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Abstract. Multimedia processing with cloud is prevalent now, which
the cloud server can provide abundant resources to processing various
multimedia processing tasks. However, some privacy issues must be con-
sidered in cloud computing. For a secret image, the image content should
be kept secret while conducting the multimedia processing in the cloud.
Multimedia processing in the encrypted domain is essential to protect
the privacy in cloud computing. Hu et al. proposed a novel framework
to perform complex image processing algorithms in encrypted images
with two cryptosystems: additive homomorphic encryption and privacy
preserving transform. The additive homomorphic cryptosystem used in
their scheme causes huge ciphertext expansion and greatly increases the
cloud’s computation. In this paper, we modified their framework to a two-
cloud scheme, and also implemented the random nonlocal means denois-
ing algorithm. The complexity analysis and simulation results demon-
strate that our new scheme is more efficient than Hu’s under the same
denoising performance.
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1 Introduction

Multimedia processing in the cloud has been widely used in recent years, such
as photo-editing app Prisma1, and video and photo editing app Artisto2. The
cloud servers can offer high computation and large storage resources; client can
outsource local large data and complex computing tasks to the cloud servers to
save the local resource. However, cloud server is a third party, and it may not
be trusted. The outsourced sensitive multimedia content may be leaked, which
will lead to security and privacy issues. For outsourced storage, the simplest way
to overcome these issues is to use traditional symmetric cryptography, such as
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3DES or AES, to encrypt the outsourced sensitive multimedia content. While for
outsourced multimedia processing, secure multimedia processing is still a huge
challenging problem.

Signal processing in the encrypted domain is desired in cloud computing [2].
Modern cryptography provides some vital encryption schemes, such as homomor-
phic encryption [10,11,17,18,20,29,30,32], secret sharing [1,5,19,34], and secure
multiparty computation [3,4,16,21,22,37], to handle multimedia processing in
the encrypted domain.

The concept of homomorphic encryption is first proposed by Rivest et al. [32]
as privacy homomorphism. Since then, nearly 30 years, only partial homomor-
phism has been achieved, such as Elgamal cryptosystem [18] can perform mul-
tiplicative homomorphism, and Paillier cryptosystem [30] can perform additive
homomorphism. A breakthrough of fully homomorphic encryption was achieved
by Gentry in 2009 [20]. After that, full homomorphic encryption is constantly
being improved [10,11,17,29]. Even though for practical application, homomor-
phic encryption is inefficient, signal processing in the encrypted domain based
on homomorphic encryption is still a hot research direction. Encrypted domain
discrete cosine transform and discrete Fourier transform based on Paillier cryp-
tosystem were implemented by Bianchi et al. [6,8]. And then encrypted domain
discrete wavelet transform and Walsh-Hadamard transform based on Paillier
cryptosystem were implemented by Zheng et al. [38–40]. A privacy-preserving
face recognition system based on fully homomorphic cryptosystem was presented
in [36], and meanwhile, fully homomorphic encryption was applied to genetic
data testing [15].

Secret sharing scheme was independently proposed by Blakley [9] and Shamir
[34]. The Shamir’s secret sharing scheme is the most frequently used, which sup-
ports additive homomorphism [5]. Some secure signal processing schemes based
on secret sharing were proposed. A privacy protect wavelet denoising with secret
sharing was presented in [33]. However, after every multiplication operation, each
party needs to communicate with each other to renormalizing the threshold. In
[27], Lathey et al. proposed to perform image enhancement in the encrypted
domain with multiple independent cloud servers, and the novelty of their work is
that it can deal with arithmetic division operation for nonterminating quotients.
In [28], secure cloud-based rendering framework based on multiple cloud centers
was presented, and to overcome the computation of real number operation in
the encrypted domain, secret sharing scheme without modulus was adopted.

Secure multiparty computation was proposed by Yao [37], which can be used
as a general method to perform encrypted domain computation [4,21]. The BGW
protocol is a good example [4]. General multiparty computation based on linear
secret sharing scheme was proposed [16]. In [31], a scheme for wavelet denoising
was proposed, which is based on Lattice cryptography. However, maybe it is not
efficient to deal with nonlocal means image denoising algorithm. In [41], Zheng
et al. proposed to perform privacy-preserving image denoising using external
cloud databases, and their scheme is based on two cloud servers, which one is
the image database for storage encrypted image patches, and the other cloud
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server is to generate the garbled circuits and send them to image cloud database
to perform comparison operations. For a large image, the communication load
between these two cloud servers is considerably huge.

Image denoising in the encrypted domain is a concrete research in secure
multimedia processing. In [23,24], Hu et al. proposed a double-cipher scheme to
perform nonlocal image denoising. Two encryption schemes, partial homomor-
phic encryption and privacy-preserving transform were adopted in their scheme.
The bottleneck in their scheme is the efficiency of partial homomorphic encryp-
tion, which causes cipher expansion and the cloud server performing large com-
putation. In this paper, we presented a new scheme with two non-colluding
servers, and the new scheme is more concise and efficient. It can achieve the same
denoised performance, while the communication load between cloud servers and
client, and the computation complexity in cloud servers side and client side are
better than Hu’s scheme.

The rest of this paper is organized as follows. In Sect. 2, we introduce Hu’s
double-cipher scheme in detail. A comprehensive introduction of our new scheme
will be given in Sect. 3. We analyze the computation complexity and communi-
cation load about our scheme in Sect. 4. In Sect. 5, we give some discussion about
our proposed scheme. Finally, Sect. 6 concludes this paper.

2 Double-Cipher Image Denoising

In this section, we describe the details of double-cipher scheme. Hu et al. pro-
posed the double-cipher scheme in [23,24]. Monte Carlo nonlocal means image
denoising algorithm [14] was adopted as an example to perform nonlinear oper-
ation in the encrypted domain. In their framework, the cloud server will get two
different cipher images encrypted by two different encryption schemes: Paillier
encryption [30] and privacy-preserving Johnson-Lindenstrauss (JL) transform
[26] from the same image. The cloud server performed mean filter on the cipher
image encrypted by Paillier encryption, while performed nonlocal search on the
other cipher image generated by privacy-preserving transform. Here, we firstly
present a full description of Hu’s double-cipher scheme, and more details can be
read in [24].

We can summarize the double-cipher scheme as three main algorithms: image
encryption in the client side, secure image denoising in the cloud, and image
decryption in the client side.

2.1 Image Encryption

Binarization attack presented in [24] shows that the cloud server can recover
the cipher image through the strong correlation between adjacent image pixels,
because spatial close image pixels tend to have similar or even identical pixel
value. Therefore, to enhance the security, image scrambling was used to per-
form decorrelation before image encryption. Because of two encryption schemes,
an n-pixel image I was performed two different image scrambling, block image
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scramble and pixel image scramble, with the same pseudorandom permutation
sequence, respectively.

For block image scramble, the image I was first split with each pixel as the
center in overlapping n image blocks with size l × l. Then each block was made
into a vector as an n × l2 matrix α. Here with the pseudorandom permutation
sequence, matrix α was performed row scrambling to output a block scrambled
image Ī. While for pixel image scramble, the image I was scrambling by the
same pseudorandom permutation sequence to output a pixel scrambled image Ĩ.
The indices of rows in Ī corresponds to the indices of pixels in Ĩ, and this makes
sure the encrypted image can be denoised.

A privacy-preserving Johnson-Lindenstrauss (JL) transform was proposed
by Kenthapadi et al. [26] based on Johnson-Lindenstrauss theorem [25], which
can preserve Euclidean distance, and Hu et al. used this privacy preserving
JL transform on image encryption, which was performed in Algorithm1. After
Algorithm 1 performed, an n × k matrix EJL can be generated as ciphertext,
where k < l2. Here we should mention that the size of EJL is about k times
larger than that of the original image I. The block size l was chosen as 5, and
the projected dimension k was 9 ∼ 18 in [24].

For the second cipher image EPail, the client encrypted the pixel scrambled
image Ĩ pixel by pixel with Paillier encryption.

After encryption, the client uploaded the two cipher images to the cloud
server.

Algorithm 1. JL Transform-based Private Projection
Input: n × l2 matrix Ī; projected dimension k; Noise parameter ζ.
Output: The projected n × k matrix EJL.

1. Generate a l2 × k N(0, 1/k) Gaussian distribution matrix P ;
2. Generate an n × k N(0, ζ2) Gaussian distribution noise matrix Δ;
3. EJL = ĪP + Δ.

2.2 Secure Image Denoising

Image denoising can be described in a matrix-vector form as:

y = wI (1)

where y, I , and w are the matrix-vector form of noisy image, original image,
and the weight of the filter, respectively.

The filter matrix w is computed from a nonlocal means kernel function Kij

[12,13], representing the similarity between i-th and j-th image block:

Kij = e
−||y(Ni)−y(Nj)||2

h2 , (2)

where Ni is an image block centered at i, and h denotes the smoothing factor.
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In the encrypted domain, the kernel function Kij can be calculated by JL
transformed data matrix EJL, so Kij can be replaced as:

K̃ij = e
−||EJL(i)−EJL(j)||2−2kζ

h2 , (3)

where EJL(i) denotes the i-th row of matrix EJL.
Therefore, the estimated image ỹ can be described as follows:

ỹ = D−1K̃z = w̃I , (4)

where D is a diagonal matrix denoting a normalization factor.
The cloud server can perform encrypted the image denoising algorithm with

the weight matrix w̃ on the cipher image EPail[I ]. The denoised encrypted image
is presented as follows:

EPail[I ′] = (EPail[I ])w̃. (5)

Calculating the weight matrix w by the classic nonlocal means algorithm
[12] is extraordinary time-consuming, because the computation complexity is
about O(n2), and n is the number of image pixel. Monte Carlo Non-Local Means
(MCNLM) [14] is a random sampling algorithm, and for each image pixel, it only
selects a small number of image blocks to calculate the weight matrix, which was
implemented in the encrypted domain to speed up the classic nonlocal means
denoising algorithm in [24].

2.3 Image Decryption

After image denoising in the cloud server, the cloud server sent back the
encrypted denoised image, and the client decrypted the cipher image EPail[I′]
pixel by pixel with Paillier decryption. At last, pixel inverse scramble was per-
formed, and the client got the denoised image I′.

3 Secure Image Denoising over Two Clouds

Paillier encryption is an additive homomorphic encryption, which brings large
ciphertext expansion and causes heavy communication load between the cloud
server and the client, and also the calculation of the modular multiplication
and modular exponentiation in the cloud server is remarkably time-consuming.
Therefore, to reduce this ciphertext expansion and avoid the modular operations
in the encrypted domain, we modified their scheme to a new one with two cloud
servers. In our new scheme, the cloud servers only need to perform normal addi-
tion and multiplication in the cipher images, and the computation complexity is
much lower than previous one.

In this section, we present the details of our proposed scheme. In our scheme,
we need two cloud servers to perform MCNLM, and the framework of our scheme
is presented in Fig. 1. From this framework, we can see that the client also uses
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two different encryption scheme to encrypt the image. The client uses JL trans-
form to get the cipher image EJL, and uses the other encryption scheme (This
encryption scheme will be described later.) to divide the image into two shares
ES1 , ES2 . Then the client uploads EJL, ES1 to cloud server 1 (CS 1), and uploads
EJL, ES2 to cloud server 2 (CS 2) as step 1 showed in the Fig. 1. As described
above, MCNLM is a randomized algorithm, for solving the synchronization prob-
lem, CS 1 computes the sample indices, and sent the indices to CS 2 as step 2
showed. With the same sample indices, the two cloud servers can calculate the
weight matrix with EJL, and perform the linear denoising on ES1 and ES2 ,
respectively. After each cloud server completes the denoising algorithm, they
sends back their denoised image shares ES′

1 , ES′
2 to the client as step 3 showed.

The client will get two denoised image shares, and the denoised image will be
reconstructed.

Fig. 1. Framework of two-cloud based secure image denoising.

Our new scheme is based on Hu’s double-cipher scheme, and some procedures
are the same, in order to simplify the description of our new scheme, we omit
the same part and focus on the different part.

3.1 Image Sharing

For an n-pixel image I, and each pixel value is 8-bit, to encrypt this image, the
client first generates a matrix ES1 with n elements, and each element is randomly
chosen from a uniform distribution. Then the client encrypts the image I as:
ES2 = I + ES1 . The cipher image shares ES2 , ES1 are additive homomorphism,
which can be used to replace the cipher image generated by Paillier encryption.

3.2 Image Sampling

MCNLM is a randomized algorithm, and the weight of each image pixel is com-
puted from a subset of the image, if the two cloud servers independently compute
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the weight matrix, it will cause the two weight matrices different, and the fol-
lowing denoising fails. In order to solve the synchronization problem, we let one
of the cloud servers perform random sampling, and sends the sampling indices
to the other cloud server. Two sampling patterns were described in [14], which
is uniform sampling and optimal sampling. Each pixel block is sampling based
on a fixed probability in the uniform sampling pattern, while an optimization
problem need to be solved in the optimal sampling pattern.

4 Complexity Analysis

In this section, the complexity of our proposed scheme will be analyzed. The
complexity of the scheme includes communication complexity and computation
complexity. We also compare our scheme with Hu’s scheme.

4.1 Communication Complexity

First, we analyze the communication complexity of our proposed scheme. The
cipher image EJL should be uploaded to each cloud server, while the cipher
image shares ES1 , ES2 should be upload to CS 1 and CS 2, respectively. And
also the denoised encrypted image shares ES′

1 and ES′
2 should be sent back to

the client. Therefore, for an n-pixel 8-bit image, the projected dimension k of JL
transform is chosen as 9 ∼ 18, and there are two independent cloud servers. Thus
the upload communication data is slightly more than 2×n×(k+1) bytes, and the
download communication data is slightly more than 2 × n bytes. While in Hu’s
scheme for 1024-bit encryption key, the upload communication data is about
n × (k + 256) bytes, and the download communication data is about 8n bytes
by using ciphertext compression [7]. For k = 12 in our scheme, that is one-tenth
the upload communication data of Hu’s scheme, and a quarter the download
communication data of Hu’s scheme. The communication data between cloud
servers and the client is significantly decreased. In our new scheme, CS 1 should
send the sampling indices to CS 2, for sampling ratio is ρ, this communication
data is ρn log(n) bits, while in Hu’s scheme, this is not required. For the sampling
ratio is very small, most of the sampling indices are 0, while the sampling ratio
is very big, most of the sampling indices are 1. The sampling indices can be
compressed effectively. In Hu’s scheme, the sampling ratio set to 0.01 is enough.
We list the communication complexity in Table 1.

Table 1. Communication Complexity

Hu’s scheme Our scheme

Upload n × (k + 256) 2n × (k + 1)

Download 8n 2n

Cloud-to-cloud None ρn log(n)/8
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4.2 Computation Complexity

The computation complexity in our scheme includes the client side and the cloud
side. In the client side, client needs to perform image scramble, JL Transform,
image sharing, and image reconstruction. Image sharing in our scheme is very
concise, which can be efficiently computed. While in Hu’s scheme, the client side
needs to perform Paillier encryption, which is more complicated than image shar-
ing. In the cloud side, the cloud server should the perform modular operations
in Hu’s scheme, while in our scheme, each cloud server only needs to perform
the normal operations as in the plain image. Image decryption in Hu’s scheme
is also complicated operation.

On the client side, the difference between our scheme and Hu’s scheme is
image sharing and Paillier encryption, therefore, we only compare these two
parts in our simulation. A simulation was given on an Intel i5 CPU at 2.5 GHz
computer running Ubuntu 32-bit v13.04. Time cost of different parts for a 256×
256 image is listed in Table 2, and we simulated Hu’s double-cipher scheme by
their fast algorithm implementation. We can see that our scheme in the client
side is much faster than Hu’s scheme. The Paillier encryption is more complicated
than image sharing, which brings more calculation and time-consuming. So, our
new scheme is more practical.

Table 2. Time cost in client side

Paillier Encryption Paillier Decryption

Hu’s scheme 1.0 4.1

Image sharing Image reconstruct

Our scheme 0.1 0.1

On the cloud server side, in Hu’s double-cipher scheme, the complicated mod-
ular multiplication and modular exponentiation need to be performed, while in
our new scheme, the cloud servers only need to perform the normal addition
and multiplication as in the plain image. The computation time of our pro-
posed scheme approximately equals the plain MCNLM algorithm on the cloud
server side.

5 Discussion

In this section, we give some discussion about our proposed scheme.
Security. In our new scheme, we adopted a very concise image encryption,

image sharing, to replace Paillier additive homomorphic encryption. So in our
scheme, we assume that the two cloud servers are non-colluding, and they are
honest-but-curious. If we consider a malicious model, we need more complicated
secure multiparty computation protocol, and this also can be implemented in
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our framework, which will increase much communication traffic and computation
complexity for obtaining higher security.

In our scheme, CS 1 received a random matrix generated by the client, and
this matrix is independent of the input image itself. Therefore, CS 1 can get
nothing about input image from its image sharing. CS 2 gets an image matrix
hiding by adding CS 1’s random matrix. This image splitting method guarantees
the security of the image content against cloud servers. The random matrix will
be changed every time in the client side to encrypt the image.

Some optimizations. In our scheme, one cloud server needs to perform the
image sampling and the other server waits for the sampling indices. A optimal
scheme can be given in Fig. 2. The two cloud servers each select half of the image
to perform image sampling and denoising, After completing its own denoising,
the two cloud servers send their respective indices to the other party, and it can
reduce the waiting time.

Fig. 2. An improvement of two-cloud based our secure image denoising

Our proposed scheme is based on two cloud servers, and we can also change
our scheme to a multi-cloud framework based on secret sharing to resist colluding
of cloud servers as showed in Fig. 3. Then the communication load between cloud
servers and the client, cloud server to cloud server will increase with the number
of the cloud servers. If we consider about other deterministic image denoising
algorithm [35] in our framework, then the communication load between cloud
servers can be omitted, and it will be more efficient.

As showed in Figs. 1 and 2 and complexity analysis in Sect. 4, our framework
abandons the extraordinary complicated Paillier cryptosystem, the communica-
tion load between cloud servers and the client, and the computation cost in the
cloud server are significantly decreased. Our new scheme can achieve the same
image denoising performance as Hu’s scheme.



480 X. Hu et al.

Fig. 3. A variant of our secure image denoising

6 Conclusion and Future Work

In this paper, we modified Hu’s double-cipher scheme into a two cloud servers
scheme, and gave some optimizations. In our scheme, the cloud servers can per-
form encrypted image denoising as same as in the plain image, and our proposed
scheme almost does not increase the amount of calculation for each cloud server.
The main drawback of our proposed scheme is probably that we should rent two
non-colluding cloud serves, and the client should communicate with each cloud
server. But we reduced the cipher expansion effectively, and the total commu-
nication load is still lower than Hu’s scheme. The client side’s computational
complexity is significant reduction. The cloud servers don’t need to perform
complex modular operations in the encryption domain.

Efficient implementation of the multimedia nonlinear operation in the
encrypted domain sill remains as a difficult problem. Working on more image
processing algorithms in the encrypted domain are our future research direction.
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