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a b s t r a c t 

Order preserving encryption (OPE) is a kind of encryption designed to support searches on 

ciphertexts. OPE encrypts plaintexts to ciphertexts with the same order, making it possible 

to efficiently compare ciphertexts without decryption. Because of its efficiency, OPE has 

been used in systems aimed at practical use. However, even though many OPE schemes 

have been proposed, all suffer from security and ciphertext expansion problems. 

This paper proposes the notation of semi-order preserving encryption (SOPE) as a sub- 

stitute for OPE. SOPE uses a semi-order preserving condition instead of strict order pre- 

serving condition to support a range query on ciphertexts. By this means, SOPE can en- 

hance security and reduce storage cost with some sacrifice of precision. The loss of preci- 

sion can be eliminated with the cost of extra communication and computation, because it 

is easy to generate a query on ciphertexts including all required plaintexts. 

To study the relationship among precision, security and ciphertext expansion, we in- 

troduce semi-order preserving degree d , which measures the difference between SOPE and 

OPE. The theoretical derivation shows that security will increase with d , while precision 

and ciphertext expansion will decrease with d . Thus SOPE can balance precision, security 

and ciphertext expansion by adjusting semi-order preserving degree d according to a con- 

crete condition. Finally, we present an implementation of SOPE. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Encryption is among the most common technologies used to protect the privacy of data stored on untrusted servers,

such as in cloud computing [2] . While protecting data privacy, encryption makes data processing, such as searching difficult.

To solve this problem, computing on encrypted data, such as homomorphic encryption [9] , is proposed. Fully homomorphic

encryption supports adding and multiplying ciphertexts; nevertheless, it suffers from bad performance. A more practical

solution is to support only a specific subset of operations on ciphertext. Searching is among the most common operations

in data processing, thus searchable encryption [5,10,18] , the cryptographic primitive supporting searching on encrypted data,

has attracted the interests of many researchers. 

Order preserving encryption (OPE) scheme is a searchable encryption applied on numeric data. OPE preserves the order

relationship of plaintexts to support comparison of the ciphertexts. In this way, computation based on comparison, such

as range queries, and skyline queries [6] can be executed on the OPE ciphertext. Using OPE, range queries on plaintexts

can be substituted by range queries on ciphertexts, and search can be accelerated to the logarithmic level by indexing
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E-mail addresses: yangce@mail.ustc.edu.cn (C. Yang), zhangwm@mail.ustc.edu.cn , zhangwm@ustc.edu.cn (W. Zhang), ynh@ustc.edu.cn (N. Yu). 

http://dx.doi.org/10.1016/j.ins.2016.12.025 

0020-0255/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.ins.2016.12.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.12.025&domain=pdf
mailto:yangce@mail.ustc.edu.cn
mailto:zhangwm@mail.ustc.edu.cn
mailto:zhangwm@ustc.edu.cn
mailto:ynh@ustc.edu.cn
http://dx.doi.org/10.1016/j.ins.2016.12.025


C. Yang et al. / Information Sciences 387 (2017) 266–279 267 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on ciphertexts or binary search. Because of its efficiency, OPE has been adopted in CryptDB system [16] developed by the

Massachusetts Institute of Technology (MIT), Encrypted BigQuery [11] developed by Google, and many other systems aimed

at practical use [8,23,24] . 

The concept of OPE was first proposed by Agrawal et al. [1] as a solution to range query on an encrypted database.

Boldyreva et al. [3,4] discussed the security of OPE in provable-security means. They proposed a scheme, which is a pseu-

dorandom order-preserving function secure against chosen-ciphertext attack, and they implemented it by lazy-sampling a

hypergeometric distribution. Popa et al. [17] proposed an ideal secure construction of OPE. Their scheme is indistinguishable

under ordered chosen-plaintext attack, such that the adversary cannot distinguish between 2 ciphertext sequences encrypted

from the plaintext sequences of the same order. Above-mentioned OPE schemes are all deterministic encryption schemes,

or one-to-one OPE. Wang et al. [20] proposed a one-to-many scheme and applied it to the reverse index of text retrieval. 

Despite the excellent search speed, OPE still suffers from security problems and ciphertext expansion. To guarantee se-

curity, OPE maps the plaintext space to a far larger ciphertext space, leading to vast storage cost caused by ciphertext

expansion. On the other hand, OPE is still vulnerable to inference attack, which combines additional background knowledge

such as language statistics with ciphertext to recover plaintext, even though the ciphertext space is large enough. Naveed

et al. [15] evaluated a series of attacks empirically in an electronic medical records scenario using real patient data en-

crypted by one-to-one OPE. Li et al. [13] used a differential attack to recover the plaintext of an encrypted index generated

by a one-to-many OPE. 

Various constructions [12,14,21] have been proposed to address these problems. However, improvement of all these OPE

constructions is limited by the strictly order-preserving condition. In this paper, we propose the concept of semi-order

preserving encryption (SOPE) as a substitute of OPE. SOPE is a new cryptographic primitive similar to OPE; however, SOPE

uses a semi-order preserving condition, instead of an order-preserving condition, to enable query search on ciphertexts.

Semi-order preserving is weaker than order preserving, and SOPE can get better security or smaller ciphertext expansion

than OPE can with some communication and local computation costs. 

Our contribution includes the following: 

1. We propose a new cryptographic primitive SOPE, which is a generalization of OPE. We demonstrate some basic property

of SOPE that also applies to OPE. 

2. We define a parameter, semi-order preserving degree d , to measure the difference between SOPE and OPE. We then

study the relationship between semi-order preserving degree and the security, precision, ciphertext expansion of SOPE. 

3. Finally, we propose a construction of SOPE. The construction works like stream encryption. An encryption key is chosen

at the beginning of the encryption, and a decryption key is generated after the encryption. With the decryption key, the

plaintexts can be fully recovered. The experiments show that the security, precision, and ciphertext expansion can be

adjusted by modifying semi-order preserving degree d . 

The rest of this paper is organized as follows: Section 2 gives the definition and basic property of SOPE. Section 3 gives

the measurement of SOPE and studies the relationship among different parameters. In Section 4 , we propose a construction

of SOPE. Sections 5 concludes this paper. 

2. Semi-order preserving encryption 

2.1. Definition 

An OPE scheme is a mapping from plaintext space X to ciphertext space Y . Each plaintext x ∈ X is mapped to a random-

sized nonoverlapping interval bucket in Y , then a ciphertext c is chosen within the bucket. In this paper, we focus on OPE

and SOPE on integers. For convenience, we use interval [ a, b ] to represent integers in the interval, i.e. { a, a + 1 , . . . , b} , when

we talk about plaintext and ciphertext. For example, we say plaintext x ∈ [1, 3] if x ∈ {1, 2, 3}. Similarly, ‖ S ‖ denotes the

number of integers in set S . As in most works of OPE, we assume the plaintext space satisfies X = [1 , N] and the ciphertext

space satisfies Y = [1 , M] , i.e., they are both intervals on integers beginning from 1. N and M are the sizes of plaintext and

ciphertext space, respectively. 

A deterministic OPE scheme always assigns the same ciphertext y in the bucket for the same plaintext x , while a proba-

bilistic or one-to-many OPE scheme chooses a random value within the ciphertext bucket each time. 

We can use the probability distribution to describe a probabilistic encryption. Denote the plaintext and ciphertext prob-

ability density function as P X ( x ) and P Y ( y ), respectively, and the plaintext and ciphertext cumulative function as P CX ( x )

and P CY ( y ), respectively. For convenience, we assume P CX (0) = P CY (0) = 0 , such that P X (1) = P CX (1) − P CX (0) and P Y (1) =
P CY (1) − P CY (0) . The property of OPE is determined by the conditional probability function P Y | X ( x, y ) or joint probability

P X, Y ( x, y ) when P X is given. For convenience, we use P ( x | y ) and P ( y | x ) to represent P X | Y ( x, y ) and P Y | X ( x, y ), respectively. 

Using these notations, the order preserving feature can be described as follows: if f : x → y is an OPE, x 1 < x 2 , y 1 ≥ y 2 ,

and P X, Y ( x 1 , y 1 ) > 0, then P X,Y (x 2 , y 2 ) = 0 . 

If we loosen up this constraint, we can get the semi-order preserving feature. For a SOPE f : x → y and every x 1 < x 2 , y 1
> y 2 , if P X, Y ( x 1 , y 1 ) > 0, then P X,Y (x 2 , y 2 ) = 0 . 



268 C. Yang et al. / Information Sciences 387 (2017) 266–279 

 

 

 

 

 

 

The difference between SOPE and OPE is that SOPE may encrypt 2 different plaintexts x 1 � = x 2 to the same ciphertext

value y , whereas this will never happen on OPE. 

2.2. Basic property 

Here we discuss the basic property of SOPE. 

We analyze how plaintext and ciphertext distribution affect the encryption, i.e., the relationship between P X ( x ), P Y ( y ),

and P X, Y ( x, y ). For a SOPE, the joint probability distribution P X, Y ( x, y ) can be derived from the plaintext distribution P X ( x )

and ciphertext distribution P Y ( y ). 

To prove this conclusion, we start from a lemma. 

Lemma 1. For a SOPE f : X → Y , x 1 , x 2 , x 3 , x 4 ∈ X , y 1 , y 2 , y 3 , y 4 ∈ Y , if x 2 < x 3 and y 2 < y 3 , then 

x 2 ∑ 

i = x 1 

y 4 ∑ 

j= y 3 
P X,Y (i, j) = 0 , (1) 

or 

x 4 ∑ 

i = x 3 

y 2 ∑ 

j= y 1 
P X,Y (i, j) = 0 . (2) 

Proof. When 

x 2 ∑ 

i = x 1 

y 4 ∑ 

j= y 3 
P X,Y (i, j) = 0 , (3) 

the lemma is proved. 

When

x 2 ∑ 

i = x 1 

y 4 ∑ 

j= y 3 
P X,Y (i, j) > 0 , (4) 

there exists x 0 , y 0 , such that x 0 ∈ [ x 1 , x 2 ], y 0 ∈ [ y 3 , y 4 ] and 

P X,Y (x 0 , y 0 ) > 0 . (5) 

For i ∈ [ x 3 , x 4 ] and j ∈ [ y 1 , y 2 ], because 

i ≥ x 3 > x 2 ≥ x 0 (6) 

and 

j ≤ y 2 < y 3 ≤ y 0 , (7) 

according to the SOPE condition, we have 

P X,Y (i, j) = 0 . (8) 

Thus 

x 4 ∑ 

i = x 3 

y 2 ∑ 

j= y 1 
P X,Y (i, j) = 0 , (9) 

and the lemma is proved. �

Lemma 1 means that, if the arrangement of two sub-matrices of the joint probability is anti-diagonal, then either of

the two sub-matrices is zero matrix. With the help of Lemma 1 , we can prove Lemma 2 , which describes the relationship

between the cumulative distribution of joint probability P CX, CY ( x, y ) and marginal distribution P CX ( x ), P CY ( y ). 

Lemma 2. For a SOPE f : X → Y , 

P C X,C Y (x, y ) = min { P CX (x ) , P CY (y ) } . (10)

Proof. We have 

P CX (x ) = 

x ∑ 

i =0 

P X (i ) 

= 

x ∑ 

i =0 

M ∑ 

j=0 

P X,Y (i, j) 
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Table 1 

joint distribution. 
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= 

x ∑ 

i =0 

y ∑ 

j=0 

P X,Y (i, j) + 

x ∑ 

i =0 

M ∑ 

j= y +1 

P X,Y (i, j) 

= P C X,C Y (x, y ) + 

x ∑ 

i =0 

M ∑ 

j= y +1 

P X,Y (i, j) . (11)

Similarly, 

P CY (y ) = P C X,C Y (x, y ) + 

N ∑ 

i = x +1 

y ∑ 

j=0 

P X,Y (i, j) . (12)

Because x < x + 1 and y < y + 1 , according to Lemma 1 , 

x ∑ 

i =0 

M ∑ 

j= y +1 

P X,Y (i, j) = 0 , (13)

or 

N ∑ 

i = x +1 

y ∑ 

j=0 

P X,Y (i, j) = 0 . (14)

Thus, 

P CX (x ) = P C X,C Y (x, y ) , (15)

or 

P CY (y ) = P C X,C Y (x, y ) , (16)

i.e., 

P C X,C Y (x, y ) = min { P CX (x ) , P CY (y ) } . (17)

Thus the lemma is proved. �

Lemma 2 indicates that P CX, CY ( x, y ) is determined by P CX ( x ) and P CY ( y ). Knowing cumulative distribution P CX, CY ( x, y ), the

joint probability distribution P X, Y ( x, y ) can be determined by 

P X,Y (x, y ) = P C X,C Y (x, y ) + P C X,C Y (x − 1 , y − 1) − P C X,C Y (x − 1 , y ) − P C X,C Y (x, y − 1) . (18)

However, there is a simpler result. 

Theorem 1. For a SOPE f : X → Y, if P X, Y ( x, y ) > 0, then 

P X,Y (x, y ) = min { P CX (x ) , P CY (y ) } − max { P CX (x − 1) , P CY (y − 1) } . (19)

If P X,Y (x, y ) = 0 , then 

min { P CX (x ) , P CY (y ) } − max { P CX (x − 1) , P CY (y − 1) } ≤ 0 . (20)

Proof. We can divide the joint probability distribution to nine different parts as Table 1 . 

The sum of each part is 

R 00 = P C X,C Y (x − 1 , y − 1) , 

R 01 = 

x −1 ∑ 

i =0 

P X,Y (i, y ) , 
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R 10 = 

y −1 ∑ 

j=0 

P X,Y (x, j) , 

R 11 = P X,Y (x, y ) , 

R 02 = 

x −1 ∑ 

i =0 

M ∑ 

j= y +1 

P X,Y (i, j) , 

R 20 = 

N ∑ 

i = x +1 

y −1 ∑ 

j=0 

P X,Y (i, j) . (21) 

We can represent P CX, CY , P CX and P CY using Eq. (21) . We have 

P C X,C Y (x, y ) = R 00 + R 01 + R 10 + R 11 , 

P CX (x − 1) = R 00 + R 01 + R 02 , 

P CY (y − 1) = R 00 + R 10 + R 20 . (22) 

Because x − 1 < x + 1 and y + 1 > y − 1 , according to Lemma 1 , R 01 = 0 or R 10 = 0 . We assume 

R 01 = 0 (23) 

here, and similar conduction can be made if R 10 = 0 . 

When P X, Y ( x, y ) > 0, because x − 1 < x and y + 1 > y, according to Lemma 1 , 

R 02 = 0 . (24) 

Similarly, 

R 20 = 0 . (25) 

Combining Eqs. (22) , (23) , and (24) , 

P CX (x − 1) = R 00 + R 01 + R 02 

= R 00 . (26) 

Combining Eqs. (22) and (25) , 

P CY (y − 1) = R 00 + R 10 + R 20 

= R 00 + R 10 . (27) 

Thus, 

max { P CX (x − 1) , P CY (y − 1) } = R 00 + R 10 , (28)

and 

P X,Y (x, y ) = R 11 

= (R 00 + R 01 + R 10 + R 11 ) − (R 00 + R 01 + R 10 ) 

= P C X,C Y (x, y ) − (R 00 + R 10 ) 

= min { P CX (x ) , P CY (y ) } − max { P CX (x − 1) , P CY (y − 1) } . (29) 

When P X,Y (x, y ) = 0 , 

P CY (y − 1) = R 00 + R 10 + R 20 

≥ R 00 + R 10 

= R 00 + R 10 + R 01 + R 11 

= min { P CX (x ) , P CY (y ) } . (30) 

Thus, 

min { P CX (x ) , P CY (y ) } ≤ P CX (x − 1) 

≤ max { P CX (x − 1) , P CY (y − 1) } . (31) 

If R 10 = 0 , after similar conduction, we will have the same conclusion. 

In summary, Theorem 1 is proved. �
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Fig. 1. An example of P CX, CY ( x, y ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corollary 1. 

P X,Y (x, y ) = ‖ [ P CX (x − 1) , P CX (x )] 

∩ [ P CY (y − 1) , P CY (y )] ‖ . (32)

Proof. When P X, Y ( x, y ) > 0, the right-hand side of Eq. (32) equals the right-hand side of Eq. (19) . When P X,Y (x, y ) = 0 , the

right-hand side of Eq. (32) equals 0. Thus Eq. (32) is equivalent to Theorem 1 . �

We show an example in Fig. 1 . The joint probability distribution P X, Y ( x, y ) can be calculated from the marginal distribu-

tion P X ( x ) and P Y ( y ) using Theorem 1 in linear time. 

3. Property of SOPE 

In this section, we define precision and security metrics for a SOPE, and study the relationship between precision, se-

curity, and ciphertext expansion of SOPE. To do so, first we introduce semi-order preserving degree d , which measures

the difference between OPE and SOPE, and then analyze the relationship between the semi-order preserving degree and

abovementioned quantities. The theoretical results show that we can get the trade-off between the precision, security, and

ciphertext expansion by adjusting d . 

For a SOPE f : X → Y , denote the plaintext and ciphertext distribution with P X and P Y separately. Assume the plaintext

space satisfies X = [1 , N] and the ciphertext space satisfies Y = [1 , M] , then N = ‖ X ‖ and M = ‖ Y ‖ . As mentioned, the prop-

erty of SOPE is related to the ciphertext distribution. Here we assume the ciphertext follows a uniform distribution, i.e.,

P Y (y ) = 1 /M. 

3.1. Semi-order preserving degree 

The ciphertext space of SOPE can be divided into 2 sets, the order preserving set S and the semi-order preserving set D .

The order preserving set S is the set of ciphertexts on which the order preserving feature holds. If x 1 � = x 2 , y ∈ S , and

P X, Y ( x 1 , y ) > 0, then P X,Y (x 2 , y ) = 0 . The semi-order preserving set D consists of the other elements. If y ∈ D , then x 1 < x 2
exists satisfying P X, Y ( x 1 , y ) > 0, P X, Y ( x 2 , y ) > 0. 

A SOPE behaves just like OPE scheme on the order preserving set S . The size of the semi-order preserving set can be

used to measure the difference between OPE and SOPE. 

The semi-order preserving degree d is defined as 

d = 

∑ 

y ∈ D 
P Y (y ) . (33)

When d = 0 , SOPE degenerates to OPE. When d = 1 , all the possible ciphertexts correspond to 2 or more plaintexts. 

As shown in Theorem 1 , the property of SOPE is completely determined by the marginal distribution. This implies we

can judge if a ciphertext is in the order preserving set from marginal distribution. 

We have the following theorem: 

Theorem 2. If f : X → Y is a SOPE, y ∈ Y , and there exists x such that 

P CX (x − 1) ≤ P CY (y − 1) ≤ P CY (y ) ≤ P CX (x ) , (34)

then y is in the order preserving set S . 

If there exists x such that 

P CY (y − 1) < P CX (x ) < P CY (y ) , (35)

then y is in the semi-order preserving set D . 

Proof. The theorem describes 2 different cases. 

1. There exists x , such that 

P CX (x − 1) ≤ P CY (y − 1) ≤ P CY (y ) ≤ P CX (x ) . (36)
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Then P X, Y ( x, y ) > 0. For i ≤ x − 1 , 

P CX (i ) ≤ P CX (x − 1) ≤ P CY (y − 1) , (37) 

thus, 

min { P CX (i ) , P CY (y ) } ≤ min { P CY (y − 1) , P CY (y ) } 
= P CY (y − 1) . (38) 

We have 

max { P CY (y − 1) , P CX (i − 1) } ≥ P CY (y − 1) . (39)

Combining Theorem 1 with Eqs. (38) and (39) , for i ≤ x − 1 , 

P X,Y (i, y ) = 0 . (40) 

Similarly, for i ≥ x + 1 , 

P X,Y (i, y ) = 0 . (41) 

Combining Eqs. (40) and (41) , we have 

P (X = i | Y = y ) = 

{
1 i = x 
0 i � = x 

(42) 

i.e., y is in the order preserving set S . 

2. There exists x , such that 

P CY (y − 1) < P CX (x ) < P CY (y ) . (43) 

In such a situation, 

P X,Y (x, y ) > 0 , (44) 

and 

P X,Y (x + 1 , y ) > 0 . (45) 

Thus y ∈ D . 

�

Theorem 2 means we can judge if a ciphertext y is in the semi-order preserving set by checking if the interval (P CY (y −
1) , P CY (y )) is split by P CX ( x ). The reverse of Theorem 2 is also true. 

Theorem 3. Assume f : X → Y is a SOPE and y ∈ Y . If there exist 2 plaintext x 1 < x 2 and P X, Y ( x 1 , y ) > 0, P X, Y ( x 2 , y ) > 0, then 

P CY (y − 1) < P CX (x 1 ) ≤ P CX (x 2 − 1) < P CY (y ) , (46)

Proof. We prove the theorem by contradiction. Assume 

P CX (x 1 ) ≤ P CY (y − 1) , (47) 

thus, 

P CX (x 1 − 1) ≤ P CX (x 1 ) ≤ P CY (y − 1) ≤ P CY (y − 1) , (48)

and 

‖ [ P CX (x − 1) , P CX (x )] ∩ [ P CY (y − 1) , P CY (y )] ‖ = 0 . (49)

According to Corollary 1 , this means P X,Y (x 1 , y ) = 0 , which contradicts with the condition P X, Y ( x 1 , y ) > 0. Thus P CX (x 1 ) >

P CY (y − 1) . 

Similarly, we have P CX ( x 2 ) < P CY ( y ); thus, the theorem is proved. �

Theorem 3 gives the property of ciphertexts in the semi-order preserving set. If y ∈ D , there will be a plaintext cumula-

tive distribution value in the interval (P (y − 1) , P (y )) . 
CY CY 
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3.2. Relationship between semi-order preserving degree and ciphertext expansion 

Ciphertext expansion R e is defined as the ratio of the size of ciphertext space to the size of plaintext space, i.e., 

R e = ‖ Y ‖ / ‖ X ‖ = M/N. (50)

Because a ciphertext in the semi-order preserving set corresponds to multiple plaintexts, we may guess that R e decreases

when d increases. Below we show the relationship between d and R e . 

Theorem 4. If f : X → Y is a SOPE, then 

R e ≤ 1 

d 
, (51)

where R e = M/N is the ciphertext expansion and d is the semi-order preserving degree defined in Eq. (33) . 

Proof. In our scenario, the ciphertext follows a uniform distribution; thus, 

P ∞ 

(X | Y ) = 

1 

M 

∑ 

y 

max 
x 

P X| Y (x, y ) . (52)

We use a function sp ( y ) to denote the size of preimage of y , i.e., 

sp(y ) = ‖ 

{ x | P X,Y (x, y ) > 0 } ‖ 

. (53)

Because the ciphertext follows a uniform distribution, we have g ( y ) ≥ 1 for every ciphertext y . We then can divide the

ciphertexts into three parts, sp(y ) = 1 , sp(y ) = 2 and sp ( y ) ≥ 3. For each ciphertext y , we define three random variables

corresponding to the three possibilities: 

[ g 1 (y ) , g 2 (y ) , g 3 (y )] = 

{ 

[1 , 0 , 0] , sp(y ) = 1 

[0 , 1 , 0] , sp(y ) = 2 

[0 , 0 , 1] . sp(y ) ≥ 3 

(54)

For every y , one of g 1 ( y ), g 2 ( y ) and g 3 ( y ) will be 1 and the other two will be 0. Thus, ∑ 

y 

P Y (y )(g 1 (y ) + g 2 (y ) + g 3 (y )) = 

∑ 

y 

P Y (y ) 

= 1 . (55)

When g 2 (y ) = 1 , there exist two plaintexts, x 1 , x 2 , with x 1 < x 2 such that P X, Y ( x 1 , y ) > 0 and P X, Y ( x 2 , y ) > 0. According

to Theorem 3 , we have P CX (x 1 ) ∈ (P CY (y − 1) , P CY (y )) . 

When g 3 (y ) = 1 , there exist three plaintexts, x 1 < x 2 < x 3 , such that P X, Y ( x i , y ) > 0 for i = 1 , 2 , 3 . According to Theorem 3 ,

we have P CX (x 1 ) , P CX (x 2 ) ∈ (P CY (y − 1) , P CY (y )) . 

Thus, 

‖{ P CX (x i ) } ∩ (P CY (y − 1) , P CY (y )) ‖ ≥ g 2 (y ) + 2 g 3 (y ) , (56)

and ∑ 

y 

(g 1 (y ) + 2 g 2 (y )) ≤ ‖{ P CX (x i ) } ∩ [0 , 1] ‖ 

≤ ‖{ P CX (x i ) }‖ 

= N. (57)

If y ∈ D , then g 2 (y ) = 1 or g 3 (y ) = 1 ; thus, the semi-order preserving degree can be expressed as 

d = 

∑ 

y 

P Y (y )(g 2 (y ) + g 3 (y )) 

= 

∑ 

y 

1 

M 

(g 2 (y ) + g 3 (y )) 

≤ 1 

M 

∑ 

y 

(g 2 (y ) + 2 g 3 (y )) 

≤ N 

M 

= 

1 

R e 
. (58)

This is equivalent to 
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R e ≤ 1 

d 
. (59) 

�

Theorem 4 shows the restrictions on the ciphertext expansion and semi-order preserving degree. Reduction of ciphertext

expansion R e can be realized by increasing d . 

3.3. Relationship between semi-order preserving degree and security 

We adopt min-entropy [25] to measure the SOPE security. The min-entropy of X is defined as 

H ∞ 

(X ) = − log max 
x 

P r[ X = x ] . (60) 

The average min-entropy of X conditioned on Y is 

H ∞ 

(X | Y ) = − log 
∑ 

y 

P Y (y ) max 
x 

P X| Y (x, y ) . (61)

The average min-entropy H ∞ 

( X | Y ) is equivalent to the average maximum likelihood P ∞ 

( X | Y ), which is defined as 

P ∞ 

(X | Y ) = e −H ∞ (X| Y ) 

= 

∑ 

y 

P Y (y ) max 
x 

P X| Y (x, y ) . (62) 

For convenience, we will use P ∞ 

( X | Y ) to indicate the security. 

We discuss the security of SOPE under a known background model, in which the adversary knows the plaintext dis-

tribution P X as well as the ciphertext sequence. In such circumstance, the average min-entropy of plaintext X conditioned

on ciphertext Y, H ( X | Y ) measures the leakage-resilient degree of SOPE. Note the adversary knows not only the ciphertext

sequence but also the plaintext distribution P X . However, the plaintext distribution is always uniform distribution in this

paper, so P X is omitted in the definition for convenience. This paper does not take the leakage of search or access patterns

into consideration. Pseudo queries [22] , private information retrieval [19] , and Oblivious RAM [7] can be used to protect

search and access patterns as necessary. 

Below we show the relationship between the semi-order preserving degree d and security P ∞ 

( X | Y ). 

Theorem 5. For a SOPE f : X → Y , 

P ∞ 

(X | Y ) ≥ 1 − d, (63) 

where P ∞ 

( X | Y ) is the average maximum likelihood defined in Eq. (62) , and d is the semi-order preserving degree defined in

Eq. (33) . 

Proof. Using notation defined in the proof of Theorem 4 , P ∞ 

( X | Y ) can be estimated. If g 1 (y ) = 1 , max x P X| Y (x, y ) = 1 . If

g 2 (y ) = 1 , max x P X | Y ( x, y ) ≥ 1/2. If g 3 (y ) = 1 , max x P X | Y ( x, y ) ≥ 0. Then max x P X | Y ( x, y ) satisfies: 

max 
x 

P (x | y ) = (g 1 (y ) + g 2 (y ) + g 3 (y )) max 
x 

P (x | y ) 
= g 1 (y ) max 

x 
P (x | y ) + g 2 (y ) max 

x 
P (x | y ) + g 3 (y ) max 

x 
P (x | y ) 

≥ g 1 (y ) + 

1 

2 

g 2 (y ) 

= (g 1 (y ) + g 2 (y ) + g 3 (y )) − 1 

2 

(g 2 (y ) + 2 g 3 (y )) . (64) 

We have 

P ∞ 

(X | Y ) = 

∑ 

y 

P Y (y ) max 
x 

P (x | y ) 

= 

1 

M 

∑ 

y 

max 
x 

P (x | y ) 

≥ 1 

M 

∑ 

y 

(g 1 (y ) + g 2 (y ) + g 3 (y )) − 1 

2 M 

∑ 

y 

(g 2 (y ) + 2 g 3 (y )) 

≥ 1 − N 

2 M 

. (65) 

The relationship between the security P ∞ 

( X | Y ) and semi-order preserving degree d is 
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P ∞ 

(X | Y ) ≥ 1 

M 

∑ 

y 

(g 1 (y ) + g 2 (y ) + g 3 (y )) − 1 

2 M 

∑ 

y 

(g 2 (y ) + 2 g 3 (y )) 

≥ 1 

M 

∑ 

y 

(g 1 (y ) + g 2 (y ) + g 3 (y )) − 1 

M 

∑ 

y 

(g 2 (y ) + g 3 (y )) 

= 1 − d. � (66)

Theorem 5 shows the restrictions on the security and semi-order preserving degree. When d decreases, SOPE becomes

more vulnerable. If d = 0 , SOPE degenerates to OPE and P ∞ 

(X| Y ) = 1 , which means that OPE scheme is insecure when the

plaintext distribution is leaked. 

3.4. Relationship between semi-order preserving degree and precision 

Precision varies with applications. The main application of OPE-like methods is comparison of ciphertexts; thus, the

precision of SOPE can be measured by the error rate of order relationship. 

The difference between OPE and SOPE is that if y 1 = y 2 is possible when x 1 � = x 2 , y 1 = Enc(x 1 ) , y 2 = Enc(x 2 ) . We define

the error rate as 

P e = P ((x 1 � = x 2 ) ∧ (y 1 = y 2 )) , (67)

where x 1 , y 1 and x 2 , y 2 are 2 plaintext–ciphertext pairs. 

Now we discuss the relationship between P e and d . OPE is fully accurate in our precision definition, so P e = 0 when d = 0 .

With the increase of d, P e will also increase. Below we show the relationship between d and the error rate P e . 

Theorem 6. For a SOPE f : X → Y , 

P e ≤ 1 

M 

d, (68)

where P e is the error rate defined in Eq. (67) , and d is the semi-order preserving degree defined in Eq. (33) . 

Proof. We have 

P e = P ((x 1 � = x 2 ) ∧ (y 1 = y 2 )) 

= 

∑ 

y 

P ((x 1 � = x 2 ) ∧ (y 1 = y 2 = y )) 

= 

∑ 

y 

P (x 1 � = x 2 | y 1 = y 2 = y ) P (y 1 = y 2 = y ) 

= 

∑ 

y 

P ey (y ) P (y 1 = y 2 = y ) 

= 

∑ 

y 

P ey (y ) P (y 1 = y | y 2 = y ) P (y 2 = y ) 

= 

∑ 

y 

1 

M 

2 
P ey (y ) 

= 

1 

M 

2 

∑ 

y 

P ey (y ) , (69)

where P ey (y ) = P (x 1 � = x 2 | y 1 = y 2 = y ) . 

We can split P e to different cases as before. When g 1 (y ) = 1 , P ey (y ) = 0 . When g 2 (y ) = 1 , 2 plaintexts are mapped to

y . Denote them as y ′ and y ′ ′ . Then P ey (y ) = 2 P (x ′ | y ) P (x ′′ | y ) . Considering that P (x ′ | y ) + P (x ′′ | y ) = 1 , we have P ey ( y ) ≤ 1/2.

When g 3 (y ) = 1 , P ey ( y ) ≤ 1. 

In summary, 

P e ≤ (1 / 2) g 2 (y ) + g 3 (y ) . (70)

Thus, 

P e = 

1 

M 

2 

∑ 

y 

P ey (y ) 

≤ 1 

M 

2 

∑ 

y 

(
1 

2 

g 2 (y ) + g 3 (y ) 
)

≤ 1 

2 M 

2 
N. (71)
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The relationship between the precision P e and the semi-order preserving degree d is 

P e ≤ 1 

M 

2 

∑ 

y 

( 
1 

2 

g 2 (y ) + g 3 (y )) 

≤ 1 

M 

2 

∑ 

y 

(g 2 (y ) + g 3 (y )) 

= 

1 

M 

d. � (72) 

Theorem 6 means that the semi-order preserving degree provides an upper limit for the error rate; thus, we can reduce

the error rate and improve precision by lowering d . However, as shown in Theorems 4 and 5 , the decrease of d will lead

to larger ciphertext expansion and lower security. Thus, a SOPE user needs to face the trade-off and can strike a balance

among ciphertext expansion, security, and precision by adjusting the semi-order preserving degree. 

Note that in the scenario of ciphertext range query, which is the most frequently discussed situation for OPE, a SOPE user

can get the same precision as OPE with some communication and calculation cost, if desired. For plaintext query [ x 1 , x 2 ],

if we generate ciphertext query [ y 1 , y 2 ], where y 1 = min y { y | P X,Y (x 1 , y ) } > 0 and y 1 = max y { y | P X,Y (x 2 , y ) } > 0 , then the range

query on ciphertext will return all related results with some unrelated results, and the user can filter unrelated results after

decryption. 

4. SOPE construction 

In this section, we propose a construction of the SOPE scheme. The proposed scheme takes a plaintext sequence x n and

an expected semi-order degree d 0 as input; it then generates a ciphertext sequence that follows a uniform distribution as

output, and the actual semi-order degree d is close to d 0 . 

4.1. Implementation with real numbers 

The size of ciphertext space can be calculated based on Theorem 3 with P X and d 0 . 

Unlike OPE, SOPE may encrypt different plaintext symbols to the same ciphertext symbol, thus, the ciphertext sequence

cannot be decrypted merely with the mapping from the plaintext space to the ciphertext space. 

To solve this problem, the proposed encryption procedure maintains an inner state v i , which will be used in the decryp-

tion procedure to recover the plaintext sequence. 

In the first step, v 1 is randomly chosen from the interval (P CX (x 1 − 1) , P CX (x 1 )) . 

In the i -th encryption step, v i and y i are generated using x i , y i −1 and v i −1 . v i is generated by a linear transformation from

[ P Y (y − 1) , P Y (y )] to [ P X (x − 1) , P X (x )] as 

v i = 

P X (x i ) 

P Y (y i −1 ) 
(v i −1 − P CY (y i −1 − 1)) + P CX (x i − 1) , (73) 

and y i is chosen such that P CY (y i − 1) ≤ v i < P CY (y i ) . It is obvious that y i is uniquely determined by v i . 

At the last step of the encryption, the value v n is recorded as the decryption key. 

The decryption is the reverse of the encryption procedure. v i can be calculated from x i +1 , y i and v i +1 as 

v i −1 = 

P Y (y i −1 ) 

P X (x i ) 
(v i − P CX (x i − 1)) + P CY (y i −1 − 1) , (74) 

and x i can be determined by condition P CX (x i − 1) < v i < P CX (x i ) . 

4.2. Implementation with finite precision 

However, implementation in the preceding subsection assumes infinite precision which is unfeasible in practice. In this

subsection, we propose an implementation using real numbers with finite precision. A real number r with finite precision

can be represented by an integer a with precision b as r = a ∗ 2 −b . 

In the i th step of the encryption, we use a pair of b -bit real numbers, v ′ 
i 

and v ′′ 
i 
, to substitute the value v i . The encryption

and decryption procedures now become the transformation of 2 values. The encryption procedure now becomes 

v ′ i = l 1 (v ′ i −1 , x i , y i −1 ) 

v ′′ i = l 1 (v ′′ i −1 , x i , y i −1 ) (75) 

where 

l 1 (v , x, y ) = 

P X (x ) 

P Y (y ) 
(v − P Y (y − 1)) + P CX (x − 1) . (76)
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Table 2 

Experiment results of d 0 = 0 . 5 , 0 . 4 , 0 . 3 , 0 . 25 . 

Expected semi-order degree d 0 0 .5 0 .4 0 .3 0 .25 

Actual semi-order degree d 0 .503 0 .414 0 .312 0 .240 

Ciphertext expansion R e 1 .97 2 .39 3 .17 4 .12 

Average maximum likelihood P ∞ 0 .873 0 .895 0 .921 0 .939 

Error rate P e 0 .00502 0 .00417 0 .00315 0 .00238 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reverse of encryption iteration l 1 is 

l 2 (v , x, y ) = 

P Y (y ) 

P X (x ) 
(v − P X (x − 1)) + P CY (y − 1) (77)

From the (i − 1) -th step to the i th step, v needs to satisfy following conditions: 

1. Encryption should ensure v ′′ 
i 

> v ′ 
i 
. If v ′ 

i 
= v ′′ 

i 
; no further encryption is possible. 

2. Encryption should ensure v ′ 
i 
, v ′′ 

i 
correspond to a unique ciphertext y . If there are multiple y , the decryption procedure

will be ambiguous. 

3. Encryption should ensure v ′ 
i −1 

≤ l 2 (v ′ i , x i , y i −1 ) and l 2 (v ′′ i 
, x i , y i −1 ) ≤ v ′′ 

i −1 
. This guarantees the decryption to be in the same

range as in the encryption. 

To guarantee the three conditions, we make precision b changeable throughout the encryption procedure. 

When one of the three conditions is violated, precision is increased by one, i.e., b ← b + 1 , and half of [ v ′ , v ′ ′ ] is set as

new [ v ′ , v ′ ′ ], i.e., 

v ′ ← v ′ , 

v ′′ ← 

1 

2 

(v ′ + v ′′ ) , (78)

or 

v ′ ← 

1 

2 

(v ′ + v ′′ ) , 

v ′′ ← v ′′ , (79)

until the three conditions above are satisfied. 

At the last step of encryption, we record v n = v ′ n as the decryption key. The decryption starts from v n . x k , and v k −1 can

be recovered from v k and y k −1 . x k should satisfy P CX (x k − 1) < v k < P CX (x k ) , and x satisfying such a condition is unique. v k −1

can be calculated by 

v k −1 = l 2 (v k , x k , y k −1 ) . (80)

According to the encryption procedure, if v ′ 
k 

≤ v k ≤ v ′′ 
k 
, then 

v ′ k −1 ≤ l 2 (v ′ k , x k , y k −1 ) ≤ g 2 (v k , x k , y k −1 ) = v k −1 , (81)

and 

v ′′ k −1 ≥ l 2 (v ′′ k , x k , y k −1 ) ≥ g 2 (v k , x k , y k −1 ) = v k −1 , (82)

i.e., 

v ′ k −1 ≤ v k −1 ≤ v ′′ k −1 . (83)

Thus the plaintext sequence can be fully decrypted without errors. 

The detailed encryption and decryption procedures are shown in Algorithms 1 and 2 . 

4.3. Performance 

We use an experiment to show the performance of the proposed scheme. The plaintext sequence x n follows a uniform

distribution on [1, 100], and the length of the plaintext sequence is 5000. The proposed implementation is run four times

with d 0 = 0 . 5 , 0 . 4 , 0 . 3 , 0 . 25 , respectively, and a plaintext sequence of length 50 0 0 is generated each time. The results are

shown in Table 2 . 

The simulation results of the proposed scheme behaves as expected. With the decrease of d 0 , the system will have a

larger ciphertext expansion R e , larger average maximum likelihood P ∞ 

, and lower error rate P e . Thus, the user can adjust d 0
to get the balance among the ciphertext expansion, security, and error rate. 
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Algorithm 1 Encryption. 

Input 

Plaintext sequence (x i ) , i = 1, 2, … , n., 

Plaintext distribution P X , expected semi-order degree d 0 . 

Output 

Ciphertext sequence (y i ) , i = 1, 2, … , n., decryption key v n 

Function Encrypt 

P Y ← F ind P Y (P X , d ) 

Randomly select v ′ 1 , v ′′ 2 such that 

P CX (x 1 − 1) < v ′ < v ′′ < P CX (x 1 ) with precision bit b. 

There exists y with P CX (y − 1) < v ′ < v ′′ < P CX (y ) . 

y 1 ← y 

For i = 2 to n 

v ′ 
i 
= l 1 (v ′ i −1 

, x i , y i −1 ) 

v ′′ 
i 

= l 1 (v ′′ i −1 
, x i , y i −1 ) 

k ← 1 

While V eri f y (v ′ , v ′′ , x i , y i −1 ) is False: 

b ← b + 1 , k ← k + 1 

Re-calculate v ′ 
i 
, v ′′ 

i 
with precision bit b 

Equally split [ v ′ 
i 
, v ′′ 

i 
] to 2 k parts, and randomly choose 1 [ u ′ , u ′′ ] 

v ′ 
i 
, v ′′ 

i 
← u ′ , u ′′ 

Find y with P CX (y − 1) < v ′ 
i 
< v ′′ 

i 
< P CX (y ) 

y i ← y 

Return (y i ) , v n . 

Function F ind P Y (P X , d ) 

n x ← | P X | 
n y ← � n x /d ∗ (1 + Random (−0 . 05 , 0 . 05)) � 
P Y ← Uni f orm ({ 1 , 2 , . . . , n y } ) 
return P Y 

Function V eri f y (v ′ 
i 
, v ′′ 

i 
, x i , y i −1 ) : 

If ( v ′ > = v ′′ ) return False 

If there exists y such that ( v ′ 
i 
< P CY (y ) < v ′′ 

i 
) return False 

If v ′ 
i −1 

> l 2 (v ′ i , x i , y i −1 ) return False 

If l 2 (v ′′ i 
, x i , y i −1 ) > v ′′ 

i −1 
return False 

Return True 

Algorithm 2 Decryption step. 

Input 

Ciphertext sequence (y i ) , i = 1, 2, … , n., decryption key v n , 
Plaintext distribution P X , ciphertext distribution P Y . 

Output 

Plaintext sequence (x i ) , i = 1, 2, … , n. 

Function Decryption 

For k = n to 1: 

Find x satisfies P CX (x − 1) < v k < P CX (x ) 

x k ← x 

v k −1 = l 2 (v k , x k , y k −1 ) 

Return (x i ) 
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5. Conclusion 

In this paper, we proposed SOPE, a new primitive to support searching on ciphertext. We then studied the security,

precision, and ciphertext expansion of SOPE. With the help of semi-order preserving degree d , the performance of SOPE can

be adjusted according to different situations. At last, we proposed an implementation of SOPE. 
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