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Abstract. Order-Preserving Encryption (OPE) is an encryption pre-
serving the order relationship of the plaintexts to support efficient range
query on ciphertexts. Other than traditional symmetric encryption aim-
ing at absolute security, OPE sacrifices some security for the ability to
search on ciphertext. In this paper, we propose a new cryptographic
primitive, Probability-p Order-Preserving Encryption (p-OPE), which
preserves the order of plaintexts with probability p. When p = 1, p-OPE
becomes OPE, thus p-OPE is an extension of OPE. We define and analyse
the security and precision of the novel primitive, then we propose a con-
struction of p-OPE and conduct experiments to show its performance.
As shown in the theoretical analysis and experiment results, p-OPE can
improve the security at the cost of some precision sacrifice.

Keywords: Searchable encryption · Order-Preserving Encryption ·
Range query

1 Introduction

Cloud computing is widely used nowadays. By outsourcing data to the cloud,
customers can utilize the computing and storage resources provided by cloud
server and reduce maintenance costs. With the rapid development of cloud com-
puting, more and more sensitive information, such as customer information and
transaction records, are stored in the cloud. Usually, cloud service can provide
better security supportance than individual or small corporation. Nevertheless,
the attackers may be willing to spend more resources to intrude the cloud server
because of its potential interest. Sometimes, even the administrator of the cloud
provider is in collusion with the attackers.

Therefore, sensitive data should be encrypted before outsourcing to the cloud.
The mainstream approach used to protect data privacy is cryptography. Data
are protected from unauthorized access after encryption. While protecting data
privacy, encryption makes data hard to use. For example, traditional plaintext
search methods fail on encrypted data. To solve this problem, searchable encryp-
tion systems [4,6–9,19–23] have been proposed. Searchable encryption enables
searches on ciphertexts without decryption or decryption key, thus the plaintext
of sensitive data is protected from attackers, even malicious cloud administrator.
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Order-Preserving Encryption (OPE) [1] is one of the cryptographic primi-
tives enabling search on encrypted data. OPE is a secret-key encryption whose
encryption function preserves numerical ordering of the plaintexts. OPE can be
used to build an encrypted index supporting range query on numeric data, thus
it has been used in encrypted database systems such as CryptDB [16] developed
by MIT; Encrypted Bigquery client [10] developed by Google; and other secure
retrieval systems [17].

OPE was first proposed by Agrawal et al. [1]. Boldyreva et al. [2] and Popa
et al. [15] proved that any practical immutable OPE scheme leaks more than
orders. Then, Boldyreva constructed an OPE scheme that uses hypergeomet-
ric distribution to lazy-sample a random order-preserving function. Popa et al.
[15] designed an order-preserving encoding scheme that leaks at most the order
through an interactive protocol. Boneh et al. [3] extended OPE to a more general
concept as order-revealing encryption, of which the ciphertexts can be compared
by an arbitrary algorithm other than the standard comparison operation as in
the case of OPE, and they built a construction that leaks at most the order.

Though OPE provides efficient search ability for range query, it becomes
vulnerable in some situation as shown in recent works.

Naveed et al. [14] considered the security of searchable encryption and pre-
sented four different attacks that recover the plaintext from property preserving
encryption. Two of the attacks, sorting attack and cumulative attack, are applied
to OPE and can recover plaintext with high probability. The sorting attack
assumed that the plaintext was dense, which is not a typical situation for OPE.
The cumulative attack utilized additional information about the distribution of
plaintext.

Li et al. [11] developed a differential attack on OPE. Their attack reveals the
leakage of distribution by exploiting the difference between ciphertexts. When
OPE is used on the inverted index of an encrypted document dataset, experi-
ments shows that the attacker can infer the encrypted keywords using differential
attack if the attacker has some background information.

Durak et al. [5] studied the information leakage of ORE and OPE. They con-
sidered two issues: First, they showed that ORE may reveal additional informa-
tion when multiple columns of correlated data are encrypted using OPE. Second,
they discussed the leakage of concrete OPE schemes on non-uniform data.

These researches motivates us to propose a novel cryptographic primitive,
which has better security than OPE while preserving the high efficiency of range
query. Our contribution includes:

1. We propose a new cryptographic primitive, Probability-p Order-Preserving
Encryption (p-OPE), which is an extension of OPE and aims at improving
security. We define the security and precision metrics of p-OPE based on
realistic situation, and we make a theoretical analysis of it.

2. We propose a construction of p-OPE and conduct experiments to show its
performance. The experiment results show that the user can achieve a bal-
ance between security and query accuracy by adjusting the order-preserving
probability p.
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2 Probability-p Order-Preserving Encryption

In this section, we propose the concept of Probability-p Order-Preserving
Encryption (p-OPE), which is an extension of OPE scheme. First, we define
the novel cryptographic primitive. Then, we study the security and precision of
p-OPE.

2.1 Definition

To improve the security of OPE, we propose the concept p-OPE.
Informally, a p-OPE f : [1, n] → [1,m] is an encryption scheme which pre-

serves the order of the plaintext with probability not less than p when the plain-
text follows a uniform distribution, i.e.

P (f(x1) < f(x2)|x1 < x2) ≥ p. (1)

When p = 1, p-OPE becomes OPE.
We give a definition which does not rely on the plaintext distribution. Con-

sidering an encryption f : [1, n] → [1,m], we say a pair of plaintext (x1, x2)
is an ordered pair if x1 < x2, and an ordered pair (x1, x2) is a reverse pair if
f(x1) > f(x2). We define reverse number nr as the number of reverse pairs, i.e.
nr = |{(x1, x2)|x1 < x2 ∧ f(x1) > f(x2)}|. An encryption f is a p-OPE, if the
proportion of reverse pairs in all ordered pairs is smaller than 1 − p, i.e. f is a
p-OPE, if

nr ≤ (1 − p)
(

1
2
n(n − 1)

)
, (2)

where nr is the reverse number, n is the size of plaintext space. We can prove
that the formal definition is in accordance with our intuitive definition:

Theorem 1. If f is a p-OPE, x1, x2 are randomly picked from a uniform dis-
tribution on X, then

P (f(x1) < f(x2)|x1 < x2) ≥ p. (3)

Proof

P (f(x1) < f(x1)|x1 < x2) =
P (f(x1) < f(x2) ∧ x1 < x2)

P (x1 < x2)

= 1 − P (f(x1) < f(x2) ∧ x1 > x2)
P (x1 < x2)

= 1 − |{(x1, x2)|x1 < x2 ∧ f(x1) > f(x2)}|
|{(x1, x2)|x1 < x2}|

= 1 − |{(x1, x2)|x1 < x2 ∧ f(x1) > f(x2)}|
1
2n(n − 1)

≥ 1 − (1 − p)
= p.

(4)

Thus the theorem is proved. ��
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To discuss the property of p-OPE, we start from a special p-OPE named
as permutation function, which has a ciphertext space of the same size as the
plaintext space. More precisely, a permutation function g is a bijection on integer
interval [1, n].

Every general p-OPE f is a composition of a permutation function g and
an order-preserving function h. Order-preserving function h can be generated
by mapping from i to the ciphertext of the i-th smallest ciphertext, and
g(x) = hd(g(x)), where hd is the corresponding decryption function of the order-
preserving function h.

Any p-OPE can do such a decomposition, and any permutation function and
any OPE can be combined to build a p-OPE. Based on this, we can analyse the
security and precision of p-OPE.

2.2 Security

Researchers have proposed different security metrics for OPE. Here we use mean
absolute error (MAE) [13] to measure the security. MAE applies to scenarios that
not only the accurate recovery but also a close estimation of plaintext is accept-
able, which holds for most application of OPE. For example, if the encrypted
data is salary, the adversary usually does not care the difference between 10,000
and 10,100.

We define MAE formally here. For a p-OPE f : [1, n] → [1,m] with decryp-
tion function fd, the MAE of an adversary is defined as:

dMAE(fd, f ′
d) =

∑
y

|fd(y) − f ′
d(y)|Py, (5)

where fd(y) is the decryption function, f ′
d(y) is the approximation of the adver-

sary, and Py is the probability of ciphertext y. When the order-preserving func-
tion is a continuous function, the definition will be an integral. When the plain-
text follows a uniform distribution, MAE is equivalent to dm =

∑
x |x−f ′

d(f(x))|.
We consider two different attack scenarios.
The first one is the scenario in which the adversary knows the plaintext dis-

tribution. Previous work [14] shows that an adversary can recover the plaintext
of an OPE with high precision in this scenario. As discussed in previous sub-
section, f is a composition of a permutation function g and an order-preserving
function h. Here we consider the situation that the order-preserving function is
insecure, i.e. the adversary knows h(x), thus the security of p-OPE relies on the
permutation function.

When the adversary knows h(x) and has no knowledge of g(x), an option
for the adversary is to estimate plaintext as: f ′

d(y) = hd(y), where hd(y) is the
decryption function of OPE h(x). We have f ′

d(y) = f ′
d(h(g(x))) = hd(h(g(x))) =

g(x), i.e. fd(y) − f ′
d(y) = x − g(x). Thus, the security of p-OPE is determined

by the permutation function g(x) in our assumption.



20 C. Yang et al.

Now we analyse the relationship between order-preserving probability p and
MAE dm. We have:

Theorem 2. For a permutation function g : [1, n] → [1, n] with reverse number
nr, if the adversary uses the identity function g′

d(k) = k as the estimation and
the plaintext follows a uniform distribution, then MAE dm satisfies

nr ≤ dm ≤ 2nr. (6)

Proof. The reverse pairs can be split to four different parts as:

f(x1) > x1, f(x2) > x2,

f(x1) > x1, f(x2) = x2,

f(x1) > x1, f(x2) < x2,

f(x1) ≤ x1, f(x2) < x2.

(7)

We abbreviate subscription 1, 2 and denote them with n(>,>), n(>,=), n(>,<),
n(≤, <).

Consider xi such that f(xi) > xi and f(xi) − xi gets maximum. For x < xi,
we have f(x) − x ≤ f(xi) − xi, thus

f(x) ≤ f(xi) + x − xi < f(xi), (8)

we know that x, xi cannot be a reverse pair for x < xi.
For x > xi, (xi, x) is a reverse pair if f(x) < f(xi). Because the number of x

satisfying f(x) < f(xi) is f(xi) − 1, and the number of x satisfying x < xi and
xi−1 is xi−1. Thus the number of x with xi < x and f(xi) > f(x) is f(xi)−xi,
i.e.,

|{x|x > xi ∧ f(x) < f(xi)}| = f(xi) − xi. (9)

and we have the number of reverse pairs related with xi is f(xi) − xi.
We can remove xi from points of interested, and repeat it. Thus for all x

with f(x) > x, the sum of number of reverse pairs related with x is

N(f(x) > x) =
∑

f(x)>x

f(x) − x. (10)

i.e.
n(>,>) + n(>,=) + n(>,<) =

∑
f(x)>x

f(x) − x. (11)

For x satisfying f(x) < x, we have a similar conclusion,

N(f(x) < x) =
∑

f(x)<x

x − f(x). (12)
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i.e.
n(>,<) + n(≤, <) =

∑
f(x)<x

x − f(x). (13)

Thus

nr = n(>,>) + n(>,=) + n(>,<) + n(≤, <)
≤ n(>,>) + n(>,=) + n(>,<) + n(>,<) + n(≤, <)

=
∑
x

|f(x) − x|

= dm,

(14)

and similarly,
2nr ≥ dm. (15)

In conclusion, the theorem is proved. ��
Because order-preserving probability p is determined by nr, this theorem

shows the relationship between p and security. The security increases with the
reverse number, and d = 0 when p = 1.

The second one is the adversary knows several plaintext-ciphertext pairs.
In this scenario, the adversary can use interpolation to estimate the decryp-
tion function. We show the performance of p-OPE and compare it with OPE
constructions using experiments in the latter.

2.3 Precision

Precision is related with applications. We consider the precision of range query.
Here we adopt the false positive and false negative from the evaluation of plain-
text information retrieval [12] to illustrate the precision of ciphertext query. For a
plaintext query QX and the corresponding ciphertext query QY , a false negative
is a plaintext x appear in the plaintext query but the corresponding ciphertext
not in the ciphertext query, i.e. x ∈ QX and f(x) /∈ QY ; a false positive is the
opposite, i.e. x /∈ QX and f(x) ∈ QY .

We measure the precision using the ratio of right results and errors. For a
range query, if the query result contains ne related results and nfp false positives,
and the number of false negatives is nfn, then we define the precision as:

Pe =
ne

ne + nfp + nfn
. (16)

The precision of a p-OPE is the average of precision of all possible range queries.
In term of range query, different query distribution will lead to different pre-

cision. A simple way to generate query is randomly pick two plaintext uniformly
and make them the endpoint of query interval. However, interval generated such
way is somewhat not uniform. Assume the plaintext chosen is x1, x2, then the
probability of plaintext x in the interval [x1, x2] or [x2, x1] is
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P =P (x1 ≤ x ∧ x2 ≥ x) + P (x1 > x ∧ x2 ≤ x)
=P (x1 ≤ x)P (x2 ≥ x) + P (x1 > x)P (x2 ≤ x)

=
x

N

N − x + 1
N

+
N − x

N

x

N
.

(17)

Obviously, different plaintext will be queried with different probability, and
the midpoint of plaintext space will be queried in half of the queries. Because
we assume the plaintext follows a uniform distribution, we also hope that each
plaintext will be queried equiprobablely. We generate intervals with the same
length and different centers as queries. The queries is generated as [x, x + k],
where x obeys a uniform distribution, and k is a fixed number.

For each plaintext interval [x1, x2], the user can traverse different ciphertext
intervals to find the most suitable ciphertext query [y′

1, y
′
2] to minimize the error.

Here we propose a more simple way to response the query. For plaintext interval
[x1, x2], we use [x1 − e, x2 + e] as ciphertext query, where e is a constant chosen
by user.

Now we analyse the precision of our ciphertext query. We have

Theorem 3. Assume p-OPE g(x) : [1, n] → [1, n] is a permutation function. If
range query is generated as [x, x+ k], where x follows a uniform distribution on
[1 − k, n], then the precision of g satisfies

Pe ≥ k + 1
(n + k)(k + 2e + 1)

(
n −

⌈
dm

k + e + 1

⌉)
. (18)

Proof. We say a plaintext x matches an plaintext interval query [x1, x2], if the
plaintext x is in the plaintext interval [x1, x2], and the corresponding ciphertext
g(x) is in the corresponding ciphertext query [x1 − e, x2 + e].

Denote the set of plaintexts matching a interval [x1, x2] as Qe([x1, x2]), i.e.
if x ∈ [x1, x2] and g(x) ∈ [x1 − e, x2 + e], then x ∈ Qe([x1, x2]), and vice versa.

For each plaintext x, we can calculate nq(x), the number of intervals it
matches. The definition of nq(x) is

nq(x) = |{(x1, x2)|x2 − x1 = s ∧ x ∈ Qe([x1, x2])}|. (19)

For plaintext x with |x−f(x)| ≤ e, x matches each interval [x1, x2] it in. For
plaintext x with e < |x− f(x)| ≤ k+ e, x matches s+1+d−|x− f(x)| different
intervals. For plaintext x with k+e < |x−f(x)|, x matches none interval. Thus,
if we define function fr(k) as

fr(i) =

⎧⎪⎨
⎪⎩

k + 1, i ≤ e

k + 1 + e − i, e ≤ i ≤ e + k + 1
0, e + k + 1 ≤ k

(20)

then nq(x) = fr(|x − f(x)|).
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According to the definition of precision, the precision of g is

Pe =
n∑

x=1−k

Pe(x)
1

n + k

=
1

n + k

n∑
i=1−k

ne

k + 2e + 1

=
1

n + k

n∑
i=1−k

|{x|x ∈ Qe([i, i + k])}|
k + 2e + 1

=
1

(n + k)(k + 2e + 1)

n∑
x=1

nq(x).

(21)

Now we discuss the relationship between
∑

nq and MAE dm. When the MAE
of two sequences is a fixed num, we estimate the precision between them.

For two numbers k1, k2 with fixed sum, we calculate fr(k1) + fr(k2). It is
easy to know, if k1 + k2 > k + e + 1, then fr(k1) + fr(k2) get minimum when
k1 = k + e + 1; if k1 + k2 < k + e + 1, then fr(k1) + fr(k2) get minimum when
k1 = 0.

Thus for n different numbers, the sum of their precision function will greater
than the sequence of (k + e + 1, k + e + 1, . . . , k + e + 1, sr, 0, . . . , 0), where
0 ≤ sr ≤ k + e + 1. If (k + e + 1)(nl − 1) < dm ≤ (k + e + 1)nl, we have∑

nr(x) > (n − nl)(k + 1), i.e.

∑
nr(x) ≥

(
n −

⌈
dm

k + e + 1

⌉)
(k + 1). (22)

Thus, we have

Pe =
∑

nq(x)
(n + k)(k + 2e + 1)

≥ k + 1
(n + k)(k + 2e + 1)

(
n −

⌈
dm

k + e + 1

⌉)
.

(23)

��
Theorem 3 shows the relationship between precision and security. The lower

bound ensures the precision in the worst case. When the size of plaintext space
is large enough, the probability of precision reaching lower bound is small. Thus,
in most situation, actual precision is better than the lower bound.

3 Construction

In this section we give a construction of p-OPE based on the framework in
previous section. First, we give the algorithm of our construction, then we show
its actual security and precision performance.
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3.1 Construction

As discussed in previous section, a p-OPE can be constructed from a permutation
function and an order-preserving function. The OPE scheme has been discussed
by many previous researchers, and ready-made schemes such as random-partition
scheme or OPE based on hypergeometric distribution can be adopted.

Thus, we focus on the permutation scheme. If the size of plaintext space is
n, the targeted order-preserving probability is p, then we use a random-shift
algorithm to generate a permutation function.

The algorithm runs in a loop. Based on the size of p, the algorithm execute
multiple rounds of interval-shift operations to adjust the order relationship of the
sequence. A right interval-shift on an sequence (x1, x2, . . . , xn) is to move the first
element to the last position, and move other elements to the left position next
to it, i.e. (x1, x2, . . . , xn) → (x2, x3, . . . , xn, x1). A left interval-shift is a similar
operation in the opposite direction, i.e. (x1, x2, . . . , xn) → (xn, x1, x2, . . . , xn−1).
In each round of the algorithm, the algorithm randomly choose a continuous sub-
sequence of xn, and evaluate the reverse number after interval-shift. If the reverse
number decreases with the interval-shift, the operation will not be executed
but discarded. The same operation is repeated until the actual order-preserving
probability is close to p enough.

The detailed algorithm is shown in Algorithm1.

3.2 Experiments

In this subsection, we conduct experiments to show the performance of our
constructions. First, we verify the theoretical analysis.

The security and precision of proposed construction is shown in Fig. 1. As we
expect, MAE dm increases with the increase of reverse number nr, and precision
decreases with the decrease of order-preserving probability. Figure 1 also shows
that a linear function of nr is a close enough approximation of dm when the size
of plaintext space n is large enough.

Second, we compare the security of p-OPE with three different OPE con-
structions, random order-preserving function proposed by Boldyreva [2], ran-
dom uniform sampling proposed by Wozniak [18], and order-revealing encryp-
tion proposed by Boneh [3]. We consider the scenario that the attacker knows k
plaintext-ciphertext pairs and he uses linear interpolation to estimate the plain-
text. The results of proposed method, Boldyreva, and Wozniak are shown in
Fig. 2. A point at rate r and MAE d means the number of ciphertext which has
a MAE smaller than d is nr when the experiment repeats n times. The proposed
method improves the security significantly. With the increase of k, the security
of OPE decreases.

Because the ciphertext of ORE is not number, we map the ciphertext of
ORE to integers according to the orders before we use interpolation. For exam-
ple, when the ciphertext sequence is (y1, y2, y3) and y2 < y3 < y1, we map
the ciphertexts to (3, 1, 2). We compare proposed method of different order-
preserving probability with Boneh. The experiment result is shown in Fig. 3. As
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Algorithm 1. Random-Shift algorithm
1: Input the size of plaintext space n, expected order-preserving probability p.
2: Output permutated sequence xn.
3: nr = � 1

2
n(n − 1) ∗ p�.

4: Initialize xn = (1, 2, . . . , n).
5: while nr > 3 do
6: Choose l from a uniform distribution on [1, n].
7: Choose k from a uniform distribution on [1, nr].
8: Randomly choose d from {−1, 1}.
9: if d < 0 then

10: flip the sequence xn

11: end if
12: if x + k > n then
13: k = n − x.
14: end if
15: s = 0
16: for i in [l + 1, l + k] do
17: if xl < xi then
18: s = s + d
19: else
20: s = s − d
21: end if
22: end for
23: if s > 0 then
24: x = xl

25: for i in [l + 1, l + k] do
26: xi−1 = xi

27: end for
28: xl+k = x
29: end if
30: nr = nr − s
31: if d < 0 then
32: flip the sequence xn

33: end if
34: end while

Fig. 1. The security and precision of p-OPE. The size of plaintext space is 1000. Left
figure shows the relationship between reverse number nr and MAE dm, and right figure
shows the relationship between order-preserving probability and query precision.
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Fig. 2. The security of proposed method (p = 0.80) and Boldyreva, Wozniak.

Fig. 3. The security of proposed method and Boneh.

we expected, the attack accuracy of proposed method is lower than Boneh, which
leaks only orders, and the security improves with the decrease of order-preserving
probability.

4 Conclusion

In this paper, we propose a new cryptographic primitive p-OPE, aiming at
improving the security of OPE while preserving searching efficiency. We analyse
the security and precision of p-OPE, which is an extension of OPE. We also pro-
pose a construction of p-OPE and conduct experiment to verify its performance.
The experiment results are in accordance with the theoretical analysis.
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