
1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 1



I. INTRODUCTION

ignal processing in encrypted domain (SPED) for privacy

preserving has attracted considerable research interests in

recent years [1]. In cloud computing and delegated

calculation, users who are unwilling to reveal contents of the

original signal may send an encrypted copy to a remote server.

The server has to accomplish signal processing in the

encrypted domain [2]. Many approaches have been proposed

for different applications, for example, compressing encrypted

images [3], signal transformation in ciphertexts [4], pattern

recognition in encrypted domain [5], watermarking in

encrypted multimedia [6], data searching in encrypted dataset

[7], etc. Reversible data hiding in encrypted images (RDH-EI)

is another topic of SPED [8].

RHD-EI allows a server to embed additional message into

an encrypted image uploaded by the content owner, and

guarantees that the original content can be losslessly recovered

after decryption on the recipient side. Generally, reversibility

is closely related to the embedding payload. If the original

image can be losslessly recovered when the payload does not

exceed the achievable capacity, we say it is reversible.

Meanwhile, RDH-EI protocols are always designed for natural

images. Since a natural image always contains large smooth

areas, i.e., redundancies, one can embed data into the original

image and losslessly recover it [8-22]. Unlike robust

watermarking, reversible data hiding are widely used when

This work was supported by Natural Science Foundation of China (Grant
61572308, Grant U1536108, Grant 61525203, Grant 61572452, and Grant

61472235)

Z. Qian and X. Zhang are with School of Communication and Information
Engineering, Shanghai University, 200444, China;

H. Zhou and W. Zhang are with the School of Information Science and

Technology, University of Science and Technology of China, Hefei, 230026,
China.

Corresponding author: Zhenxing Qian, Phone/Fax: 86-21-66137235; email:

zxqian@shu.edu.cn

perfect image reconstruction and data extraction are

emphasized while robustness against malicious attacks is not

considered [23].

RDH-EI is useful in many applications [8-22]. For example,

in cloud storage as shown in Fig. 1, an image owner may store

images in the cloud. Before uploading the images, the owner

encrypts the contents to preserve privacy. For management

purposes, the cloud administrator can embed labels, such as

user information, timestamps and remarks, into the ciphertexts.

Therefore, labels are attached inside these ciphertexts, and

storage overheads can be saved. The embedded information

can also be extracted exactly by the administrator or

authorized users. Meanwhile, when an authorized user

downloads the encrypted image containing additional message

from the cloud, RDH-EI protocol also guarantees that the

original content can be losslessly recovered after decryption.

Fig. 1 An example of RDH-EI application

……

Label-2

…… Label-2

Label-1

Label-1

Administrator

……

Cloud Storage

Cloud

Owner Recipient

Abstract—While most techniques of reversible data hiding in encrypted images (RDH-EI) are developed for uncompressed images, this

paper provides a separable reversible data hiding protocol for encrypted JPEG bitstreams. We first propose a JPEG encryption algorithm,

which enciphers an image to a smaller size and keeps the format compliant to JPEG decoder. After a content owner uploads the

encrypted JPEG bitstream to a remote server, a data hider embeds an additional message into the encrypted copy without changing the

bitstream size. On the recipient side, the original bitstream can be reconstructed losslessly using an iterative recovery algorithm based on

the blocking artifact. Since message extraction and image recovery are separable, anyone who has the embedding key can extract the

message from the marked encrypted copy. Experimental results show that the proposed method outperforms a previous work in terms of

separation capability, embedding capacity and security.

Index Terms—Reversible data hiding, information hiding, image recovery, JPEG encryption

Separable Reversible Data Hiding in Encrypted

JPEG Bitstreams

Zhenxing Qian, Member, IEEE, Hang Zhou, Xinpeng Zhang, Member, IEEE, Weiming Zhang

S

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 2

Fig. 2 General framework of RDH-EI

Emerging works on RDH-EI are reviewed in Section II.

While most of the related works are applicable to

uncompressed images, this paper focuses on RDH in

encrypted JPEG bitstream, the most popular image format,

aiming at providing an RDH-EI approach with separable

extraction capability, high embedding capacity, and secure

encryption. We first propose an encryption scheme for

enciphering JPEG bitstreams. Based on JPEG encryption, a

reversible data hiding method is developed for service

providers to embed additional bits. Finally, we propose an

iterative algorithm to recover the original image. In this work,

lossless recovery is required. Although JPEG encoding itself is

lossy, users always hope not to introduce further degradation

to a JPEG image while uploading. That is why lossless

recovery is required.

Compared with our previous work of RDH-EI for JPEG

bitstreams [12], the present method has three contributions.

First, data extraction and image recovery can be separated,

while both features in [12] must be realized jointly. Second, a

rearrangement and enciphering algorithm is proposed to avoid

leaking of image contents, making the present method securer

than the previous JPEG encryption algorithm proposed in [12].

Third, an algorithm for compression and iterative recovery is

proposed to reversibly hide data into an encrypted bitstream.

As a result, a larger embedding payload is achieved. The rest

of the paper is organized as follows. Previous works related to

RDH-EI are surveyed in Section II. The proposed system is

developed in Section III. Section IV provides experimental

results and analyses. The paper is concluded in Section VIII.

II. RELATED WORKS

Generally, an RDH-EI framework has three parties, content

owner, data hider and recipient, as shown in Fig. 2. To

preserve privacy, the content owner encrypts an original image

using an encryption key, and uploads the encrypted copy to a

remote server. On the server side, the data hider embeds

additional messages into the encrypted image using an

embedding key to generate a marked version. The recipient

can losslessly recover the original image using the encryption

key after downloading the marked version. There are two

different cases: both the data hider and recipient can extract

the hidden message; and only the recipient can extract the

message, hence two types of technique: separable RDH-EI

and joint RDH-EI.

A. Separable RDH-EI

The word separable means separating data extraction from

image recovery, i.e., additional messages can be extracted

directly from the marked encrypted image without revealing

the image content. Only those who have the embedding key

can extract the messages from a marked encrypted image.

A separable RDH-EI method was first proposed in [13].

The data hider permutes and divides the encrypted pixels into

segments, and compresses several LSB-planes of each

segment to fewer bits using a pseudo-randomly generated

matrix. As a result, spare room in each segment is created to

accommodate additional messages. On the recipient side,

LSBs of each segment are estimated using the MSBs of the

neighboring pixels. After comparing the estimated bits with

the extracted vectors, the recipient can recover the original

contents. Since the additional message can be extracted

directly from LSBs of the encrypted images, data extraction

and image recovery are therefore separable. This method was

improved in [14] by selecting appropriate bitplanes in the

encrypted image, leading to a higher embedding capacity. In

[15], distributed source coding (DSC) is used to achieve

separable RDH-EI. The data hider compresses some selected

bits in the encrypted image to create room for the additional

hidden message. In this method, the Slepian-Wolf encoder

based on low density parity check (LDPC) is used. With the

DSC based embedding, a much higher capacity is obtained.

With a different idea, [16] creates room for embedded data

in a plaintext image by embedding LSBs of some pixels into

other pixels using traditional RDH for plaintext images. The

pre-processed image is then encrypted by the content owner to

construct an encrypted image. Positions of these evacuated

LSBs in the encrypted image are used to accommodate

additional messages. A large payload, up to 0.5 bit-per-pixel,

can be achieved. Similarly, another method based on

estimation was proposed in [17], in which a large portion of

pixels are used to estimate the rest before encryption. Final

version of the encrypted image is formulated by concatenating

the encrypted estimating errors with the encrypted pixels. On

the server side, additional bits are embedded into the

encrypted image by modifying the estimation errors. In [18],

an RDH-EI method based on patch-level sparse representation

was proposed to explore correlations between neighboring

pixels. After self-embedding encoded residual errors and a

learned dictionary into the original image, the data hider can

embed more secret messages into the encrypted image.

Another RDH-EI approach was realized using histogram shift

and spatial permutation [19]. The method simultaneously

prepares room before image encryption and hides data into the

encrypted image using histogram modification based RDH.

The separable methods proposed in [16]~[21] have high

Data
Hiding

Image
Recovery

Original
Image

Additional
Message

Additional
Message

Data
Extraction

Image
Encryption

Original
Image

Content Owner

Data Hider

Recipient

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 3

embedding rates and good recovery capability. However, they

all require extra RDH operations before image encryption,

thus contradict the very purpose of RDH-EI, since the extra

operations are performed to the plaintext rather than encrypted

images.

There are also some interesting works based on

commutative encryption and data hiding [24-26], where

commutative means that the orders of encryption and data

hiding/extraction can be swapped. Although some have

separable features, commutative RDH is different from the

framework proposed in the present paper.

B. Joint RDH-EI

In joint RDH-EI, the additional message can only be

extracted by the recipient after image decryption, along with

image recovery, while the data hider cannot perform

extraction.

A feasible method was first proposed in [8], in which the

content owner encrypts an original image using a stream

cipher, and the data hider embeds additional messages into

ciphertext blocks by flipping three least significant bits (LSB)

of half the pixels in each block. When extracting the additional

messages, the recipient decrypts the marked encrypted image

and generates two candidates for each block by flipping LSBs

again. Since the original block is much smoother than the

interfered, the embedded bits can be extracted and the original

image perfectly recovered. This joint RDH-EI method

depends on the size of each block. As long as the block size is

appropriately chosen, errors of extraction and recovery can be

avoided. This method was improved in [9] by exploiting

spatial correlation between neighboring blocks and using a

side-match algorithm to achieve a higher embedding rate. The

flipping based approach was further improved in [10], in

which multiple neighboring pixels in different locations are

used to reduce error rates in extraction and recovery.

Recently, a new joint RDH-EI method was proposed in [11].

Data embedding is realized through a public key modulation

mechanism. On the recipient end, a two-class SVM classifier

is designed to distinguish encrypted and non-encrypted image

patches. Consequently, the recipient can jointly extract the

additional messages and recover the original image. This

method provides a higher embedding capacity.

C. RDH-EI for JPEG Bitstream

As most RDH-EI methods are designed for uncompressed

spatial-domain images, [12] proposes an approach capable of

reversely hiding messages into encrypted JPEG bitstreams.

This scheme aims at encrypting a JPEG bitstream into a

properly organized structure and embedding additional

messages into the encrypted bitstream by slight modifications.

During the bitstream encryption, all appended bits of the

Huffman codes are encrypted with a stream cipher, and all

Huffman codes are kept unchanged. After encryption, the file

size is preserved, and the format is compliant to common

JPEG decoders. On the server side, the bitstream of every

other block is selected as a candidate. If all AC coefficients of

a candidate block are zero, the block is skipped. Additional

bits are then encoded by LDPC-based error correction codes

(ECC), and embedded into the useful candidate bitstream by

flipping the LSBs of the encrypted appended bits of the AC

coefficients in each candidate block. On the recipient side,

LSBs of the appended bits of each candidate bitstream are

flipped again to estimate the additional bits using a predefined

blocking artifact function and an ECC decoder. Meanwhile,

the original bitstream can be losslessly recovered according to

the extracted bits.

In [27] and [28], some interesting ideas of RDH were

proposed for JPEG images by combining image scrambling

and data embedding. By scrambling the JPEG structure,

additional message is embedded into the encrypted bitstream.

However, in these methods data embedding must be combined

with image encryption, which is different from general

RDH-EI framework depicted in Fig. 2.

Limited by JPEG compression, large embedding capacity

cannot be achieved. In [12], about 750 bits are embedded into

the JPEG bitstream of a 512×512 grayscale image. The joint

RDH-EI method requires a combined data extraction and

image recovery. That may become a problem since the

database administrator cannot read the hidden messages from

the marked encrypted bitstream. As format compliance is

required in JPEG encryption [29], it is difficult to design a

secure encryption algorithm for JPEG. The algorithm

previously presented in [12] is not secure enough. Analyses in

[27] show that the principal structure of the original image can

be estimated from the encrypted bitstream if all Huffman

codes are kept unchanged. In view of these drawbacks, we

provide a new encryption scheme for JPEG bitstream, and

propose a separable RDH-EI approach for the encrypted

bitstream. In the proposed method, data extraction and image

recovery are separated, higher embedding capacity is achieved,

and security of JPEG encryption enhanced.

III. PROPOSED FRAMEWORK

The framework of the proposed method is depicted in Fig. 3.

The JPEG RDH-EI workflow includes three parties: content

owner, data hider, and recipient.

Given a JPEG bitstream and an encryption key, the content

owner generates a ciphertext bitstream after syntax parsing

and encryption. In the process, the file size is kept unchanged

and the format is compliant to common JPEG decoders.

When a remote server receives the encrypted bitstream, the

data hider parses the bitstream and hides additional messages

in it using an embedding key. After the marked encrypted

bitstream is constructed, the file size and format compliance

are preserved. In this scheme, the server can extract additional

messages from the marked encrypted bitstream using the

embedding key.

On the recipient side, the additional messages can also be

extracted from the received bitstream if the embedding key is

available. A recipient with only the encryption key can view

an approximate image by a direct decryption. If both the

encryption and embedding keys are available, the recipient can

losslessly recover the original bitstream after decrypting the

marked encrypted JPEG bitstream.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 4

Fig. 3 Framework of the proposed method

Fig. 4 Simplified syntax of JPEG baseline. SOI, EOI and EOB stand for start-of-image, end-of-image and end-of-block respectively.

Acronyms in the parentheses are used in the discussion for brevity.

A. JPEG Encryption and Decryption

In this section, we develop an encryption/decryption

algorithm for baseline JPEG bitstreams. The encryption aims

at preserving file size of the bitstream, avoiding leakage of

image contents, and keeping the encrypted bitstream

compliant to the common JPEG decoder. JPEG compliance

here means an encrypted bitstream with suffix ―.jpg‖ or ―.jpeg‖

can be directly decoded by commonly-used JPEG decoders

[29].

1) JPEG Encryption

Before encryption, the content owner parses the JPEG

bitstream according to the simplified syntax of baseline [30],

as shown in Fig. 4. We consider the syntax for compression of

grayscale images. The JPEG format contains a start-of-image

(SOI) marker, a JPEG header, the entropy encoded data, and

an end-of-image (EOI) marker. The second layer from the top

in Fig. 4 indicates that the entropy encoded data contains

entropy-coded segments of all blocks. If a grayscale image

sized H×W can be divided into N non-overlapping 8×8 blocks,

there would be N entropy-coded segments, each corresponds

to one block. The neighboring segments are separated by the

end-of-block (EOB) markers. We denote each entropy-coded

segment as ECSi i=1, 2, …, N.

Each entropy-coded segment contains codes of DC and AC

coefficients, as shown in the third layer of Fig. 4. Denote the

codes of DC and AC coefficients in the i-th segment as DCC
<i>

and ACC
<i, j>

, respectively, where i=1, 2, …, N and 0 ≤ j < 64.

In the fourth layer, both codes of DC and AC coefficients

contain Huffman code and appended bits. Let DCH
<i>

 and

DCA
<i>

 be the Huffman codes and appended bits for DC

coefficient, ACH
<i, j>

 and ACA
<i, j>

 for AC coefficient,

respectively. Thus, each entropy-coded segment can be

represented by

ECSi={DCC
<i>

, ACC
<i, 1>

, ACC
<i, 2>

,…, EOB}

={{DCH
<i>

, DCA
<i>

}, {ACH
<i, 1>

, ACA
<i, 1>

},

{ACH
<i, 2>

, ACA
<i, 2>

}, …, EOB}.

With an encryption key Kenc, the content owner

pseudo-randomly selects entropy-coded segments

corresponding to L blocks from the entropy encoded data,

Data
Hiding

Bitstream
Decryption

Additional
Message

Approximately
Recovered

Image

Encryption
Key

Embedding
Key

Bitstream
Encryption

Original JPEG
Bitstream

Encryption
Key

Sender / Content Owner Remote Server / Data Hider

User / Recipient

Encrypted
Bitstream

Bitstream
Parsing

Marked
Encrypted
Bitstream

Additional
Message

Data
Extraction

Embedding
Key

Iterative
Recovery

Original
Bitstream

Bitstream
Parsing

SOI EOI JPEG Header Entropy Encoded Data

Appended bits

(DCA)
DC Huffman code

(DCH)

 …… Entropy-coded segments of all the blocks (ECS)

EOB Code of DC coefficient

(DCC) …… Codes of all AC coefficients

(ACC)

Appended bits

(ACA)
AC Huffman code

(ACH)

……

……

……

……

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 5

where 1<L<N. The encryption key Kenc is private to the

content owner. Since all DC coefficients are encoded by

DPCM starting from the first block, this block must be

selected so that the encrypted bitstream can be correctly

decoded by a JPEG decoder. Denote indexes of the selected L

blocks as {S(1), S(2), …, S(k), …, S(L)}, and the remaining

N–L blocks as {R(1), R(2), …, R(N–L)}. S(∙) and R(∙) are

selection functions: S(1)=1, 1<S(k)<N (k=2, 3, …, L), and

1<R(i)<N (i=1, 2, …, N–L).

Next, the content owner generates a new bitstream

including an SOI marker, a new JPEG header, entropy-coded

segments of the selected L blocks, an EOI marker, and

padding bits. Two integers h and w, which are multiples of

eight and satisfy h×w=64L, are chosen to specify the size of a

new image. The new JPEG header is modified to store the size.

Compressed bits of the remaining N–L blocks are recomposed

to construct the padding bits, whose syntax is illustrated in Fig.

5. These padding bits include two parts. The first part consists

of the entropy code of DC coefficient and Huffman codes of

all AC coefficients in the remaining blocks. The second part

consists of the appended bits of all AC coefficients in the

remaining blocks. We denote the padding bits as

P={CC, AP}

where

CC={{DCC
<R(1)>

, ACH
<R(1), 1>

, ACH
<R(1), 2>

, …, EOB}, …,

{DCC
<R(N–L)>

, ACH
<R(N–L), 1>

, ACH
<R(N–L), 2>

, …, EOB}}

AP={{ACA
<R(1), 1>

, ACA
<R(1), 2>

, …}, …,

{ACA
<R(N–L), 1>

, ACA
<R(N–L), 2>

, …}}

As a result, when modifying AP to accommodate additional

messages by a data hider, no Huffman codes are destroyed.

This is why ACHs are separated from ACAs to make sure

there is no Huffman code inside AP.

Assume there are M bits in the padding data and P=[p1,

p2, …, pM]. With the encryption key Kenc again, the content

owner generates a key stream K=[k1, k2, …, kM] using a stream

cipher algorithm such as RC4 and SEAL. The padding bits are

then encrypted to P'=[p1', p2', …, pM'] where

Mikpp iii  1 ,' (1)

In the same way, the content owner also encrypts all appended

bits of the DC and AC Huffman codes inside the L selected

segments.

Next, we embed the encrypted padding bits P' and the

parameters H and W into the reserved application segments,

marked as APPn in the JPEG header, in the same way as [32].

After the processing, an encrypted JPEG bitstream is

generated. The encrypted bitstream has the same amount of

data as the original, and is compliant to the JPEG standard. As

all bits between SOI and EOI are strictly structured following

the JPEG syntax, the bitstream can be decoded to an image

sized h×w using commonly-used JPEG decoders.

An example of the proposed JPEG encryption is shown in

Fig. 6, in which (a) is a 512×512 image Peppers decoded from

a plaintext JPEG bitstream, and (b) a 256×256 image decoded

from an encrypted JPEG bitstream. In Fig. 6(b), contents of

the original image cannot be recognized for three reasons.

First, the bitstream segments of L blocks are randomly

selected from the original bitstream. Second, since the DC

coefficients are represented by differential values, decoding

DC codes in the selected segments gives results different from

the original DC values. Third, as the appended bits of all

coefficients are encrypted by a stream cipher, the decoded AC

coefficients are different from the original values.

(a) (b)

Fig. 6 Encryption of JPEG bitstream: (a) image decoded from the

plaintext JPEG bitstream; (b) image decoded from the encrypted

bitstream

Fig. 5 Syntax of the new JPEG bitstream

SOI EOI New Header New Entropy Encoded Data Padding Bits

Entropy code of DC coefficient (DCC) and the AC

Huffman codes (ACH) of the remaining blocks
AC appended bits (ACA) of

the remaining blocks

 …… Entropy-coded segments of the selected blocks

ECS S(1),…,S(L)

……

……

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 6

Fig. 7 Procedure of JPEG decryption

2) JPEG Decryption

When deciphering the encrypted bitstream, the new JPEG

header and entropy encoded data can be extracted by parsing

the bitstream. Meanwhile, the padding bits P'=[p1', p2', …, pM']

can be extracted from the reserved application segments

marked as APPn in the JPEG header. With the encryption key

Kenc, the appended bits of L selected entropy-coded segments

and the padding bits P={CC, AP} can be deciphered in the

same way as (1).

From the JPEG header, we extract the DC and AC Huffman

tables. With these tables, we parse the Huffman codes in CC

and the appended bits in AP to reconstruct the N–L remaining

entropy-coded segments ECSu, u=R(1), R(2), …, R(N–L).

Meanwhile, the L selected entropy-coded segments ECSv

(v=S(1), S(2), …, S(L)) are extracted from the new entropy

encoded data. With the encryption key Kenc, the original

indexes of the selected blocks can be recovered.

After that, the original JPEG bitstream is reconstructed

containing SOI, the JPEG header, the decrypted

entropy-coded segments, and EOI. The selected ECSu

(u=R(1), R(2), …, R(N–L)) and the remaining ECSv (v=S(1),

S(2), …, S(L)) are sequentially put back to the original

positions, and the JPEG header is modified to restore the

original image size H×W. The decryption procedure is

depicted in Fig. 7.

B. Data Hiding in Encrypted JPEG Bitstream

Based on the JPEG encryption algorithm, the content owner

enciphers the JPEG bitstream and uploads the encrypted copy

to a remote server. On the server side, the data hider extracts

the encrypted padding bits from the header and embeds an

additional message M into the encrypted padding bits. The

procedure is depicted in Fig. 8. We denote all encrypted AC

appended bits inside the encrypted padding bits as A, i.e.,

encrypted bits of AP, which contains m bits. Although it is

difficult to identify the value of m directly from the encrypted

padding bits, two solutions are provided at the end of this

subsection.

The data hider evenly divides the binary vector A into s

groups {A1, A2, …, As}, where s=m/n, n=β∙e, β is a positive

integer, and e is the average number of appended bits of all

AC coefficients inside each block. The value of e is identified

by parsing all AC appended bits in L selected entropy-coded

segments. Assuming there are ma such bits, the value of e is

calculated by e=ma/L.

Subsequently, the data hider constructs a kn binary matrix

H by

],[rkkk  QIH (2)

where Q is a pseudo-randomly generated binary matrix, and

r=n–k. Many algorithms like RC4 and SEAL can be used to

generate Q.

For each group At (t=1, 2, …, s), the data hider further

computes

   (1), (2),..., () (1), (2),..., ()
T T

t t t t t tk n B B B H A A A (3)

in which all calculations are binary arithmetic. Thus, each

group At containing n bits is compressed to a vector Bi with k

bits. After compressing all groups from m bits to ks bits, the

additional message M containing m–ks bits are appended to

generate

Pm={CC, {B1, B2, …, Bs, M}}.

The structure is depicted in Fig. 8.

With an embedding key Kemb, the data hider shuffles Pm to

produce a sequence E. These bits are then embedded into the

reserved application segments marked as APPn in JPEG

header. This way, a marked encrypted JPEG bitstream

containing additional messages is generated.

To extract the additional messages, one can reshuffle the

padding bits of the marked encrypted bitstream using the

embedding key Kemb, and obtain the additional messages by

extracting the last mks bits. Since extraction is done in the

encrypted domain without revealing image contents, the

proposed RDH-EI method is therefore separated from image

recovery.

Next, we explain how the parameter m is estimated. There

are two possible solutions. A simple solution is to transmit the

parameter m along with the encrypted JPEG bitstream, by

embedding it inside the reserved application segments marked

as APPn in JPEG header. Another is to estimate the length of

encrypted padding bits. If there are ns bits in L selected

entropy-coded segments and nr bits in the N–L remaining

segments, m can be estimated by m=[λ∙(nr/ns)∙ma], where [∙] is

a rounding operator, and λ a scaling factor (0<λ<1) used to

avoid modifying the encrypted Huffman codes during data

hiding.

SOI Entropy Encoded Data

EOI Deciphered Padding Bits

CC AP

Decrypted Entropy Encoded Data

Recovered Header … SOI EOI …

JPEG Header

 …… Entropy-coded segments of the selected blocks
ECS S(1),…,S(L)

 …… Entropy-coded segments of the remaining blocks
ECS R(1),…,R(N-L)

……

…… ……

……

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 7

Fig. 8 Procedure of data embedding

C. Iterative Recovery of Original Image

Fig. 9 Flow chart of iterative recovery

On the recipient side, the marked encrypted JPEG bitstream

can be directly decoded by the JPEG decoder to construct an

encrypted image of a smaller size. With the embedding key

Kenc, the recipient can parse and decipher the marked

encrypted JPEG bitstream using the proposed JPEG

decryption algorithm described in Section III-A. Since only

the AC appended bits of the remaining entropy-coded

segments were modified in data hiding, an approximate image

with reduced quality can be reconstructed after decryption.

With both the encryption and embedding keys, the recipient

can losslessly recover the original JPEG image. Although the

compression algorithm in (3) is irreversible, we have several

solutions to identify the original bits according to the changes

of blocking artifacts. A flowchart of the recovery is shown in

Fig. 9.

The recipient first parses and extracts the encrypted padding

bits E from the marked encrypted JPEG bitstream and

reshuffles E to restore Pm using the embedding key Kemb,

where

Pm={CC, {B1, B2, …, Bs, M}}.

According to the binary matrix H, the recipient generates a

binary matrix G,

],[rr
T

rk  IQG (4)

where r=n–k and n=βe. For each group Bt, the recipient

calculates

   

() () ()

1 2

(1), (2),..., ()

(1), (2),..., (),0,...0 , ,...,

c c c

t t t

t t t r

n

k a a a

  

  

A A A

B B B G
 (5)

where [a1, a2, …, ar] is an arbitrary binary vector, and Ai
(c)

 the

2
r
 possible candidates for each group At , t=1, 2, …, s, and c=1,

2, …, 2
r
.

With the encryption key Kenc, the candidate vectors At
(c)

 are

decrypted to plaintext candidates Dt
(c)

 using the stream cipher

algorithm. According to the syntax of the recomposed JPEG

bitstream, lossless recovery is equivalent to identifying the

suitable one from the 2
r
 possible plaintext candidates to

recover the padding bits.

Assume that the AC appended bits in each candidate Dt
(c)

belongs to several entropy-encoded segments, i.e.,

Dt
(c)

={F, ACAP
<t1>

, ACAP
<t2>

, …, ACAP
<tl>, F}.

Here F stands for the fragment AC appended bits of a segment,

and ACAP
<ta>

 for the candidate of all AC appended bits in the

ta-th remaining segment, t=1, 2, …, s, ta∈{R(1), R(2), …,

R(N–L)}, and a=1, 2, ..., l. The value of l is identified by

Encrypted

Padding Bits of P'={CC, AP}

Encrypted CC

(Estimated)

Encrypted AP

(Estimated)

A (m bits)

 …… s groups

……

……

A1 (n bits)

A
2
 (n bits)

A
s-1

 (n bits)

A
s
 (n bits)

Additional Message …… s vectors

B
1
 (k bits)

B
2
 (k bits)

B
s-1

 (k bits)

B
s
 (k bits)

……

……

M (m–ks bits)

Candidate
Calculation

Candidate
Identification

Bitstream
Decryption

Bitstream
Update

Image
Update

JPEG
Decryption

JPEG
Decoding

Ii=Ii–1?

Marked Encrypted
JPEG Bitstream

Bitstream
Parsing

Approximate
Image

Losslessly
Recovered Image

JPEG
Decoding

Encrypted
Image

JPEG
Decoding

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 8

parsing the AC Huffman codes in the decrypted padding bits.

Meanwhile,

ACAP
<ta>

={ACA
<ta, 1>

, ACA
<ta, 2>

, …}

where ACA
<ta, j>

 is a candidate of appended bits, and 0≤j<64.
Thus, 2

r
 candidates for l entropy-coded segments can be

generated,

ECSta
 (c)

={DCC
<ta>

, ACH
<ta, 1>

, ACA
<ta, 2>

, …, EOB}

Accordingly, 2
r
 candidate pixel blocks {PBt1

 (c)
, PBt2

(c)
, …,

PBtl
(c)

} are constructed by entropy decoding {ECSt1
(c)

,

ECSt2
(c)

, …, ECStl
(c)

}.

Next, the recipient identifies the suitable candidate Dt
(bt)

from Dt
(c)

 (c=1, 2, …, 2
r
) by calculating the blocking artifacts

of the candidate blocks, where

1

()()arg min
lt

c

t a
a tc

b f


  PB (6)

and f is the blocking artifact function,





8

1

)8,()1,(),8(),1()(
i

iiiif LFXUPXX . (7)

The blocking artifact function is illustrated in Fig. 10, in

which X is the present block, UP and LF are the up and left

neighboring blocks. We use the up and left blocks when

calculating blocking artifact as blocks are constructed orderly

from left-to-right and top-to-bottom, and only these two

blocks are available in the first round of recovery.

The reason we use this function as the criteria of recovery is

that data embedding by coefficient modification always

increases blocking artifacts [12]. It should be noted that

over-smooth in the recovered image may occur when a small

parameter n is used during embedding. As long as n is large,

i.e., enough blocks are used together to evaluate the blocking

artifacts, the over-smooth effect can be avoided.

Fig. 10 Blocking artifacts

After sequentially processing all groups {B1, B2, …, Bs},

suitable candidates {D1
(b1)

, D2
(b2)

, …, Ds
(bs)} constituting

updated padding bits are identified. This way, a new image I0

is constructed by decoding the updated JPEG bitstream. The

image I0 has better quality than the directly deciphered image.

The first round of recovery using blocking artifact function

in (7) may be inaccurate. In the next stage, the recipient

iteratively refines the updated JPEG bitstream to losslessly

recover the original image, using contents in the existing

image as a reference. With the updated padding bits and the

candidates Dt
(c)

 (c=1,2,…,2
r
), the recipient iteratively finds the

best candidates using (6) and (8), in which the blocking

artifact function f is different from (7).

)1,()8,(),1(),8(

)8,()1,(),8(),1()(
8

1

iiii

iiiif
i

RTXDWX

LFXUPXX




 (8)

As shown in Fig. 10, UP, LF, DW and RT are neighboring

blocks around the present block X.

In each iterative step, the recipient updates the bitstream

and generates a refined image. The generated image is

compared with the resulting image of the previous round. The

iteration runs until no difference is found. This way, the

recipient can losslessly recover the original JPEG image.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the proposed method, we use a set of grayscale

images sized 512×512, and compress them to JPEG bitstreams

with different quality factors. The encrypted padding bits, and

the parameters m, H, and W are hidden into the JPEG header.

Let α=L/N be the ratio of selected blocks.

An example is given in Fig. 11, in which (a) shows the

original images Lena and Boat compressed with a quality

factor 80. After encrypting the bitstreams with an encryption

key Kenc and the parameter α=0.25, format-compliant

bitstreams are generated. The encrypted bitstreams can be

decoded to smaller images sized 256×256 by a JPEG decoder,

which are shown in Fig. 11(b). The encrypted bitstreams have

the same lengths as the original. Secret messages containing

1023 bits are embedded into each encrypted bitstream using an

embedding key Kemb and parameters β=9 and r=3. After data

hiding, the marked encrypted JPEG bitstreams can still be

directly decoded to images by JPEG decoder. On the recipient

side, additional messages can be extracted without any errors

if the key Kemb is available. Approximate images can be

generated by decrypting the encrypted bitstream containing

additional message using the key Kenc. Fig. 11(c) shows the

approximate images, with PSNR being 21.7dB and 20.4dB,

respectively. When both keys are available, the original

bitstreams can be recovered without loss. Fig. 11(d) shows the

losslessly recovered images after three iterations.

(a)

(b)

X

UP

RT

DW

LF

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 9

(c)

(d)

Fig. 11. RDH-EI in the bitstreams corresponding to Lena and Boat: (a)

original JPEG images, (b) encrypted images, (c) directly decrypted

images, and (d) losslessly recovered images

In Table I~III, we show the embedding payloads Ce and

PSNR of the recovered images, using images Lena, Baboon

and Texmos. The PSNR value +∞ means lossless recovery.

We use a fixed ratio α=0.25, i.e., messages with 1540 bits are

embedded into the encrypted bitstream of Lena with β=10 and

r=5. The experimental results show that the original images

can be losslessly recovered if β is not too small and r is not too

large. The image Texmos is shown in Fig. 12, indicating that

the proposed method is also applicable to natural images with

rich textures.

Table I. PSNR (dB) and payload Ce (bits) of Lena

r
β

9 10 11 12

1 +∞, 341 +∞, 308 +∞, 279 +∞, 259

2 +∞, 682 +∞, 616 +∞, 558 +∞, 518

3 +∞, 1023 53.6, 924 +∞, 837 +∞, 777

4 +∞, 1364 +∞, 1232 +∞, 1116 +∞, 1036

Table II. PSNR (dB) and payload Ce (bits) of Baboon

r
β

9 10 11 12

1 43.1, 341 38.2, 307 +∞, 279 +∞, 256

2 +∞, 682 +∞, 614 +∞, 558 +∞, 512

3 40.2, 1023 42, 921 38.3, 837 +∞, 768

4 35.1, 1364 31.6, 1228 33.3, 1116 34.7, 1024

Table III. PSNR (dB) and payload Ce (bits) Texmos

r
β

9 10 11 12

1 +∞, 341 +∞, 307 +∞, 279 +∞, 256

2 37.8, 682 +∞, 614 +∞, 558 +∞, 512

3 32.5, 1023 35.4, 921 +∞, 837 +∞, 768

4 34.4, 1364 31.3, 1228 +∞, 1116 +∞, 1024

Fig. 12 The image Texmos

In real applications, parameters β and r can be chosen

empirically in the same way as the previous RDH-EI works

[8-19]. For different types of images, some images are used

for training. For example, we arbitrarily choose 100 natural

images sized 512×512, and perform embedding using the

proposed method. Table IV shows the used empirical

parameters, with which the original JPEG image can be

losslessly recovered.

Table IV Empirical parameters to achieve lossless recovery

r 1 2 3 4 5

β 15 18 22 20 22

To find the achievable payload, we compare the proposed

methods with [8] and [9] designed for uncompressed images.

Experimental results listed in Table V show that payloads of

the proposed method for JPEG are close to [8] and [9]. We

mainly compare the proposed method with [12] that is also an

RDH-EI for encrypted JPEG bitstream. Results given in Table

V indicate that the proposed method has much larger

achievable payloads than that of [12]. We arbitrarily choose

50 JPEG images to embed 750 bits into each one using both

methods. Average PSNR obtained with the proposed method

is about 7dB smaller than [12]. Although quality of the

directly decrypted image in [12] is better than the proposed

method, better PSNR in [12] is achieved by sacrificing

security.

Table V. Comparison of Payloads (Bits)

Images [8] [9] [12] Proposed

Lena 1024 1024 750 1364

Baboon 256 334 750 768

Man 655 1024 750 1368

Sailboat 655 1024 750 1364

Since α is the ratio of the selected blocks, a smaller α leads

to more padding bits used to carry more secret message. Table

VI shows embedding payload corresponding to different

values of α, in which fixed parameter values r=3 and β=12 are

used to ensure lossless recovery. Experimental results indicate

that a larger embedding payload can be achieved with a

smaller α.

Table VI Payloads corresponding to different selection ratio α

α 0.0005 0.042 0.083 0.125 0.167 0.208 0.250

Lena 1026 981 939 897 855 810 768

Peppers 1026 981 939 897 855 810 768

Airplane 1023 984 939 897 852 810 768

Man 1023 981 939 897 855 810 768

Boats 1023 981 936 894 852 810 768

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 10

Quality factor used for scaling the default quantization table

is an important factor in JPEG compression, and it also

impacts embedding payloads. We use the popular tool IJG [31]

to scale the quantization table as suggested in the JPEG

standard [30]. In the standard, the quality factor ranges from 0

to 100, and the default is 50. We use α=0.25, different values

of r, and corresponding values of β to achieve lossless

recovery. These parameters correspond to different payloads.

Fig. 13 shows relations between the payload and the quality

factor ranging from 10 to 90, based on Lena, Peppers and

Texmos. Generally, higher payloads can be achieved with

larger quality factors or larger values of r.

Fig. 13. Payload vs. quality factor

To check the convergence property of the iterative recovery,

we conduct a set of experiments. A total of 1000 arbitrary

images in Bossbase1.01 [33] are used, with r=1, α=0.25,

different β, and different quality factors Q. Histograms in Fig.

14 show that, in all experiments, the required number of

iterative rounds is no more than 5. Table VII shows the

average convergence speed of 1000 images using different

parameters. In general, several hundreds of seconds are

needed to recover each image. When β gets smaller, longer

time is required.

Table VII. Average convergence speed corresponding to different

parameters (in seconds)

Q
β

7 10 13

70 432.5 365.6 338.4

90 466.8 377.9 236.7

We also evaluate relations between embedding payloads

and image resolutions. Fixed parameters r=3 and β=12 are

used to implement the proposed method to achieve lossless

recovery. We use a parameter S to represent the image

resolution, and let the image size be 2
S/2

×2
S/2

. Fig. 15 shows

that the achievable payload increases as the image gets larger.

Resolution of an original JPEG image should be larger than

1616. Otherwise, few messages can be embedded into the

encrypted image.

Fig. 15 Payload vs. image resolution

Fig. 14 Convergence of iterative recovery

20 40 60 80
0

500

1000

1500

2000
Lena

Quality Factor

P
ay

lo
ad

 (
B

it
s)

r=1

r=2

r=3

r=4

20 40 60 80
0

500

1000

1500

2000
Peppers

Quality Factor

P
ay

lo
ad

 (
B

it
s)

r=1

r=2

r=3

r=4

20 40 60 80
0

500

1000

1500

2000
 Texmos

Quality Factor

P
ay

lo
ad

 (
B

it
s)

 r=1

 r=2

 r=3

 r=4

8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

log
2
(S)

P
ay

lo
ad

 (
b

it
s)

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 11

(a)

(b)

Fig. 16. Security analyses using encrypted bitstreams of Baboon and

Peppers: (a) constructed 512512 images by attacking [12], and (b)

constructed 256256 images by attacking the proposed method

The proposed system is securer than [12]. In [12], the

quantization tables and all appended bits are encrypted, while

all Huffman codes are unchanged. If an adversary uses all

Huffman codes and sets all appended bits to zero, a contour of

the original image can be revealed. While in the proposed

method, only part of the bitstream segments are randomly

selected to construct a smaller sized JPEG image. If α is small,

most of the entropy-coded segments are rearranged to the

padding bits that are further encrypted with a stream cipher.

Thus, the adversary cannot reconstruct a contour of the

original image with limited Huffman codes. As an example,

we use [12] and the proposed method to encrypt the original

JPEG images Baboon and Peppers, both sized 512×512. The

encrypted images constructed by [12] are sized 512×512,

while the encrypted images by the proposed method are sized

256×256. Fig. 16 (a) shows revealed contours by using all

Huffman codes in the encrypted bitstream of [12]. In Fig.

16(b), no contours are revealed, indicating that the proposed

method is much securer than [12].

Besides, the proposed method is also secure against

ciphertext-only attacks. Two parts are included in the

proposed encryption, i.e., block selection and stream cipher. L

entropy-coded segments are pseudo-randomly selected from

the JPEG bitstream, in which the first entropy-coded segment

must be selected. After permuting the L1 segments, a new

entropy encoded bitstream is constructed. When L is large

enough, it is difficult for an adversary to find the original

orders from 1

1 (1)!L

NC L

   possibilities. On the other hand, all

appended bits in the L selected segments and all bits in the

remaining N–L segments are encrypted by stream cipher. Thus,

an adversary is unable to break the original bits and

reconstruct the original image as long as the encryption key is

long enough, e.g., 128 bits for RC4. We create images sized

256×256, 512×512 and 1024×1024 by sampling or

interpolating the original Lena. After JPEG compressing these

images using a quality factor 80, lengths of the compressed

bits of these images are 57,074, 213,435 and 435,620 bits

respectively. The results show that it is difficult for an

adversary to break so many bits using the brute-force attack.

Denote average complexity of deciphering and decoding the

bitstream of each block as Tc, that of bitstream decoding for

each block as Tb, and that of blocking artifact calculation as Ta.

We compare recovery complexities of the proposed method

with that of [12]. In [12], the procedure of recovery includes

bitstream deciphering, bitstream decoding, and blocking

artifact calculation. As a result, average complexity of

recovering one block is approximately Tc+Tb+Ta. In the

proposed method, 2
r
 possible candidates are first calculated

using (4). For each solution, bitstream deciphering, bitstream

decoding, and blocking artifact calculation are used to find the

best solution. After that, an iterative algorithm is used to

complete the recovery, with a procedure close to the first

round. As a result, average complexity of recovering one

block is approximately 2
r
·τ·(Tc+Tb+Ta), where τ is the number

of iterative rounds. Therefore, complexity of the proposed

method for recovering one block is 2
r
·τ times that of [12].

Since r≥1 and τ≥1, complexity of the proposed method is

higher than that of the previous work. This is the cost paid for

separated operations, higher payload and better security.

V. CONCLUSIONS

This paper proposes a separable reversible data hiding

scheme for the encrypted JPEG bitstream. A JPEG encryption

and decryption algorithm is developed to hide the content of

an original image. When the server receives the enciphered

bitstream, a data hider can embed additional messages into the

encrypted copy by compressing the padding bits of the

bitstream. With an iterative recovery method based on

blocking artifacts, the recipient can losslessly recover the

original bitstream. The proposed method provides larger

embedding capacity than the previous approach. It is separable

because anyone who has the embedding key can extract the

additional message from the marked encrypted bitstream

without revealing the original content of the JPEG image.

The proposed method also offers better security than the

previous work. A new JPEG bitstream corresponding to a

smaller sized image is constructed. Therefore, information

leakage of the original content, e.g., contour of an image, can

be avoided. The procedure is realized by rearranging some

entropy-coded segments to generate the padding bits. These

bits are embedded into the reserved segments labeled by APPn

in the JPEG header. The encrypted bitstream can still be

decoded by the commonly-used decoders, e.g., the decoder

incorporated in the Windows operating system. Meanwhile,

the amount of data of the bitstream is unchanged.

REFERENCES

[1] Z. Erkin, A. Piva, S. Katzenbeisser, et al., ―Protection and

retrieval of encrypted multimedia content: when cryptography

meets signal processing,‖ EURASIP Journal on Information

Security, 2008.

[2] M. Barni, T. Kalker, and S. Katzenbeisser, ―Inspiring new

research in the field of signal processing in the encrypted

Domain,‖ IEEE Signal Processing Magazine, vol. 30, no. 2, pp.

16-16, 2013.

[3] W. Liu, W. Zeng, L. Dong, and Q. Yao, ―Efficient compression

of encrypted grayscale images,‖ IEEE Transactions on Image

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 12

Processing, vol. 19, no. 4, pp. 1097-1102, 2010.

[4] P. Zheng, and J. Huang, ―Discrete wavelet transform and data

expansion reduction in homomorphic encrypted domain,‖ IEEE

Transactions on Image Processing, vol. 22, no. 6, pp.

2455-2468, 2013.

[5] Y. Rahulamathavan, R. Phan, J. Chambers, and D. Parish,

―Facial expression recognition in the encrypted domain based on

local fisher discriminant analysis,‖ IEEE Transactions on

Affective Computing, vol. 4, no. 1, pp. 83-92, 2013.

[6] T. Bianchi, and A. Piva, ―TTP-Free asymmetric fingerprinting

based on client side embedding,‖ IEEE Transactions on

Information Forensics & Security, vol. 9, no. 10, pp. 1557-1568,

2014.

[7] Z. Fu, X. Sun, Q. Liu, et al. ―Achieving efficient cloud search

services: Multi-keyword ranked search over encrypted cloud

data supporting parallel computing,‖ IEICE Transactions on

Communications, vol. 98, no. 1, pp. 190-200, 2015.

[8] X. Zhang, ―Reversible data hiding in encrypted images,‖ IEEE

Signal Processing Letters, vol. 18, no. 4, pp. 255–258, 2011.

[9] W. Hong, T. Chen, and H. Wu, ―An improved reversible data

hiding in encrypted images using side match,‖ IEEE Signal

Processing Letters, vol. 19, no. 4, pp. 199–202, 2012.

[10] X. Liao, and C. Shu, ―Reversible data hiding in encrypted

images based on absolute mean difference of multiple

neighboring pixels,‖ Journal of Visual Communication and

Image Representation, vol. 28, pp. 21–27, 2015.

[11] J. Zhou, W. Sun, L. Dong, et al. ―Secure reversible image data

hiding over encrypted domain via key modulation,‖ IEEE

Transactions on Circuits and Systems for Video Technology,

vol. 26, no. 3, pp. 441-452, 2016.

[12] Z. Qian, X. Zhang, and S. Wang, ―Reversible data hiding in

encrypted JPEG bitstream,‖ IEEE Transactions on Multimedia,

vol. 16, no. 5, pp. 1486-1491, 2014.

[13] X. Zhang, ―Separable reversible data hiding in encrypted

image,‖ IEEE Transactions on Information Forensics Security,

vol. 7, no. 2, pp. 826–832, 2012.

[14] X. Wu, and W. Sun, ―High-capacity reversible data hiding in

encrypted images by prediction error,‖ Signal processing, vol.

104, pp. 387-400, 2014.

[15] Z. Qian, and X. Zhang, ―Reversible Data Hiding in Encrypted

Image with Distributed Source Encoding,‖ IEEE Transactions

on Circuits and Systems for Video Technology, vol. 26, no. 4,

pp. 636-646, 2016.

[16] K. Ma, W. Zhang, X. Zhao, et al. ―Reversible data hiding in

encrypted images by reserving room before encryption,‖ IEEE

Transactions on Information Forensics Security, vol. 8, no. 3,

pp. 553-562, 2013.

[17] W. Zhang, K. Ma and N. Yu, ―Reversibility improved data

hiding in encrypted images,‖ Signal Processing, vol. 94, pp.

118–127, 2014.

[18] X. Cao, L. Du, X. Wei, et al. ―High capacity reversible data

hiding in encrypted images by patch-level sparse

representation,‖ IEEE Transactions on Cybernetics, vol. 46, no.

5, pp. 1132-1143, 2016.

[19] M. Fujiyoshi, ―Separable reversible data hiding in encrypted

images with histogram permutation,‖ in Proceeding IEEE

International Conference on Multimedia and Expo, pp. 1-4,

2013.

[20] Z. Qian, X. Zhang, and G. Feng, ―Reversible Data Hiding in

Encrypted Images Based on Progressive Recovery,‖ IEEE

Signal Processing Letters, 23(11): 1672-1676, 2016

[21] Z. Qian, X. Zhang, Y. Ren, and G. Feng, ―Block Cipher Based

Separable Reversible Data Hiding in Encrypted Images,‖

Multimedia Tools and Applications, 75(21), 13749-13763, 2016

[22] Z. Qian, S. Dai, F. Jiang, and X. Zhang, ―Improved Joint

Reversible Data Hiding in Encrypted Images,‖ Journal of

Visual Communication and Image Representation, 40: 732-738,

2016

[23] T. Kalker and F. M. Willems, ―Capacity bounds and code

constructions for reversible data-hiding,‖ in Proceeding 14th

International Conference Digital Signal Processing (DSP2002),

pp. 71-76, 2002.

[24] M. Cancellaro, F. Battisti, M. Carli, et al. ―A commutative

digital image watermarking and encryption method in the tree

structured Haar transform domain,‖ Signal Processing: Image

Commun., vol. 26, pp. 1-12, 2011.

[25] S. Liu, M. Fujiyoshi, and H. Kiya, ―A collaborative scheme for

lossless data hiding and image scrambling,‖ in Proceeding

IEICE/ITE/KSBE International Workshop on Advanced Image

Technology, 2011.

[26] X. Zhang, ―Commutative reversible data hiding and encryption,‖

Security and Communication Networks, vol. 6, no. 11, pp.

1396-1403, 2013.

[27] S. Y. Ong, K. S. Wong, X. Qi, et al. ―Beyond format-compliant

encryption for JPEG image,‖ Signal Processing: Image

Communication, vol. 31, pp. 47-60, 2015.

[28] S. Y. Ong, K. S. Wong and K. Tanaka, ―Scrambling-embedding

for JPEG compressed image,‖ Signal Processing, vol. 109, pp.

56-68, 2015.

[29] A. Massoudi, F. Lefebvre, C. De Vleeschouwer, et al.

―Overview on selective encryption of image and video:

challenges and perspectives,‖ EURASIP Journal on

Information Security, vol. 5, pp. 1-18, 2008.

[30] Int. Tele. Union, CCITT Recommendation T.81, ―Information

technology-digital compression and coding of continuous-tone

Still Images - Requirements and Guidelines,‖ 1992.

[31] Independent JPEG Group, http://www.ijg.org/

[32] T. Richter, A. Artusi, and T Ebrahimi, ―JPEG XT: A New

Family of JPEG Backward-Compatible Standards,‖ IEEE

Multimedia, vol. 23, no. 3, pp. 80-88, 2016.

[33] Bossbase Database, http://www.agents.cz/boss/BOSSFinal/

http://www.ijg.org/
http://www.agents.cz/boss/BOSSFinal/

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2634161, IEEE
Transactions on Dependable and Secure Computing

 13

Zhenxing Qian (M’12) received both the B.S.

and the Ph.D. degrees from University of

Science and Technology of China (USTC), in

2003 and 2007, respectively. He is currently a

professor with the School of Communication

and Information Engineering, Shanghai

University, China. His research interests

include data hiding and multimedia security.

Hang Zhou received the B.S. degree in

School of Communication and Information

Engineering, Shanghai University. He is

currently working toward the Master degree

at the University of Science and Technology

of China (USTC). His research interests

include information hiding and image

processing.

Xinpeng Zhang (M’11) received the B.S.

degree in computational mathematics from

Jilin University, China, in 1995, and the M.E.

and Ph.D. degrees in communication and

information system from Shanghai University,

China, in 2001 and 2004, respectively. Since

2004, he has been with the faculty of the

School of Communication and Information

Engineering, Shanghai University, where he is

currently a Professor. His research interests

include information hiding, image processing and digital forensics.

Weiming Zhang received the M.S. and Ph.D.

degrees in 2002 and 2005, respectively, from

the Zhengzhou Information Science and

Technology Institute, China. Currently, he is an

associate professor with the School of

Information Science and Technology,

University of Science and Technology of China

(USTC). His research interests include

information hiding and multimedia security.

