 

R(N–L)}, and a=1, 2, ..., l. The value of l is identified by 
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parsing the AC Huffman codes in the decrypted padding bits. 

Meanwhile, 

ACAP
<ta>

={ACA
<ta, 1>

, ACA
<ta, 2>

, …} 

where ACA
<ta, j>

 is a candidate of appended bits, and 0≤j<64. 
Thus, 2

r
 candidates for l entropy-coded segments can be 

generated, 

ECSta
 (c)

={DCC
<ta>

, ACH
<ta, 1>

, ACA
<ta, 2>

, …, EOB} 

Accordingly, 2
r
 candidate pixel blocks {PBt1

 (c)
, PBt2

(c)
, …, 

PBtl
(c)

} are constructed by entropy decoding {ECSt1
(c)

, 

ECSt2
(c)

, …, ECStl
(c)

}. 

Next, the recipient identifies the suitable candidate Dt
(bt) 

from Dt
(c)

 (c=1, 2, …, 2
r
) by calculating the blocking artifacts 

of the candidate blocks, where 

1

( )( )arg min
lt

c

t a
a tc

b f


  PB    (6) 

and f is the blocking artifact function, 





8

1

)8,()1,(),8(),1()(
i

iiiif LFXUPXX . (7) 

The blocking artifact function is illustrated in Fig. 10, in 

which X is the present block, UP and LF are the up and left 

neighboring blocks. We use the up and left blocks when 

calculating blocking artifact as blocks are constructed orderly 

from left-to-right and top-to-bottom, and only these two 

blocks are available in the first round of recovery. 

The reason we use this function as the criteria of recovery is 

that data embedding by coefficient modification always 

increases blocking artifacts [12]. It should be noted that 

over-smooth in the recovered image may occur when a small 

parameter n is used during embedding. As long as n is large, 

i.e., enough blocks are used together to evaluate the blocking 

artifacts, the over-smooth effect can be avoided. 

 
Fig. 10 Blocking artifacts 

After sequentially processing all groups {B1, B2, …, Bs}, 

suitable candidates {D1
(b1)

, D2
(b2)

, …, Ds
(bs)} constituting 

updated padding bits are identified. This way, a new image I0 

is constructed by decoding the updated JPEG bitstream. The 

image I0 has better quality than the directly deciphered image. 

The first round of recovery using blocking artifact function 

in (7) may be inaccurate. In the next stage, the recipient 

iteratively refines the updated JPEG bitstream to losslessly 

recover the original image, using contents in the existing 

image as a reference. With the updated padding bits and the 

candidates Dt
(c)

 (c=1,2,…,2
r
), the recipient iteratively finds the 

best candidates using (6) and (8), in which the blocking 

artifact function f is different from (7). 

)1,()8,(),1(),8(                 

)8,()1,(),8(),1()(
8

1

iiii

iiiif
i

RTXDWX

LFXUPXX




  (8) 

As shown in Fig. 10, UP, LF, DW and RT are neighboring 

blocks around the present block X.  

In each iterative step, the recipient updates the bitstream 

and generates a refined image. The generated image is 

compared with the resulting image of the previous round. The 

iteration runs until no difference is found. This way, the 

recipient can losslessly recover the original JPEG image. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

To verify the proposed method, we use a set of grayscale 

images sized 512×512, and compress them to JPEG bitstreams 

with different quality factors. The encrypted padding bits, and 

the parameters m, H, and W are hidden into the JPEG header. 

Let α=L/N be the ratio of selected blocks. 

An example is given in Fig. 11, in which (a) shows the 

original images Lena and Boat compressed with a quality 

factor 80. After encrypting the bitstreams with an encryption 

key Kenc and the parameter α=0.25, format-compliant 

bitstreams are generated. The encrypted bitstreams can be 

decoded to smaller images sized 256×256 by a JPEG decoder, 

which are shown in Fig. 11(b). The encrypted bitstreams have 

the same lengths as the original. Secret messages containing 

1023 bits are embedded into each encrypted bitstream using an 

embedding key Kemb and parameters β=9 and r=3. After data 

hiding, the marked encrypted JPEG bitstreams can still be 

directly decoded to images by JPEG decoder. On the recipient 

side, additional messages can be extracted without any errors 

if the key Kemb is available. Approximate images can be 

generated by decrypting the encrypted bitstream containing 

additional message using the key Kenc. Fig. 11(c) shows the 

approximate images, with PSNR being 21.7dB and 20.4dB, 

respectively. When both keys are available, the original 

bitstreams can be recovered without loss. Fig. 11(d) shows the 

losslessly recovered images after three iterations. 

  
(a) 

  
(b) 
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(c) 

 
(d) 

Fig. 11. RDH-EI in the bitstreams corresponding to Lena and Boat: (a) 

original JPEG images, (b) encrypted images, (c) directly decrypted 

images, and (d) losslessly recovered images 

In Table I~III, we show the embedding payloads Ce and 

PSNR of the recovered images, using images Lena, Baboon 

and Texmos. The PSNR value +∞ means lossless recovery. 

We use a fixed ratio α=0.25, i.e., messages with 1540 bits are 

embedded into the encrypted bitstream of Lena with β=10 and 

r=5. The experimental results show that the original images 

can be losslessly recovered if β is not too small and r is not too 

large. The image Texmos is shown in Fig. 12, indicating that 

the proposed method is also applicable to natural images with 

rich textures. 

Table I. PSNR (dB) and payload Ce (bits) of Lena 

r 
β 

9 10 11 12 

1 +∞, 341 +∞, 308 +∞, 279 +∞, 259 

2 +∞, 682 +∞, 616 +∞, 558 +∞, 518 

3 +∞, 1023 53.6, 924 +∞, 837 +∞, 777 

4 +∞, 1364 +∞, 1232 +∞, 1116 +∞, 1036 

Table II. PSNR (dB) and payload Ce (bits) of  Baboon 

r 
β 

9 10 11 12 

1 43.1, 341 38.2, 307 +∞, 279 +∞, 256 

2 +∞, 682 +∞, 614 +∞, 558 +∞, 512 

3 40.2, 1023 42, 921 38.3, 837 +∞, 768 

4 35.1, 1364 31.6, 1228 33.3, 1116 34.7, 1024 

Table III. PSNR (dB) and payload Ce (bits) Texmos 

r 
β 

9 10 11 12 

1 +∞, 341 +∞, 307 +∞, 279 +∞, 256 

2 37.8, 682 +∞, 614 +∞, 558 +∞, 512 

3 32.5, 1023 35.4, 921 +∞, 837 +∞, 768 

4 34.4, 1364 31.3, 1228 +∞, 1116 +∞, 1024 

 
Fig. 12 The image Texmos 

In real applications, parameters β and r can be chosen 

empirically in the same way as the previous RDH-EI works 

[8-19]. For different types of images, some images are used 

for training. For example, we arbitrarily choose 100 natural 

images sized 512×512, and perform embedding using the 

proposed method. Table IV shows the used empirical 

parameters, with which the original JPEG image can be 

losslessly recovered. 

Table IV Empirical parameters to achieve lossless recovery 

r 1 2 3 4 5 

β 15 18 22 20 22 

To find the achievable payload, we compare the proposed 

methods with [8] and [9] designed for uncompressed images. 

Experimental results listed in Table V show that payloads of 

the proposed method for JPEG are close to [8] and [9]. We 

mainly compare the proposed method with [12] that is also an 

RDH-EI for encrypted JPEG bitstream. Results given in Table 

V indicate that the proposed method has much larger 

achievable payloads than that of [12]. We arbitrarily choose 

50 JPEG images to embed 750 bits into each one using both 

methods. Average PSNR obtained with the proposed method 

is about 7dB smaller than [12]. Although quality of the 

directly decrypted image in [12] is better than the proposed 

method, better PSNR in [12] is achieved by sacrificing 

security. 

Table V. Comparison of Payloads (Bits)  

Images  [8] [9]  [12] Proposed 

Lena 1024 1024 750 1364 

Baboon 256 334 750 768 

Man 655 1024 750 1368 

Sailboat 655 1024 750 1364 

Since α is the ratio of the selected blocks, a smaller α leads 

to more padding bits used to carry more secret message. Table 

VI shows embedding payload corresponding to different 

values of α, in which fixed parameter values r=3 and β=12 are 

used to ensure lossless recovery. Experimental results indicate 

that a larger embedding payload can be achieved with a 

smaller α. 

Table VI Payloads corresponding to different selection ratio α 

α 0.0005 0.042 0.083 0.125 0.167 0.208 0.250 

Lena 1026 981 939 897 855 810 768 

Peppers 1026 981 939 897 855 810 768 

Airplane 1023 984 939 897 852 810 768 

Man 1023 981 939 897 855 810 768 

Boats 1023 981 936 894 852 810 768 
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Quality factor used for scaling the default quantization table 

is an important factor in JPEG compression, and it also 

impacts embedding payloads. We use the popular tool IJG [31] 

to scale the quantization table as suggested in the JPEG 

standard [30]. In the standard, the quality factor ranges from 0 

to 100, and the default is 50. We use α=0.25, different values 

of r, and corresponding values of β to achieve lossless 

recovery. These parameters correspond to different payloads. 

Fig. 13 shows relations between the payload and the quality 

factor ranging from 10 to 90, based on Lena, Peppers and 

Texmos. Generally, higher payloads can be achieved with 

larger quality factors or larger values of r. 

 

 

 
Fig. 13. Payload vs. quality factor 

To check the convergence property of the iterative recovery, 

we conduct a set of experiments. A total of 1000 arbitrary 

images in Bossbase1.01 [33] are used, with r=1, α=0.25, 

different β, and different quality factors Q. Histograms in Fig. 

14 show that, in all experiments, the required number of 

iterative rounds is no more than 5. Table VII shows the 

average convergence speed of 1000 images using different 

parameters. In general, several hundreds of seconds are 

needed to recover each image. When β gets smaller, longer 

time is required. 

Table VII. Average convergence speed corresponding to different 

parameters (in seconds) 

Q 
β 

7 10 13 

70 432.5 365.6 338.4 

90 466.8 377.9 236.7 

 

We also evaluate relations between embedding payloads 

and image resolutions. Fixed parameters r=3 and β=12 are 

used to implement the proposed method to achieve lossless 

recovery. We use a parameter S to represent the image 

resolution, and let the image size be 2
S/2

×2
S/2

. Fig. 15 shows 

that the achievable payload increases as the image gets larger. 

Resolution of an original JPEG image should be larger than 

1616. Otherwise, few messages can be embedded into the 

encrypted image. 

 
Fig. 15 Payload vs. image resolution 

 

 

 
Fig. 14 Convergence of iterative recovery 
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(a) 

  
(b) 

Fig. 16. Security analyses using encrypted bitstreams of Baboon and 

Peppers: (a) constructed 512512 images by attacking [12], and (b) 

constructed 256256 images by attacking the proposed method  

The proposed system is securer than [12]. In [12], the 

quantization tables and all appended bits are encrypted, while 

all Huffman codes are unchanged. If an adversary uses all 

Huffman codes and sets all appended bits to zero, a contour of 

the original image can be revealed. While in the proposed 

method, only part of the bitstream segments are randomly 

selected to construct a smaller sized JPEG image. If α is small, 

most of the entropy-coded segments are rearranged to the 

padding bits that are further encrypted with a stream cipher. 

Thus, the adversary cannot reconstruct a contour of the 

original image with limited Huffman codes. As an example, 

we use [12] and the proposed method to encrypt the original 

JPEG images Baboon and Peppers, both sized 512×512. The 

encrypted images constructed by [12] are sized 512×512, 

while the encrypted images by the proposed method are sized 

256×256. Fig. 16 (a) shows revealed contours by using all 

Huffman codes in the encrypted bitstream of [12]. In Fig. 

16(b), no contours are revealed, indicating that the proposed 

method is much securer than [12]. 

Besides, the proposed method is also secure against 

ciphertext-only attacks. Two parts are included in the 

proposed encryption, i.e., block selection and stream cipher. L 

entropy-coded segments are pseudo-randomly selected from 

the JPEG bitstream, in which the first entropy-coded segment 

must be selected. After permuting the L1 segments, a new 

entropy encoded bitstream is constructed. When L is large 

enough, it is difficult for an adversary to find the original 

orders from 1

1 ( 1)!L

NC L

    possibilities. On the other hand, all 

appended bits in the L selected segments and all bits in the 

remaining N–L segments are encrypted by stream cipher. Thus, 

an adversary is unable to break the original bits and 

reconstruct the original image as long as the encryption key is 

long enough, e.g., 128 bits for RC4. We create images sized 

256×256, 512×512 and 1024×1024 by sampling or 

interpolating the original Lena. After JPEG compressing these 

images using a quality factor 80, lengths of the compressed 

bits of these images are 57,074, 213,435 and 435,620 bits 

respectively. The results show that it is difficult for an 

adversary to break so many bits using the brute-force attack. 

Denote average complexity of deciphering and decoding the 

bitstream of each block as Tc, that of bitstream decoding for 

each block as Tb, and that of blocking artifact calculation as Ta. 

We compare recovery complexities of the proposed method 

with that of [12]. In [12], the procedure of recovery includes 

bitstream deciphering, bitstream decoding, and blocking 

artifact calculation. As a result, average complexity of 

recovering one block is approximately Tc+Tb+Ta. In the 

proposed method, 2
r
 possible candidates are first calculated 

using (4). For each solution, bitstream deciphering, bitstream 

decoding, and blocking artifact calculation are used to find the 

best solution. After that, an iterative algorithm is used to 

complete the recovery, with a procedure close to the first 

round. As a result, average complexity of recovering one 

block is approximately 2
r
·τ·(Tc+Tb+Ta), where τ is the number 

of iterative rounds. Therefore, complexity of the proposed 

method for recovering one block is 2
r
·τ times that of [12]. 

Since r≥1 and τ≥1, complexity of the proposed method is 

higher than that of the previous work. This is the cost paid for 

separated operations, higher payload and better security. 

V. CONCLUSIONS 

This paper proposes a separable reversible data hiding 

scheme for the encrypted JPEG bitstream. A JPEG encryption 

and decryption algorithm is developed to hide the content of 

an original image. When the server receives the enciphered 

bitstream, a data hider can embed additional messages into the 

encrypted copy by compressing the padding bits of the 

bitstream. With an iterative recovery method based on 

blocking artifacts, the recipient can losslessly recover the 

original bitstream. The proposed method provides larger 

embedding capacity than the previous approach. It is separable 

because anyone who has the embedding key can extract the 

additional message from the marked encrypted bitstream 

without revealing the original content of the JPEG image. 

The proposed method also offers better security than the 

previous work. A new JPEG bitstream corresponding to a 

smaller sized image is constructed. Therefore, information 

leakage of the original content, e.g., contour of an image, can 

be avoided. The procedure is realized by rearranging some 

entropy-coded segments to generate the padding bits. These 

bits are embedded into the reserved segments labeled by APPn 

in the JPEG header. The encrypted bitstream can still be 

decoded by the commonly-used decoders, e.g., the decoder 

incorporated in the Windows operating system. Meanwhile, 

the amount of data of the bitstream is unchanged.  
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