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Abstract—Order-revealing encryption (ORE) is a kind of
encryption designed to support searches on ciphertexts. ORE
enables efficient range query on ciphertexts, and it has been
used in systems aimed at practical use. However, ORE has weaker
security than conventional cryptography. To assess the security of
ORE, researchers proposed concepts such as indistinguishability
and one-wayness.

Our work discusses the security of ORE when multiple
columns are encrypted with ORE. This paper addresses two
issues. First, we show an attacker can use quantile attack to
distinguish two plaintext distributions with background informa-
tion. Simulations show the attack succeed with high probability.
Second, we propose a scheme to resist the quantile attack by
adding dummy data. The proposed scheme calculates the number
and position of dummy data based on the plaintext distribution
and expected security level. We conduct experiments on a real
dataset to show the performance of proposed scheme.

I. INTRODUCTION

Recently, cloud service has been widely used by institutions

and individuals. With more and more privacy data being

uploaded to the cloud, security has become a serious problem.

To protect privacy, encryption is adopted. However, conven-

tional encryption, which is designed to protect the security of

data on insecure channel, will cause problem to the use of data

in the scene of cloud service. Thus, searchable encryption is

proposed to solve this problem. Order-Preserving Encryption

(OPE), and its extension Order-Revealing Encryption (ORE)

are encryptions supporting order comparison of ciphertexts.

An ORE scheme is an encryption Enc with a function Cmp
such that anyone can tell the order of two plaintexts x1, x2

by computing function Cmp on the corresponding ciphertexts

Enck(x1), Enck(x2) without knowing the secret key k. An

OPE is an ORE if the function Cmp is the order comparison

of ciphertext, i.e. x1 < x2 ⇐⇒ Enck(x1) < Enck(x2).

ORE enables efficient range query on ciphertext. To perform

a range query [x1, x2] on a column encrypted by ORE, the

user can encrypt the endpoint x1, x2 and send the ciphertext.

Then the server finds all rows with values in the interval

[Enck(x1), Enck(x2)]. ORE does not change the architec-

ture of the server, thus, range query can be performed on

ciphertext as fast as the plaintexts. Because of its efficiency,

ORE is adopted by systems aimed at practical use, such as

CryptDB[1], CipherCloud[2], Google Encrypted BigQuery[3].

Though its efficiency, the security of ORE needs to be

considered carefully, because ORE leaks the order of plain-

text. To assess the security of ORE, researchers proposed

different definitions of indistinguishability and one-wayness.

The strongest security notion of deterministic ORE is indis-

tinguishability under ordered-chosen plaintext attack (IND-

OCPA) [4], which means an adversary can learn nothing other

than the order of plaintext. The ORE based on multilinear

map [5] and OPE based on B-tree [6] are proved to be IND-

OCPA secure, however, they require complex computation

or interactive protocol. To improve the efficiency, Lewi et

al. [7] proposed an ORE scheme relying only on symmetric

primitives. A deterministic ORE is an ORE scheme mapping

the same plaintext to the same ciphertext. To protect the

frequency information leaked by deterministic ORE, Wang et

al. [8] proposed one-to-many OPE, which is a probabilistic

encryption mapping a plaintext to a random value in a interval.

Roche et al. [9] and Kerschbaum et al. [10] proposed the

concept of frequency-hiding to measure the difference between

one-to-many and deterministic ORE.

Above works analyse the theoretical security of ORE.

Naveed et al. [11] made an empirical analysis of ORE

security. They proposed sort attack and cumulative attack.

Sort attack sorts the ciphertext and maps them to plaintext

domain according to the order, and it is effective when data

is dense, which means that almost every plaintext symbol

appears in the plaintext sequence. Cumulative attack combines

the cumulative distribution function and frequency information

of plaintext to match the plaintexts to ciphertexts.

All these analysis applies to ORE on single-column dataset.

To the best of our knowledge, Durak et al. [12] is the first to

consider the case that ORE is applied to two or more encrypted

columns. They study the information leakage for IND-OCPA

secure ORE by 2-D sort attack. They show that information

may be leaked even when the data in the column is sparse in

its domain, and when all values are unique (and without any

training data), and an IND-OCPA secure ORE is used.

In this paper, we consider the security of ORE on multi-

column dataset. Though Durak et al. studied the security of

ORE on multi-column dataset, their 2-D sort attack is merely

applying the sort attack on each column separately and does

not exploit inter-column correlation at all. In this paper, we

consider the attack model of known-background attack, where

the adversary needs to select the plaintext distribution from

two or more possible distributions. We present the quantile

attack, which exploit the statistics of ciphertexts to distinguish

different distributions. Then we suggest a scheme which

adds dummy data to resist quantile attack, and we show the

performance of proposed scheme by experiments on real data.
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II. PRELIMINARIES

A. Order-Revealing Encryption
An ORE is a tuple of three algorithms (Key,Enc, Cmp).

Algorithm Key takes a security parameter λ as input and

outputs a secret key k. Algorithm Enc is encryption algorithm.

Algorithm Cmp takes two ciphertexts as input and outputs a

bit b ∈ {0, 1}. The order-revealing feature requires

m1 < m2 ⇐⇒ Cmpk(Enck(m1), Enck(m2)) = 0,

m1 ≥ m2 ⇐⇒ Cmpk(Enck(m1), Enck(m2)) = 1.
(1)

An OPE is an ORE where the algorithm Cmp is the

standard order comparison algorithm, i.e.

m1 < m2 ⇐⇒ Enck(m1) < Enck(m2),

m1 ≥ m2 ⇐⇒ Enck(m1) ≥ Enck(m2).
(2)

In this paper, we study ORE on multiple column data,

where ORE is applied on each column independently with

different secret-keys. For a plaintext m = (w, x), we encrypt

it to ciphertext c = Enck(m) = (Enckw(w), Enckx(x)). A

two column data consisting of multiple plaintexts is denoted

as (w), (x), and the ciphertext is denoted as (y), (z), where

(yi, zi) = Enck(wi, xi). For convenience, we mainly discuss

OPE, however, the main conclusion also holds on ORE,

because our analysis uses only the order relationship.

B. Attack Model
We present the attack model as known-background attack

here.

1) The system generates secret key from security parame-

ter.

2) The adversary chooses a function f .

3) The system generates two plaintext distributions P1, P2,

and calculates background information Ii = f(Pi).
4) The system randomly picks b ∈ {1, 2}, gets a sample

S = (w), (x) with size n from Pb as the plaintext,

encrypts the plaintext to ciphertext (y), (z), and sends

I1, I2, (y), (z) to the adversary.

5) The adversary makes a guess b′ of b.

The advantage of the adversary is P (b′ = 1|b = 1)−P (b′ =
1|b = 2). In the known-background attack, plaintext is a

sample from Pb, and the length of plaintext is the sample

size n. Ii = f(Pi) is the background information. If f is

the identity function, then the adversary has full information

of the plaintext distribution. In most case, the adversary will

not have the entire plaintext but an estimation of the plaintext

distribution. For example, the adversary may know only the

Pearson correlation coefficient of a uniformly distributed data.

In the next section, we will present quantile attack, which only

needs a statistics of the distribution.

III. QUANTILE ATTACK

In this section, we present the quantile attack, which breaks

the encryption with the help of a statistics, which is called as

quantile indicator in following paper. We will apply median

attack on OPE firstly, then discuss it on more complex

situation.

A. Median Attack

In this subsection, we discuss the information leakage

caused by the correlation between different ORE encrypted

columns.

Every plaintext (w1, x1) splits the plaintext space to 4 parts

based on the order relationship, and the ciphertext space is

also split to 4 parts by corresponding ciphertext (y1, z1). Con-

sider another plaintext (w2, x2) and corresponding ciphertexts

(y2, z2), because OPE preserves order, we have y2 < y1 and

z2 < z1 if w2 < w1 and x2 < x1, and vice versa. Denote

TW,X(w1, x1) as the number of plaintext of which the value

on each column is smaller than w1 and x1 separately, i.e.

TW,X(w1, x1) = |{(w, x)|w < w1 ∧ x < x1}|, (3)

and TY,Z(y1, z1) for ciphertext, we have

TW,X(w1, x1) = TY,Z(y1, z1). (4)

The median indicator r(w, x) is the ratio of TW,X(w1, x1) to

the number of plaintexts when w1 and x1 are the medians of

w and x respectively, i.e.

r(w, x) =
TW,X(wm, xm)

n
, (5)

where n is the number of plaintexts, wm is the median of

w, and xm is the median of x. Ciphertext median indicator

r(y, z) is defined similarly. Thus, OPE preserves the median

indicator, and we can distinguish two plaintexts if they have

different median indicator. The median indicator can be easily

extended to quantile indicator, if we replace the median in (5)

with quantile.

The details of median attack and its extension quantile

attack will be discussed in following subsections, here we

discuss the application scope of median attack.

The median attack is effective for ORE, which leaks the

order and preserves the median indicator. Besides, the median

attack can be applied to encryption scheme which does not

preserves the order but leaks some query result with the

median. For example, if the adversary knows results of two

range queries, (−∞, wm) × (−∞,+∞) and (−∞,+∞) ×
(−∞, xm), where wm and xm are the median of the two

plaintext columns, he can use the intersection of the two query

results to calculate the median indicator.

If data has dimension larger than two, we can use the median

attack to infer the information of each dimension. Consider

a database of trading records consisting of three columns,

C1, C2, C3, two of which are positions of the user consisting

of attitude and latitude, and another column is the trading fee.

An adversary has the encrypted database, and some knowledge

of the location information of the customers. The first step of

the adversary is to judge which two columns are locations.

To do so, the adversary can use median attack to judge

the similarity between the joint distribution of different rows

and the background information. After that, he can combine

the background information with each column to infer more

information.
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B. Median Attack on Normal Distribution

In this subsection, we discuss a simplified and typical

case that the plaintext follows a two-dimensional normal

distribution. We will calculate the theoretic value of median

indicator r and conduct experiments to check it.

Consider a two column data (w), (x) drawing from a two-

dimensional normal distribution PW,X(w, x). When the data

are encrypted to ciphertexts (y), (z) by OPE, we study the

relationship between the median indicator r(y, z) and PW,X .

A normal distribution is determined by mean and covariance

matrices. Denote the mean of PW,X as

μ =
[
μ1 μ2

]
, (6)

and the covariance matrix as

σ =

[
σ2
w ρσwσx

ρσwσx σ2
x

]
, (7)

where ρ is the Pearson correlation coefficient.

First, we assume that μw = 0 and μx = 0. The probability

density function of 2-dimensional normal distribution in such

situation is

p(w, x) =
1

2πσ1σ2

√
1− ρ2

es, (8)

where

s = − 1

2(1− ρ2)
(
1

σ2
w

w2 − 2
ρ

σwσx
wx+

1

σ2
x

x2). (9)

The median indicator rm can be calculated as

r =

∫ ∞

w=wm

∫ ∞

x=xm

p(x1, x2) dx1 dx2, (10)

where wm and xm are the median of w and x respectively. The

accurate calculation of r is difficult, thus here we calculate an

approximate for large n. When the sample size is large enough,

the median of a normally distributed sample will equal to the

sample mean, thus, wm = xm = 0.

Then we can use substitution to simplify the expression. Let

tw = w/σw and tx = x/σx, we have

r =

∫ ∞

t1=0

∫ ∞

t2=0

1

2π
√
1− ρ

e
− 1

2(1−ρ2)
(t21−2ρx1x2+t22) dt1 dt2.

(11)

Let t1 = t cos θ, t2 = t sin θ, we have

r =

∫ ∞

t=0

∫ π
2

θ=0

1

2π
√
1− ρ

e
− 1

2(1−ρ2)
(t2−ρt2sin(2θ))

t dt dθ.

(12)

We first calculate t,∫ ∞

t=0

1

2π
√
1− ρ

e
− 1

2(1−ρ2)
(t2−ρt2sin(2θ))

t dt

=

∫ ∞

t2=0

1

4π
√
1− ρ

e
− 1−ρsin(2θ)

2(1−ρ2)
t2

dt2

=
1

2π

√
1− ρ2

1− ρsin(2θ)
.

(13)

Then r can be calculated, we have

r = Rm(ρ), (14)
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Fig. 1. The median indicator r for different ρ of normal distributions. Sample
size n = 100.
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Fig. 2. Mean absolute error |r −Rm(θ)| of normal distribution.

where

Rm(ρ) =

∫ π
2

θ=0

1

2π

√
1− ρ2

1− ρsin(2θ)
dθ. (15)

This means that r is a function of ρ, and the value of r can

be calculated numerically. When the mean is not 0, we have

the same conclusion after similar deduction.

When the sample size is not large enough, the actual median

indictor r of the sample may deviate from Rm(ρ). We conduct

experiments to show the actual relationship between r and ρ.

The mean of normal distribution (m1,m2) is uniformly picked

from [0, 50]×[0, 50], and the covariance of normal distribution

(σw, σx, ρ) is uniformly picked from [0, 30]× [0, 30]× [−1, 1].
The results are shown in Figs. 1 and 2. Fig. 1 shows the

actual r of different ρ when n = 100. Fig. 2 shows the

mean absolute difference between r and Rm(ρ) of different

n. The actual r scatters around Rm(ρ). With the increase of

sample size n, the distribution of samples becomes closer to
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Fig. 3. The accuracy of median attack on normal distribution.

the normal distribution, and the actual r becomes closer to

Rm(ρ).

When we know ρ1 and ρ2, the problem of guessing b can

be solved by calculating the maximum likelihood probability.

Here we use a simple method to distinguish different samples.

Given two normal distributions P1, P2 with Pearson corre-

lation coefficient ρ1, ρ2 respectively and a sample Sb from

distribution Pb, the adversary can calculate r1 = Rθ(ρ1),
r2 = Rθ(ρ2), and the statistics r of sample Sb. Then the

adversary can guess b = 1 if |r1 − r| < |r2 − r|, or b = 2
if |r1 − r| > |r2 − r|. The full median attack on normally

distributed data is shown in Algorithm 1.

Algorithm 1 Median Attack on Normal Distribution

1: INPUT: ρ1, ρ2, data S = (w), (x).
2: OUTPUT: Guess b
3: r1 ← Rm(ρ1)
4: r2 ← Rm(ρ2)
5: Calculate the median indicator r = r(w, x).
6: if |r − r1| < |r − r2| then
7: b← 1
8: else
9: b← 2

10: end if
11: return b

We conduct simulations to show the attack accuracy, and

the result is shown in Fig. 3. The precision increase with the

sample size n and the difference between ρ1 and ρ2. The

difference between ρ represents the dissimilarity, thus two

distributions with large |ρ1 − ρ2| is easy to distinguish.

C. Mixture of Normal Distributions

In this subsection, we discuss distribution which is more

complex than normal distribution and hard to calculate the-

oretically. We assume the plaintext distribution is a mixture

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Size  of s a m p le

0 .8 2

0 .8 4

0 .8 6

0 .8 8

0 .9 0

0 .9 2

0 .9 4

0 .9 6

A
c

c
u

r
a

c
y

1 0 0

2 0 0

5 0 0

1 0 0 0

Fig. 4. The accuracy of median attack on mixture of multiple normal
distributions. Different curve in the figure correspond to different background
sample size.

of multiple normal distributions, and then we develop a

judgement criterion.

When the plaintext follows a mixture of multiple normal

distributions, the Pearson correlation coefficient ρ is difficult

to calculate. Here we use median indicator r of another sample

as background knowledge. More specifically, the background

knowledge Ii is the median indicator of Si, which is sampled

from Pi with size n′.
We conduct experiments to show the performance. The

plaintext distribution is a mixture of 2 to 10 normal dis-

tributions. The mean (μw, μx) is uniformly distributed on

[−50, 50] × [−50, 50], and the covariance (σw, σx, ρ) is uni-

formly distributed on [−30, 30]×[−30, 30]×[−1, 1]. We show

the accuracy when n, n′ ∈ {100, 200, 500, 1000}.
Fig. 4 shows the simulation results. Different from the case

of single normal, the accuracy decreases when the sample size

n increases from 500 to 1000 for n′ = 200 and n′ = 500.

This is caused by the deviation of background sample from

the actual distribution.

D. Quantile Attack

In this subsection, we extend the median attack to quantile

attack. If the adversary cannot get the median indicator or

median indicator of the two distributions is too close, the

adversary can use quantile attack instead.

Here we discuss the attack scenario defined in previous

subsection, where the plaintext follows a mixture of normal

distributions. With two background samples S1, S2, the ad-

versary calculate (i, j) quantile indicator r(i, j) of q-quantiles

as r(i, j) = 1
n |{(w, x)|w < wq ∧ x < xq}|, where wq and

xq are i-th and j-th q-quantiles of (w) and (x), respectively.

When q > 2, the adversary can choose wq and xq such that

the attack has highest accuracy. As discussed in the scenario

of median attack on normal distribution, it is reasonable to

assume the larger the difference between r1 and r2, the higher
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Fig. 5. The accuracy of quantile attack on mixture of multiple normal
distributions.

the accuracy. Thus, the strategy of the adversary is to choose

wq and xq with maximum |r1 − r2|. The full algorithm is

shown in Algorithm 2.

Algorithm 2 Quantile Attack

1: INPUT: Quantile indicators r1, r2, data S = (w), (x).
2: OUTPUT: Guess b
3: Calculate the quantile indicator r of data S.

4: Find j, k such that |r1(j, k)− r2(j, k)| gets maximum.

5: if |r(j, k)− r1(j, k)| < |r(j, k)− r2(j, k)| then
6: b← 1
7: else
8: b← 2
9: end if

10: return b

Fig. 5 shows the performance of quantile attack. Obviously,

using 3- and 4-quantiles makes a remarkable improvement in

the attack accuracy, while the accuracy of 3- and 4-quantile

attack keep close. This implies that the improvement happens

on distributions with close median indicator

IV. MULTI-DIMENSIONAL ENCRYPTION WITH DUMMY

DATA

A. Quantile Correlation Coefficient

As shown in preceding section, the quantile attack is effec-

tive for ORE. To resist quantile attack, the encryption scheme

needs to protect quantile indicator. Because quantile indicator

is a statistics of the distribution, an encryption should alter the

distribution to ensure security. Here we propose a concept, the

quantile correlation coefficient, to measure the security of an

encryption under quantile attack.

Quantile indicator can be protected in two means. First, if

the ciphertext quantile indicator is independent of the plaintext,

the adversary can not infer information of plaintext using

quantile attack. Second, the quantile attack has low accuracy
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ρ
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Fig. 6. The relationship between Pearson correlation coefficient ρ and quantile
indicator r of normal distributed samples.

when the quantile indicators of two plaintext distributions are

close, thus an encryption maps plaintexts to ciphertexts with

similar distribution can resist quantile attack effectively.

Thus, we can use the quantile correlation coefficient hc,

which is correlation between the plaintext and ciphertext

quantile indicators, to measure the security of an encryption

under quantile attack. The quantile correlation coefficient hc of

q-quantile is calculated as follow: First, we generate a group of

samples Si with different quantile indicators and encrypt them

to ciphertexts S′i. Second, we calculate the quantile indicator

ri of plaintext Si and r′i of S′i. The quantile correlation hc can

then be calculated as

hc =

∑
i(ri − ri)(r

′
i − r′i)∑

i(ri − ri)2
. (16)

When hc is close to 0, the encryption is secure. Quantile attack

is effective for encryptions with hc close to 1 or -1.

The ideal plaintext distributions depends on actual situation.

Here we use normal distributions with the same means and

different Pearson correlation coefficients.

Fig. 6 shows the relationship between Pearson correlation

coefficient ρ and quantile indicator r of normal distributed

samples. The size of plaintext sample is 100, and r is the

(1, 3) quantile indicator of 4-quantiles. As shown in the figure,

though r is not linear with ρ, the quantile indicator r scatters

in the full possible range when ρ is uniformly distributed on

[−1, 1]. The jump in the curve is caused by the deviation of

samples from the background distributions. However, because

we use the quantile indicator of plaintext sample rather than

ρ in the calculation of hc, the deviation is not important.

B. Multi-Dimensional Encryption With Dummy Data

Here we use dummy data to improve security under quantile

attack. The key problem of the algorithm is arranging dummy

data. Because quantile attack is based on quantiles, we can

add dummy data into some grids of a qr by qr grid divided

by qr-quantiles to resist quantile attack.
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hc r(1, 1) r(1, 3) r(2, 2) r(3, 2)
k = 1 -0.0085 0.0424 0.4775 0.6197
k = 2 -0.2043 -0.2120 0.2587 0.1591
k = 3 -0.2470 -0.2247 0.1286 0.0322
k = 4 -0.2555 -0.2712 0.0464 0.0057

TABLE I
THE QUANTILE CORRELATION COEFFICIENT OF ORE WITH DUMMY.

hc r(1, 1) r(1, 3) r(2, 2) r(3, 2)
k = 1 0.1838 0.1333 0.5086 0.6027
k = 2 0.1003 0.0723 0.2826 0.2518
k = 3 -0.0785 0.0445 0.0737 0.1837
k = 4 -0.0614 -0.0054 0.1063 0.0784

TABLE II
THE QUANTILE CORRELATION COEFFICIENT OF ORE WITH DUMMY.

More specifically, for a dataset S, first we find the qr-

quantiles on each column, and divide the data to a qr by qr grid

by qr-quantiles. Denote the center and side length of the (i, j)
grid as (wc,i, xc,j) and (wl,i, xl,j), respectively. Then we cal-

culate the number of data in each grid and add dummy data to

k grids with least data. Data added to each grid follows a nor-

mal distribution with mean and variance randomly distributed

in the grid, and the number of dummy data is the difference

between the numbers of current grid and grid with most data.

For example, if a grid locates at [w1, w2] × [x1, x2], and the

dummy data follows normal distribution with mean (μw, μx)
and covariance (σw, σx, ρ), then (μw, μx) follows a uniform

distribution on [w1, w2] × [x1, x2] and (σw, σx, ρ) follows a

uniform distribution on [0, w2 − w1]× [0, x2 − x1]× [−1, 1].
The parameter qr and k are assigned by the user. We

calculate the quantile correlation coefficient with q = 4 and

qr = 4. The result is shown in Table I. Though adding dummy

data lowers the quantile correlation coefficient, 0.27 is still

a relatively high correlation coefficient. When the adversary

knows the parameters of the system, he can add dummy data

to background samples with the same parameters and use

quantile attack to infer information.

We improve the algorithm in two aspects. The number of

dummy data is replaced by a random number, and the grid

is recalculated after each group of dummy data is added. The

quantile correlation coefficient with q = 4 and qr = 4 of the

improved algorithm is shown in Table II.

We show the performance of proposed method by simula-

tions.

First, we show the performance when the adversary does

not take dummy data into account and use quantile attack on

the ciphertext directly.

Fig. 7 shows the performance of proposed method with

different parameter k when qr = 4. Compared with Fig. 5,

adding dummy data improves the ability to resist quantile

attack, and the accuracy of the attack decreases with k. The

4-quantile attack fails when 4 group of dummy data are added.

If the adversary knows that ciphertext contains dummy data

and he knows the parameters i, j, q, he can add dummy data

to background samples with the same methods before using

quantile attack. The performance is shown in Fig. 8. Though
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Fig. 7. The accuracy of 4-quantile attack after adding dummy data. qr = 4
and k = 1, 2, 4.
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Fig. 8. The accuracy of 4-quantile attack after adding dummy data. qr = 4
and k = 1, 2, 4.

the adversary knows the key parameters, adding dummy data

still lower the accuracy of attack effectively.

C. Reality dataset

In this subsection we consider dataset from the real world.

We use map data of Beijing and Chengdu1. The map data

of Beijing consists of 412,810 points, and Chengdu 85,658

points. Each point has a longitude and latitude.

We use 4-quantile attack on the dataset. The background

dataset is consist of 1000 points uniformly picked from the

plaintext. The plaintext is protected with dummy data and

encrypted with ORE. The result is shown in Fig. 9. When

k = 0, no dummy data is added to the plaintext, and

the quantile attack has highest accuracy. When k = 4, the

accuracy is close to 0.5, which implies that an adversary

1https://www.openstreetmap.org/
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Fig. 9. The accuracy of 4-quantile attack on real dataset with dummy data.

cannot distinguish two plaintexts effectively using quantile

attack.

V. CONCLUSION

In the paper, we analysed the security of ORE on two

column data. We proposed quantile attack, which utilize the

correlation between two columns to extract information. The

experiments on different plaintext distribution and real data

shows that the quantile attack is effective for ORE. Then

we suggested a scheme which add dummy data to plaintext

based on the plaintext distribution, which made a remarkable

improvement to the security of ORE against quantile attack.
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