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Abstract Currently, the most successful approach to steganography in digital image is
distortion-minimization framework, which reduces the steganographers’ work to the design
of distortion function with the aid of practical coding schemes. Previous distortion functions
for spatial images are all position dependent, in which cost is determined by the relation-
ships between neighboring pixels. Noticing that Gamma encoding is usually involved in
image preprocessing in many cameras or image processing software, which causes some
pixels to change greatly, we believe these pixels sensitive to Gamma encoding are more suit-
able for modification, because they are hard to model due to their large variations. Inspired
by this idea, we proposed a position independent scheme, where the cost is only linked to
the gray level. The effectiveness of our work is verified by extensive experimental results,
which reveal an interesting relationship between steganographic costs and gray levels. The
speed test shows that the speed of proposed scheme is very high thus suitable to be used in
the real-time applications.
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1 Introduction

Steganography is a technique for covert communication, aiming to hide secret messages
into ordinary digital media without drawing suspicion [7, 17, 24]. Designing stegano-
graphic algorithms for various cover sources is challenging due to the fundamental lack

� Weiming Zhang
zhangwm@ustc.edu.cn

1 University of Science and Technology of China, Anhui, China

2 Key Laboratory of Electromagnetic Space Information, Chinese
Academy of Sciences, Anhui, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-4565-5&domain=pdf
mailto:zhangwm@ustc.edu.cn


Multimed Tools Appl

of accurate models. According to whether the original cover image pixels can be recovered
or not after data extraction, current data hiding schemes can be classified into two cate-
gories, i.e., reversible data hiding [1, 21, 26, 27, 30, 31] and irreversible data hiding [5,
8, 10–14, 23]. Currently, the most successful approach for irreversible data hiding is the
distortion-minimization (DM) [18] framework, which minimizes the statistical detectability
by employing a coding scheme to minimize a well-defined distortion function [5, 8, 10–
14, 23]. Such work gains popularity due to the fact that both optimal embedding simulator
which operates on the theoretical rate-distortion bound and practical coding schemes which
work close to the bound are available [6]. Therefore, the key of this framework is the design
of the distortion function which is usually composed of a cost assigned to each cover pixel.
In this work, we just focus on the seganographic schemes in spatial domain.

As summarized in [18], the philosophy behind all steganographic schemes in Spatial
domain based on DM [18] framework can be generalized as following three principles:

1) Complexity-First Principle.

This principle implies that the steganographer should modify the area of complicated
texture with high priority, which is hard to model in steganalysis.

Nearly all steganographic schemes follow the Complexity-First Principle. The first
example of this principle is HUGO [23]. The pixel distortion is defined by the changing
amplitude of SPAM (subtractive pixel adjacency matrix) [22] features, which is generated
by exploiting correlations between the predicted residuals of neighboring pixels [16, 22].
High costs are distributed to pixels, the modification of which leads to a greater deviation
in feature vectors. Because the pixels in smooth areas can be accurately predicted, the mod-
ifications in such areas will be easily detected by steganalyzers. Therefore the embedding
changes of HUGO will be gathered within textured regions.

Another two examples of the first principle are WOW [12] and UNIWARD [13]. WOW
[12] assigns high costs to pixels with large directional residuals generated by a bank of direc-
tional high-pass filters. Larger directional residuals indicates high unpredictability thus high
texture complexity. So WOW [12] mainly changes the pixels in textured regions. The dis-
tortion function is further simplified in UNIWARD [13]. Both algorithms have been shown
to better resist steganalysis using rich models [9] than HUGO [23].

Sometimes the complexity first principle can be shown in a more implicit way. MG (mul-
tivariate Gaussian model) [10, 28, 29] models the cover pixels as a sequence of independent
Gaussian random variables with unequal variances. The costs are obtained by minimizing
KL (Kullback-Leibler) divergence between the statistical distributions of cover and stego
images. Because the KL divergence is related to the local variance of cover elements, MG
[10, 28, 29] implicitly follows the Complexity-First principle as well.

2) Spreading Principle.

This principle requires that two neighboring elements should not differ greatly in costs.
In other words, an element with high costs should spread its high costs to its neighbors, and
vice versa. HILL [19] employed this principle to improve WOW [12], and Sedighi et al.
[28] used it to improve MG [10].

3) Modification Direction Synchronizing (MDS).

Adopted in non-additive distortion model, this principle suggests that neighboring pix-
els changed in the same directions will introduce smaller costs. This principle is also
called Modification Directions Clustering (MDC) in [20]. It was successfully exploited
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by Denemark et al. [4], Li et al. [20] and Zhang [32], which significantly improve the
performance in resisting steganalysis.

On one hand, all of previous steganographic schemes are position dependent, where the
cost of each pixel is determined by the relationship between that pixel and its neighbors.
The magnitude of individual pixel value is never taken into account in the design of spatial
domain schemes. However, in DCT domain schemes, the magnitude of cover element is a
key consideration in design of distortion function. The DCT coefficients with larger absolute
value should be given smaller costs [11]. Therefore, we may wonder which gray level should
be given the smallest cost in spatial domain. In this paper, we proposed a scheme where the
answer is given. The distortion function is only associated with the gray level of the pixel
and the cost of each pixel is totally independent of the pixel relationship. Our study reveals
an interesting relationship between steganographic costs and gray levels.

On the other hand, with the rapid rise of smart phone users, it’s quite common for peo-
ple to share images over the mobile platform which provides extensive covers for covert
communication. As a result, it’s important to apply steganographic algorithms to mobile
platform. Traditional researchers usually only focus on the steganalysis security. However,
time complexity and space complexity are also important considerations on mobile plat-
form due to their limited computing resources and battery volume. For example, it would be
intolerable if you have to spend a long time embedding the message into the image before
sending it. Besides, longer time of sending message may arouse suspection.

The rest of the paper is structured as follows. Preliminaries of DM [18] framework is
introduced in next section. The detail of our scheme is demonstrated in Section 3. The
efficiency of our scheme is verified by experiments in Section 4. And the conclusion is
given in Section 5.

2 Preliminaries

The cover sequence is denoted by x = (x1, x2, . . . , xn), where xi is an integer, such as the
gray value of a pixel. In this paper, we consider the case of ternary embedding operation,
which can be represented by Ii = {xi − 1, xi , xi + 1} for all i.

As is established in [6], the distortion introduced by changing x to y = (y1, y2, . . . , yn)

can be simply denoted by D(x, y) = D(y) in view of the assumption that the cover x
is fixed. If the embedding algorithm changes x to y ∈ Y with modification probability
π(y) = P(Y = y), the sender can send up to H(π) bits of message on average with average
distortion Eπ(D) such that

H(π) = −
∑

y∈Y
π(y) log π(y). (1)

Eπ(D) =
∑

y∈Y
π(y)D(y). (2)

For a given message length L, the aim to minimize the average distortion can be formulated
as the following optimization problems:

min
π

Eπ(D), (3)

subject to H(π) = L. (4)
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Following the maximum entropy principle, the optimal π has a Gibbs distribution [6]:

πλ(y) = 1

Z(λ)
exp(−λD(y)). (5)

where Z(λ) is the normalizing factor such that

Z(λ) =
∑

y∈Y
exp(−λD(y)). (6)

The payload constraint (4) determines the scalar parameter λ > 0. In fact, as proven in [5],
the entropy in (4) decreases monotonically with λ, thus for a given L in feasible region, λ

can be fast determined by binary search.
Specially, the distortion introduced by changing x to y can be approximate to additive

distortion when embedding operation on xi’s is independent of each other. And the distor-
tion can be measured by D(y) = ∑n

i=1 ρ(i)(yi),where ρ(i)(yi) ∈ R is the cost of changing
the ith cover element xi to yi (yi ∈ Ii, i = 1, 2, . . . , n). In this case, the optimal π is given
by

π(yi) = exp(−λρ(i)(yi))∑
yi∈Ii

exp(−λρ(i)(yi))
, i = 1, 2, . . . , n. (7)

For additive distortion, practical coding methods such as STCs (Syndrome-Trellis Codes)
[6] can approach the lower bound of average distortion (3).

3 Proposed scheme

In this section, we will explore the relationship between embedding costs of steganography
and gray level in spatial domain via Gamma encoding.

3.1 Gamma encoding

Gamma encoding is the name of a nonlinear operation used to code and decode luminance
or tristimulus values in video or still image systems [25]. In the simplest cases, it is defined
by the following power-law expression:

g(x, γ ) =
( x

255

)γ × 255, x ∈ [0, 255]. (8)

where x donotes the gray level (pixel value) of the gray image.
Gamma encoding is commonly involved in image preprocessing in many cameras or

image processing software. After Gamma encoding, pixels of different gray level vary in the
changing extent. We believe that the pixels changed greatly after Gamma encoding may be
suitable for modification, because these pixels are hard to model due to their large variations.
Inspired by such idea, we proposed a distortion function, in which the pixels that vary largely
after Gamma encoding will be assigned small costs.

3.2 Distortion function

We change the γ parameter in the vicinity of 1. The pixel that varies most greatly is assigned
the smallest cost, so the distortion function is as follow:

ρ(x) = 1

|g(x, 1) − g(x, 1 + �)| , x ∈ [0, 255]. (9)
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Here for simplicity, we just let � = 0.001.
The cost is defined for each gray level, so the distortion function is actually a map with

256 keys. The cost of each cover pixel is generated by looking up the map. In our algorithm,
we use the double-layered version of STCs [6] for ±1 embedding. We assume that the
embedding distortion is independent of the direction, i.e., each pixel plus or minus 1 with
the same cost.

The distortion curve appears as a parabola (Fig. 1). Next, we analyze which gray level
has the smallest cost for steganography according to the distortion function (9).

Firstly, let x = x
255 , so the input and output of Gamma encoding are scaled to [0,1]. Then

(8) can be simplified as:

g(x, γ ) = xγ , x ∈ [0, 1]. (10)

Secondly, take the derivative of γ :

∂g(x, γ )

∂γ
= xγ × ln x. (11)

Let γ = 1, h(x) = ∂g(x,γ )
∂γ

, we can get:

h(x) = x × ln x. (12)

According to the distortion function (9), the cost value is the reciprocal of |h(x)|. As x ∈
[0, 1],

|h(x)| = −x × ln x. (13)
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Next, take the derivative of x:

d|h(x)|
dx

= −(1 + ln x). (14)

By solve the equation d|h(x)|
dx

= 0, we get:

x = 1

e
. (15)

The cost value decreases monotonically with x when x < 255
e

and increases monotonically
when x > 255

e
. Consequently, the gray level that has the smallest cost is x = 255

e
≈ 94.

3.3 Time complexity

Because the STCs [6] encoding is commonly used in all adaptive schemes, we can omit the
complexity of STCS [6] and focus on the distortion calculation. Since the distortion table
is fixed, looking up the table at each pixel is the only operation, the whole complexity is
O(kn), where n is the number of pixels and k is a constant factor. In SUNIWARD [13],
totally three convolutions are used to calculate the residuals. Although the time complexity
is still O(kn), the constant factor is much larger than that of proposed scheme. The time
complexity of these two methods are further compared in the next experiment section.

4 Experiment

4.1 Discussion of the � parameter

In distortion function (9), � control the step of the gamma parameter offset from 1. We com-
pare the testing error of different � in different embed ratio (Fig. 2) on BossBase ver 1.01
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[2] using SRM features. The result shows that changing the � = 0.001 will not improve the
test performance greatly, only small improvement will be obtained in ratio 0.1. So we will
keep � = 0.001.
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Fig. 3 Comparion of proposed scheme and a constant distortion scheme (CDS), S-UNIWARD on BossBase
ver 1.01 image database using SPAM feature and SRM feature
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4.2 Testing error comparison

BossBase ver 1.01 [2] and BOWS2 database [3] each with 10000 gray-scale images of
size 512 × 512 are used in experiment. The 686-D SPAM [22] and 32671-D SRM [9] are
chosen as feature sets. Ensemble classifier [15] is used where Fisher linear discriminants are

Fig. 4 Comparion of proposed
scheme and a constant distortion
scheme (CDS), S-UNIWARD on
BOWS2 image database using
SPAM feature and SRM feature
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chosen as base learners. For each image database, training set is composed of half random-
selected cover images and their stego counterparts, while test set is composed of the rest
half pairs. Testing error is used for evaluation, which is the average of the false positive rate
and false negative rate. To verify proposed scheme, we compare it with the SUNIWARD
[13], and a constant distortion scheme (CDS), in which the cost values of all pixels for every
modification direction (+1, −1) are all one. And the messages are also embedded using
double-layered STCs [6].

From the experiment results shown in Figs. 3 and 4 (the detailed results are shown in
Table 1), we can draw the following conclusions:

1. For BossBase database, the proposed scheme outweighs CDS by %5 − %8 for both
SPAM and SRM feature.

2. For BOWS2 database, the proposed scheme outperforms CDS by %7−%11 for SPAM
feature. As for SRM feature, the proposed scheme outperforms CDS by %4−%12, and
the advantage of our scheme is more obvious for small payload.

The experiment shows that proposed scheme is not comparable to SUNIWARD [13], this is
reasonable since our scheme only takes into account the gray value and SUNIWARD [13]
exploits the pixel relationships. All experiments prove that there indeed exists correlation
between gray levels and steganographic costs.

4.3 Speed comparison

In this section, we compare the distortion calculation speed between proposed scheme and
SUNIWARD [13] on various size of images. The time spent on image IO and STCS [6]
encoding is not taken into account. 100 pictures (4160*3120) from cellphone are used as
image source. The original images are resized to various sizes of square image to create
different image set. The result are show in Fig. 5. The test are run on matlab using single
thread on a computer with I5-4570 3.2GHZ cpu.

In Fig. 5, the y axis is the average distortion calculation time used in each image in
seconds while the x axis is the number of pixels. The time increases linearly with respect
to number of pixels, which verifies the linear complexity. The slope of proposed scheme

Table 1 Steganalysis experiment result on different image set with different feature and algorithms

Image set Feature Algorithm 0.1 0.2 0.3 0.4 0.5

BOSS SRM CDS 0.191 0.1229 0.0901 0.0705 0.0562

Proposed Scheme 0.2678 0.2082 0.1578 0.1256 0.1015

SUNIWARD 0.408 0.331 0.259 0.211 0.165

SPAM CDS 0.3147 0.2264 0.1764 0.1455 0.1319

Proposed scheme 0.3651 0.3056 0.2642 0.2328 0.2095

SUNIWARD 0.453 0.4093 0.375 0.3315 0.2961

BOWS SRM CDS 0.1737 0.1013 0.0694 0.0505 0.0414

Proposed scheme 0.3001 0.2034 0.1476 0.1076 0.0852

SUNIWARD 0.401 0.3081 0.2281 0.1692 0.1251

SPAM CDS 0.3283 0.2115 0.1583 0.1204 0.1011

Proposed scheme 0.4043 0.3294 0.2728 0.2277 0.1966

SUNIWARD 0.4805 0.4417 0.3846 0.3312 0.2854
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Fig. 5 Speed comparison between proposed scheme and SUNIWARD on different size of images

is much smaller than that of SUNIWARD [13], therefore, proposed scheme far outweighs
SUNIWARD [13] in speed.

5 Conclusions

The most effective model for adaptive steganography is to embed messages while minimiz-
ing a carefully defined distortion function. In previous research, the design of all distortion
function are position dependent, which exploits the relationships between neighbor pixels.

In this paper, we first pose a question: which gray level should be given the smallest cost
in spatial domain? Then we proposed a novel scheme where the answer is given: the gray
level that changes most greatly after the Gamma encoding should be assigned the smallest
cost, which is approximately 94. The cost of each pixel is only linked to its gray level and
independent of its position. In fact, the distortion metric is simply a map with 256 keys. The
cost of each pixel is generated by looking up the map with gray level. So the metric is a
universal distortion for all images. Because of its simplicity, compared to the prior position
dependent scheme, on one hand, the algorithm enjoys low time complexity and is applicable
for situation with high speed requirements. On the other hand, it can not be compared to
other position dependent schemes for security. In spite of its security deficiency, our scheme
reveals an interesting relationship between steganographic costs and gray levels.

However, the philosophy behind the proposed scheme remains unclear. One possible
explanation is that Gamma encoding is usually involved in image preprocessing in many
cameras or image processing software, which causes some pixels to change greatly natu-
rally. Modifications of such pixels sensitive to Gamma encoding are hard to detect, because
it’s difficult to distinguish artificial modification from natural image preprocessing. But this
explanation has not been verified yet. We leave this question open.
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Our future work include finding the reasons behind the proposed scheme and combining
this scheme with the position dependent schemes to improve security. Furthermore, more
techniques in image preprocessing may be exploited to improve the current scheme.
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24. Pevnỳ T, Fridrich J (2008) Benchmarking for steganography. In: Information hiding. Springer, pp 251–267

http://bows2.ec-lille.fr/


Multimed Tools Appl

25. Poynton CA (1998) Rehabilitation of gamma. In: Photonics west’98 electronic imaging. International
Society for Optics and Photonics, pp 232–249

26. Qin C, Chang CC, Hsu TJ (2015) Reversible data hiding scheme based on exploiting modification
direction with two steganographic images. Multimed Tools Appl 74(15):5861–5872

27. Qin C, Hu YC (2016) Reversible data hiding in vq index table with lossless coding and adaptive
switching mechanism. Signal Process 129:48–55

28. Sedighi V, Cogranne R, Fridrich J (2016) Content-adaptive steganography by minimizing statistical
detectability. IEEE Trans Inf Forensic Secur 11(2):221–234

29. Sedighi V, Fridrich J, Cogranne R (2015) Content-adaptive pentary steganography using the multivariate
generalized gaussian cover model. In: IS&T/SPIE electronic imaging. International Society for Optics
and Photonics, pp 94,090H–94,090H

30. Thodi DM, Rodrı́guez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE
Trans Image Process 16(3):721–730

31. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Systems Video
Technol 13(8):890–896

32. Zhang W, Zhang Z, Zhang L, Li H, Yu N (2016) Decomposing joint distortion for adaptive steganogra-
phy. IEEE Transactions on Circuits and Systems for Video Technology

Yao Wei master’s degree. Yao Receive his bachelor’s degree in Information Security, University of Science
and Technology of China. His main research interests focus on information security, information hiding.

Weiming Zhang received his B.S. degree and PH.D. degree in 1999 and 2005 respectively from Informa-
tion Engineering University, Zhengzhou, China. Currently, he is an professor with the School of Information
Science and Technology, University of Science and Technology of China. His research interests include infor-
mation hiding, multimedia security, and privacy-preserving data searching and analysis. He has published
more than 80 papers in journals and conferences including IEEE Trans. Information Theory, IEEE Trans.
Image ProcessingIEEE Trans. Inf. Foren. and Sec., and Information Hiding.



Multimed Tools Appl

Weihai Li received his Ph.D. in Electromagnetic Field and Microwave Technology from University of Sience
and Technology of China (USTC) in 2003. Now He works in the School of Information Science and Technol-
ogy of USTC as a faculty. Dr. Li lead a research team of Digital Media Analysis in the Group of Information
Processing Centor. His team is investigating technologies of media forensics, media content protection and
analysis, remote sensing image processing, and etc. Dr. Li is a member of IEEE(Institute of Electrical and
Electronic Engineers), ACM(Association for Computing Machinery), CCF(China Computer Federation), and
CACR(Chinese Association for Cryptologic Research).

Nenghai Yu born in 1964, is a professor, Ph.D. supervisor,the director of Information Processing Center of
USTC, deputy director of academic committee of School of Information Science and Technology,director
of multimedia and communication lab, deputy director of Ministry of Education-Microsoft Key Labora-
tory of Multimedia Computing and Communications(2004–2010), the standing member of council of Image
and Graphics Society of China,a member of Expert Committee of Cloud Computing of Chinese Institute of
Electronics, member of Expert Committee of IP Applications and Value-added Telecommunications Tech-
nology of Chinese Institute of Communications,and a member of Expert Committee of Multimedia Safety of
Division of Communications of Chinese Institute of Electronics. He was a visiting scholar in Institute of Pro-
duction Technology, Faculty of Engineering, University of Tokyo, in 1999 and did cooperative research as
the senior visiting scholar in Dept. of Electrical Engineering, Columbia University, from Apr. to Oct. 2008.



Multimed Tools Appl

Xi Sun master’s degree. Sun Receive his bachelor’s degree in Physics, University of Science and Technology
of China. His main research interests focus on information security, information hiding.


	Which gray level should be given the smallest cost for adaptive steganography?
	Abstract
	Introduction
	Preliminaries
	Proposed scheme
	Gamma encoding
	Distortion function
	Time complexity

	Experiment
	Discussion of the  parameter
	Testing error comparison
	Speed comparison

	Conclusions
	Acknowledgements
	References


