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Online image sharing in social platforms can lead to undesired privacy disclosure. For example, some enterprises may detect these
large volumes of uploaded images to do users’ in-depth preference analysis for commercial purposes. And their technology might
be today’s most powerful learning model, deep neural network (DNN). To just elude these automatic DNN detectors without
affecting visual quality of human eyes, we design and implement a novel Stealth algorithm, which makes the automatic detector
blind to the existence of objects in an image, by crafting a kind of adversarial examples. It is just like all objects disappear after
wearing an “invisible cloak” from the view of the detector.Then we evaluate the effectiveness of Stealth algorithm through our newly
defined measurement, named privacy insurance. The results indicate that our scheme has considerable success rate to guarantee
privacy compared with other methods, such as mosaic, blur, and noise. Better still, Stealth algorithm has the smallest impact on
image visual quality. Meanwhile, we set a user adjustable parameter called cloak thickness for regulating the perturbation intensity.
Furthermore, we find that the processed images have transferability property; that is, the adversarial images generated for one
particular DNN will influence the others as well.

1. Introduction

With the pervasiveness of cameras, especially smartphone
cameras, coupled with the almost ubiquitous availability of
Internet connectivity, it is extremely easy for people to capture
photos and share them on social networks. For example,
according to the statistics, around 300 million photos are
uploaded onto Facebook every day [1]. Unfortunately, when
users are eager to share photos online, they also hand over
their privacy inadvertently [2]. Many companies are adept at
analyzing the information fromphotos which users upload to
social networks [3].They collect massive amounts of data and
use advanced algorithms to explore users’ preferences and
then perform more accurate advertising [4]. The owner’s life
behind each photo is like being peeped.

Recently, we may shudder at a news report about fin-
gerprint information leakage from the popular two-fingered
pose in photos [5]. The researchers are able to copy finger-
prints according to photos taken by a digital camera as far as
three metres away from the subject. Another shocking news
is that a new crop of digital marketing firms emerge. They

aim at searching, scanning, storing, and repurposing images
uploaded to popular photo-sharing sites, to facilitate mar-
keters to send targeted ads [6, 7] or conduct market research
[8].These behaviors of large-scale continuous accessing users’
private information will, no doubt, make the photo owners
very disturbed.

Moreover, shared photos may contain information about
location, events, and relationships, such as family members
or friends [9, 10]. This will inadvertently bring security
threats to others. After analyzing more than one million
online photos collected from 9987 randomly selected users
on Twitter, we find that people are fairly fond of sharing
photos containing people’s portrait on social platforms, as
shown in Table 1. We test on 9987 users and take 108.7
images on average from each person. The result shows that
about 53.4% of the photos contain people’s portrait and
97.9% of the users have shared one or more photos con-
taining people’s portrait, which shows great risks of privacy
disclosure. In addition to portrait, photos containing other
objects may reveal privacy as well, such as road signs and air
tickets.
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Table 1: Some statistics on photos from Twitter.

Number of randomly collected users 9987
Number of collected photos per user 108.7
Photos containing people’s portrait 53.4%
Users sharing photos containing portrait 97.9%

Traditional methods of protecting personal information
in images aremosaic, blur, partial occlusion, and so on [11, 12].
These approaches are usually very violent and destructive.
A more elegant way is to use a fine-grained access control
mechanism, which enforces the visibility of each part of an
image, according to the access control list for every access-
ing user [13]. More flexibly, a portrait privacy preserving
photo capturing and sharing system can give users, who are
photographed, the selection to choose appearing (select the
“tagged” item) in the photo or not (select the “invisible” item)
[14].

These processing methods can be good ways to shield
people’s access. But for many companies which push large-
scale advertising, they usually use automated systems rather
than manual work to detect user uploaded images. For
instance, Figure 1 shows the general process of obtaining
privacy through online photos. First, a user shares a photo on
the social network unguardedly. Then this photo is collected
by astute companies and put into their own automatic
detection system. Based on the detection results from a
simple photo, the user’s privacy informationmight be at their
fingertips. The traditional processing methods (mosaic, blur,
etc.) will not only greatly reduce image quality undesirably,
but also not work well to the automatic detection system
based on DNN, as shown in the later experimental results
(Figure 6). Users’ purpose of sharing photos is to show their
life to other people, but not to give detection machine any
opportunity to pry into their privacy. Therefore, we need a
technique to deal with images, so that the automatic detection
system is unable to work well, but humans cannot be aware of
the subtle changes in images.

From Figure 1, we can see, whether for commercial
or wicked purposes, the basic model of infringing image
privacy follows the same patterns: first, the system gives
object proposals, that is, to find where objects may exist
in the picture and outline bounding boxes of all possible
objects; then the system identifies the specific category of each
proposal.

With regard to the detection process, the most advanced
algorithm is based on deep neural networks.The unparalleled
accuracy turns them into the darling of artificial intelligence
(AI). DNNs are able to reach near-human-level performance
in language processing [15], speech recognition [16], and
some vision tasks [17–19], such as classification, detection,
and segmentation.

Although they dominate the AI field, recent studies have
shown thatDNNs are vulnerable to adversarial examples [20],
which are well designed tomisleadDNNs to give an incorrect
classification result. But, for humans, the processed images
still remain visually indistinguishable with the original ones.
Since adversarial examples have a great deal of resistance on

the classification task, then for the more complex detection
task, can we produce adversarial examples with a similar
effect? Even if the classification result is incorrect, knowing
the existence of an object (not knowing its specific category)
is a kind of privacy leakage to some extent. So disenabling
the detectionmachine to see anything is bothmeaningful and
challenging.

As we mentioned above, the detection process is divided
into two steps, region proposal and proposal box clas-
sification. If we can successfully break through either of
these two and visual quality of the original image does
not deteriorate, then we are able to produce a new kind
of adversarial examples specifically for detection task. A
successful resistance involves two cases. One is failing in
object proposal, that is, proposing nothing for the next step;
and the other is going wrong in recognition on the given right
proposal boxes. Our work focuses on the first case. It makes
DNNs turn a blind eye to the objects in images; in other
words, DNNs will fail to give any boxes of possible objects.
Intuitively, our approach is implemented as if objects in an
image are wearing an “invisible cloak.” Therefore, we call it
Stealth algorithm. Furthermore, we define cloak thickness to
evaluate the strength of perturbation and privacy insurance
to measure the capacity of privacy preservation, and their
interconnections are also discussed. In addition, we find the
cloak can be shared; that is, adversarial examples which we
make specially for one DNN can also resist other DNN
detectors.

In previous work, adversarial examples were usually used
to attack various detection systems, such as face recognition
[21, 22], malicious code detection [23], and spam filtering
[24], all of which are aggressive behaviors out of malice. But,
in our work, adversarial examples are made to protect users’
privacy. It is an unusually positive and helpful use. Overall,
this paper makes the following contributions:

(i) We realize the privacy protection for image content by
means of resisting automatic detectionmachine based
on deep neural networks.

(ii) We propose the Stealth algorithm of manufacturing
adversarial examples for detection task. And this
algorithm makes the DNN detection system unable
to give object bounding boxes.

(iii) We put forward two new definitions, cloak thickness
and privacy insurance. Measured by them, our exper-
iment shows that Stealth algorithm far outdoes several
common methods of disturbing image, no matter in
effectiveness or in image visual quality.

(iv) We conduct some experiments to show that adver-
sarial examples produced by Stealth algorithm have
satisfactory transferability property.

The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we introduce
several DNN-based detectors and highlight the Faster RCNN
detection framework, which we use in our algorithm. In
Section 4, we illustrate the approach we design to process an
image into an adversarial one for eluding a DNN detector.
Then, in Section 5, we evaluate our approach in multiple
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Figure 1: The general process of obtaining privacy through online photos.

aspects. Finally, in Section 6, we make conclusions and
discuss the future work.

2. Related Work

Over the past few years, many researchers are committed
to studying the limitation of deep learning and it is found
to be quite vulnerable to some well-designed inputs. Many
algorithms spring up in classification tasks to generate this
kind of adversarial input. Christian et al. [25] first discovered
that there is a huge difference between DNN and human
vision. Adding an almost imperceptible interference into the
original image (e.g., a dog seen in human eyes) would cause
DNN to misclassify it into a completely unrelated category
(maybe an ostrich). Then the fast gradient sign method was
presented by Ian Goodfellow et al. [20], which can be very
efficient in calculating the interference to an image for a
particular DNN model. An iterative algorithm of generating
adversarial perturbation by Papernot et al. [26] followed
it, which is based on a precise understanding of the map-
ping between inputs and outputs of DNNs by constructing
adversarial saliency maps, and the algorithm can choose any
category as the target to mislead the classifier. Nguyen et al.
[27], along the opposite line of thinking, synthesized a kind of
“fooling images.” They are totally unrecognizable to human
eyes, but DNNs classify them into a specified category with
high confidence. More interestingly, Moosavi-Dezfooli et al.
[28] found that there exists a universal perturbation vector
that can fool a DNN on all the natural images. Adversarial
examples have also been found by Ian Goodfellow et al. [20]
to have the transferability property. It means an adversarial
image designed tomislead onemodel is very likely tomislead
another as well. That is to say, it might be possible for
us to craft adversarial perturbation in circumstance of not
having access to the underlying DNN model. Papernot et al.

[29, 30] then put forward such a black-box attack based on
cross-model transfer phenomenon. Attackers do not need to
know the network architecture, parameters, or training data.
Kurakin et al. [31] have also shown that, even in the physical
world scenarios, DNNs are vulnerable to adversarial exam-
ples. Followed by an ingenious face recognition deceiving
system by Sharif et al. [32], it enables the subjects to dodge
face recognitionwhen they justwear printed paper eye glasses
frame.

It can be seen that most of the previous studies on the
confrontation againstDNNs are usually for classification task.
Our work is about the detection task, which is another basic
task in computer vision. It is quite distinct from classification,
since the returned values of detection are usually both
several bounding boxes indicating object positions and labels
for categories. Also, its implementation framework is more
complicated than classification. Higher dimensions of the
result, continuity of the bounding box coordinates, and
more complex algorithmmake deceiving DNNs on detection
become more challenging work.

Viewed from another aspect, Ilia et al. [13] proposed
an approach that can prevent unwanted individuals from
recognizing users in a photo. When another user attempts to
access a photo, the designed system determines which faces
the user does not have permission to view and presents the
photo with the restricted faces blurred out. Zhang et al. [14]
presented a portrait privacy preserving photo capturing and
sharing system. People who do not want to be captured in
a photo will be automatically erased from the photo by the
technique of image inpainting or blurring.

Previous work is to protect the privacy on the level
of human vision, whereas these methods have proven less
effective for computer vision. In this article, we attempt to
design a privacy protection method for computer vision, and
meanwhile it ensures human visual quality. This method can
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Figure 2: Faster RCNN detection architecture.

be applied in conjunction with the above-mentioned photo-
sharing system by Zhang et al. [14] in the future work. And
it will allow users to choose whether their purpose of privacy
protection is against computer vision or human vision.

3. Object Detectors Based on DNNs

Object detection frameworks based on DNNs have been
emerging in recent years, such as RCNN [33], Fast RCNN
[34], Faster RCNN [18], Multibox [35], R-FCN [36], SSD
[37], and YOLO [38]. These methods generally have excel-
lent performance, many of which have even been put into
practical applications. In order to avoid the practitioners
hesitating to choose detection frameworks, some researchers
have made some detailed test and evaluation on the speed
and accuracy of Faster RCNN, R-FCN, and SSD, which are
prominent on detection task [39]. Results reflect, in general,
that Faster RCNNexhibits optimal performance on the trade-
off between speed and accuracy. So we choose to resist the
detection system employing the Faster RCNN framework, as
shown in Figure 2.

Technically, it integrates RPN (region proposal network)
and Fast RCNN together. The proposal obtained by RPN is
directly connected to the ROI (region of interest) pooling
layer [34], which is an end-to-end object detection frame-
work implemented with DNNs. First of all, images are pro-
cessed to extract features by one kind of DNN (ZF-net, VGG-
net, ResNet, etc.). And then the detection happens in the
following two stages: region proposal and box classification.
At the stage of region proposal, the features are used for
predicting class-agnostic bounding box proposals (object or
not object). At the second stage, which is box classification,
the same features and corresponding box proposals are used
to predict a specific class and bounding box refinement.

Here, we do some explanation of the notations. X ∈
R𝑚 is an input image composed of 𝑚 pixels, and 𝜅 is the
number of classes that can be detected. The trained models

of the two processes in detection, region proposal, and box
classification are 𝑓rp and𝑓cl, respectively. And of course there
is a feature extraction process 𝑓feat before both of them at the
very beginning.

In the process of feature extraction, some translation-
invariant reference boxes, called anchors, are generated based
on the extracted features, denoted by

𝑓feat (X) =(𝑥𝑎1 𝑦𝑎1 𝑤𝑎1 ℎ𝑎1𝑥𝑎2 𝑦𝑎2 𝑤𝑎2 ℎ𝑎2... ... ... ...𝑥𝑎𝑟 𝑦𝑎𝑟 𝑤𝑎𝑟 ℎ𝑎𝑟)= A (X) . (1)

The value 𝑟 represents the number of anchors. 𝑥𝑎𝑖, 𝑦𝑎𝑖, 𝑤𝑎𝑖, ℎ𝑎𝑖
(𝑖 = 1, 2, . . . , 𝑟) are, respectively, the vertical and horizontal
coordinates of the upper left corner of the anchors and its
width and height. Each anchor corresponds to a nearby
ground truth box, which can be denoted by

𝑏gt (X) =((
𝑥gt1 𝑦gt1 𝑤gt1 ℎgt1𝑥gt2 𝑦gt2 𝑤gt2 ℎgt2... ... ... ...𝑥gt𝑟 𝑦gt𝑟 𝑤gt𝑟 ℎgt𝑟

)
)

. (2)

Then, in the region proposal stage, 𝑓rp predict 𝑟 region
proposals, which are parameterized relative to 𝑟 anchors.

𝑓rp (X) =( 𝑥1 𝑦1 𝑤1 ℎ1 𝑝1𝑥2 𝑦2 𝑤2 ℎ2 𝑝2... ... ... ... ...𝑥𝑟 𝑦𝑟 𝑤𝑟 ℎ𝑟 𝑝𝑟)= ( B (X) P (X) ) .
(3)



Security and Communication Networks 5𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑟) are, respectively, the vertical
and horizontal coordinates of the upper left corner of the
region proposal and its width and height. The value 𝑝𝑖
is the probability of it being an object (only two classes:
object versus background). For convenience, we let B(X) be
the first four columns, which contain the location and size
information of all the bounding boxes and let P(X) be the last
column containing their probability information.

The region proposal function is followed by a function for
box classification 𝑓cl:R𝑚 ×R𝑟×5 → R𝑛×(4+𝜅). Here, except the
imageX, the above partial result B(X) is also as one of inputs.

𝑓cl (X,B (X))
=(
(

𝑥1 𝑦1 𝑤1 ℎ̃1 𝑝11 𝑝12 ⋅ ⋅ ⋅ 𝑝1𝜅𝑥2 𝑦2 𝑤2 ℎ̃2 𝑝21 𝑝22 ⋅ ⋅ ⋅ 𝑝2𝜅... ... ... ... ... ... d
...𝑥𝑛 𝑦𝑛 𝑤𝑛 ℎ̃𝑛 𝑝𝑛1 𝑝𝑛2 ⋅ ⋅ ⋅ 𝑝𝑛𝜅
)
)= ( B̃ (X,B (X)) P̃ (X,B (X)) ) .

(4)

The value 𝑛 is the number of final bounding boxes results
(𝑛 ≤ 𝑟). And similarly, 𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ̃𝑖 (𝑖 = 1, 2, . . . , 𝑛)
represent their location and size information. 𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝜅
are, respectively, the probability of each box result belonging
to each class (𝜅 classes in total). We also let B̃(X,B(X))
and P̃(X,B(X)) be the two parts of the result matrix. In

short, Faster RCNN framework is the combination of region
proposal and box classification.

4. Stealth Algorithm for Privacy

4.1. Motivation and Loss Function. Our Stealth algorithm is
aimed at the first stage, region proposal. The processing
method which directs at the first stage could be the simplest
and most effective, because if the detector does not give any
proposal boxes, the next stage (box classification) will be even
more impossible to succeed. In a word, we deceive a DNN
detector from the source.

Our aim is to find a small perturbation 𝛿X,Xst = X+𝛿X,
s.t.

Pr [P (Xst) < (thrp)𝑟 | P (X) ≥ (thrp)𝑟 , 𝛿X < 𝜀] > 𝜂rp
where, (thrp)𝑟 = thrp ×(11...1)

𝑟×1

. (5)

Here thrp is a threshold, according to which the detection
machine decides each box to be retained or not. Formula (5)
expresses that we want to add some small perturbations, so
that in region proposal stage any object proposals cannot be
detected with considerable probability 𝜂rp. In other words, at
this stage, all the boxes with low scores (probability of being
an object) will be discarded by the system.

Likewise, we can also interfere with the subsequent box
classification stage, which can be expressed as

Pr [max (P̃ (Xst,B (Xst))) < (thcl)𝑛 | max (P̃ (X,B (X))) ≥ (thcl)𝑛 , 𝛿X < 𝜀] > 𝜂cl,
where, (thcl)𝑛 = thcl ×(11...1)

𝑛×1

, max (P̃ (X,B (X))) ≜(max {𝑝11, 𝑝12, . . . , 𝑝1𝜅}
max {𝑝21, 𝑝22, . . . , 𝑝1𝜅}...
max {𝑝𝑛1, 𝑝𝑛2, . . . , 𝑝𝑛𝜅}) . (6)

Some other bounding boxes will be discarded, because the
probability that they belong to any class among the 𝜅 classes
is less than the threshold thcl with great probability.

On the surface, formula (5) and formula (6) are two
modificationmethods. But in the detection framework Faster
RCNN, its two tasks (region proposal and box classification)
share the convolution layers; that is, the two functions (𝑓rp
and 𝑓cl) regard the same deep features as their input. We
modify the image for purpose of resisting either of the two
stages, which may mislead the other function inadvertently.
Therefore, we just choose to deal with the image as formula
(5). This operation will obviously defeat the region proposal
stage, and it will be even very likely to defeat the following box
classification process in formula (6). A more straightforward

explanation is that, in the view of the detection machine, our
algorithmmakes the objects in the image no longer resemble
an object, let alone an object of a certain class.The image seems
to be wearing an invisible cloak. So, in the machine’s eyes,
an image including a lot of content looks completely empty,
which lives up to our expectation.

We are more concerned about the region proposal stage,
and its loss function in Faster RCNN framework is

L (T (A (Xi) ,B (Xi)) ,T (A (Xi) , 𝑏gt (Xi)) ,P (Xi) ,𝜙 (Xi) ; 𝜃) = 𝜆 ⋅ P (Xi) ℓbox (T (A (Xi) ,B (Xi)) ,
T (A (Xi) , 𝑏gt (Xi))) + 𝜇 ⋅ ℓprb (P (Xi) , 𝜙 (Xi)) . (7)
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Figure 3: Region proposal process in the training phase and in our algorithm.

Here T(A(Xi),B(Xi)) represents a certain distance between
anchors and the predicted region proposals, and T(A(Xi),𝑏gt(Xi)) is that between anchors and ground truth boxes (in
Figure 3, we represent it as a vector). In training phase,
the goal of the neural network is to make T(A(Xi),B(Xi))
closer to T(A(Xi), 𝑏gt(Xi)), as shown in Figure 3(a). More
specifically,

T (A (X) ,B (X))
=((((((
(

(𝑥1 − 𝑥𝑎1)𝑤𝑎1 (𝑦1 − 𝑦𝑎1)ℎ𝑎1 log( 𝑤1𝑤𝑎1) log( ℎ1ℎ𝑎1)(𝑥2 − 𝑥𝑎2)𝑤𝑎2 (𝑦2 − 𝑦𝑎2)ℎ𝑎2 log( 𝑤2𝑤𝑎2) log( ℎ2ℎ𝑎2)... ... ... ...(𝑥𝑟 − 𝑥𝑎𝑟)𝑤𝑎𝑟 (𝑦𝑟 − 𝑦𝑎𝑟)ℎ𝑎𝑟 log( 𝑤𝑟𝑤𝑎𝑟) log( ℎ𝑟ℎ𝑎𝑟)
))))))
)≜ ((x − x𝑎)

w𝑎
(y − y𝑎)

h𝑎
log( w

w𝑎
) log( h

h𝑎
)) .

(8)

Similarly,

T (A (X) , 𝑏gt (X))≜ ((xgt − x𝑎)
w𝑎

(ygt − y𝑎)
h𝑎

log(wgt

w𝑎
) log(hgt

h𝑎
)) . (9)

And 𝜙(Xi) in the loss function is the probability of the ground
truth object labels (𝜙(Xi) ∈ {0, 1}: 1 represents the box is
an object and 0 represents not). 𝜃 is the parameter of the
trained model. At the region proposal stage, the total lossL
is composed of two parts, box regression loss ℓbox (smooth 𝐿1
loss) and binary classification loss ℓprb (log loss). 𝜆 and 𝜇 are
the weights balancing the two losses.

4.2. Algorithm Details. Here we elaborate on our Stealth
algorithm of generating adversarial examples in our experi-
ment. Algorithm 1 shows our Stealth idea. It takes a benign
image X, a trained feature extraction and detection model

𝑓feat and 𝑓rp, iteration number Γ, and a user-defined cloak
thickness 𝜏 as input. Users can control how much privacy to
protect as needed, by adjusting the parameter 𝜏 to change
the interference intensity added to an image. It outputs a
new adversarial exampleXst against detection. In general, the
algorithm employs two basic steps over multiple iterations:
(1) Get the anchors A(Xi) on the basis of the features
extracted from DNN. Xi is the temporary image in the 𝑖th
iteration. (2) Compute the forward prediction 𝑓rp(Xi). This
indicates the position of the prediction boxes. (3) Get the
adversarial perturbation 𝛿Xi based on backpropagation of the
loss. The loss functionL is the same as that of Faster RCNN,
but we change one of its independent variables. In other
words, we replaceT(A(Xi), 𝑏gt(Xi))with−T(A(Xi),B(Xi)), as
shown in Figure 3(b).We compute the backpropagation value
of the total loss function:∇Xi

L (T (A (Xi) ,B (Xi)) ,− T (A (Xi) ,B (Xi)) ,P (Xi) , 𝜙 (Xi) ; 𝜃) (10)

as the perturbation 𝛿Xi in one iteration.The role of backprop-
agation and loss function in the training process is to adjust
the network so that the current output moves closer to the
ground truth. Here we substitute the reverse of the direction
towardswhich the box should be adjusted (−T(A(Xi),B(Xi)))
for the ground truth 𝑏gt. An intuitive understanding is that
we try to track the adjustment on region proposal by DNN
detector. If it is found that the DNN wants to move the
proposals in a certain direction, then we add some small
and well-designed perturbations onto the original image.
These perturbations may cause the proposals to move in
the opposite direction and consequently counteract their
generation.

The original image and that processed by the Stealth
algorithm will have totally different results through the DNN
detector, as shown in Figure 4. The original image can be
detected and labeled correctly, while as for the processed
image no objects are detected by theDNNdetector; that is, no
information has been perceived at all. Even better, in human
eyes, there is little difference between the adversarial image
and the original image.
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Input: Image X, model 𝑓feat, 𝑓rp, iteration number Γ, invisible cloak thickness 𝜏.
Output: Adversarial image Xst.
Initialize: X0 ⇐ X, 𝑖 ⇐ 0.
while 𝑖 < 𝑛 do

A(Xi) ⇐󳨐 𝑓feat(Xi),(B(Xi),P(Xi)) ⇐󳨐 𝑓rp(Xi),𝛿Xi ⇐󳨐 −𝜏𝑛 ⋅ (∇Xi
L(T(A(Xi),B(Xi)), −T(A(Xi),B(Xi)),P(Xi), 𝜙(Xi); 𝜃)),

Xi+1 ⇐󳨐 Xi + 𝛿Xi,𝑖 ⇐󳨐 𝑖 + 1,
end while
Xst ⇐󳨐 Xi,
return Xst.

Algorithm 1: Stealth algorithm for detection system.

Features + Features
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Figure 4: The original and processed image through a DNN detector.

4.3. Privacy Metric. Tomeasure the effectiveness of our algo-
rithm quantitatively, we define a variable PI, named privacy
insurance. It can be interpreted as how much privacy the
algorithm can protect. We let 𝑂𝑘 be the total number of
bounding boxes of the 𝑘th class (1 ≤ 𝑘 ≤ 𝜅), which are
detection results based on all original images, including both
correct and wrong results. And we let 𝑉𝑘 be the number of
just correct boxes of each class detected on adversarial ones
and PI be the average of all PI𝑘 values.

PI𝑘 = {{{1 − 𝑉𝑘𝑂𝑘 𝑂𝑘 ̸= 00 𝑂𝑘 = 0, 1 ≤ 𝑘 ≤ 𝜅
PI = ∑𝜅𝑘=1 PI𝑘∑𝜅𝑘=1 𝛿 (𝑂𝑘, 0) ,

where, 𝛿 (𝑂𝑘, 0) = {{{1 𝑂𝑘 ̸= 00 𝑂𝑘 = 0, 1 ≤ 𝑘 ≤ 𝜅.
(11)

We can observe from the above definition that PI means the
success rate of our detection resistance actually, and it also
indicates howmuch privacy owned by users can be preserved.

Normally, mAP (mean average precision) is usually used
to measure the validity of a detector. But here our PI value

is a more appropriate evaluation index. Suppose there are𝜅 classes in the dataset, each with an independent privacy
insurance value PI𝑘 (𝑘 = 1, 2, . . . , 𝜅), because the model itself
has some errors when detecting original images; that is, the
accuracy is not 100%. And the major concern of our algo-
rithm is to resist the detection model. Consider such a case:
the machine’s judgment itself on the original image is wrong.
And after dealing with it by the algorithm, the judgment is
still wrong, but it has two different wrong forms. Then this
processing of resisting detection is successful theoretically.
But calculating the difference of mAP value between pre- and
postprocessing cannot reflect that this case is a successful one.
On the contrary, PI can evaluate the validity of our work at all
cases, of course including the above one.

5. Experiment and Evaluation

In order to illustrate the effectiveness of our Stealth algorithm,
we will evaluate it from four aspects: (i) We clarify whether
the processed images by our algorithm can resist DNNs
effectively. We show the result of performing on nearly 5000
images in PASCAL VOC 2007 test dataset to confirm that.
(ii) We compare our algorithm with other ten methods of
modifying images for resisting detection. Results indicate
that our method works best and has minimal impact on
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Figure 5: (a) Original images; (b) original results; (c) adversarial perturbations (×20 to show more clearly); (d) processed images; (e) new
results.

image visual quality. (iii) We explore the relations among
cloak thickness, visual quality, and privacy insurance in the
algorithm. (iv) We illustrate the transferability of our Stealth
algorithm on different DNNs.

5.1. Some Experimental Setups. We test our algorithm on the
PASCALVOC2007 dataset [40].This dataset consists of 9963
images and is equally split into the trainval (training and val-
idation) set and test set. And it contains 20 categories, which
are common objects in life, including people, several kinds
of animals, vehicles, and indoor items. Each image contains
one or more objects, and the objects vary considerably in
scale. As for DNNs, we use two nets trained by Faster RCNN
on the deep learning framework Caffe [41]. One is the fast
version of ZF-net [42] with 5 convolution layers and 3 fully
connected layers, and the other is thewidely usedVGG-16 net
[43] with 13 convolution layers and 3 fully connected layers.
In addition, our implementation is completed on a machine
with 64GB RAM, Intel Core i7-5960X CPU, and two Nvidia
GeForce GTX 1080 GPU cards.

5.2. Effectiveness and Comparison. Here we first illustrate the
effectiveness through several samples and comparewith other
trivialmethods. In the next subsection,wewill then introduce
the results of larger-scale experiments. As shown in Figure 5,
one can observe that images processed by our algorithm
can dodge detection successfully. And humans can hardly
notice the slight changes. Consequently, we have generated a
kind of machine-harm but human-friendly images. For most
images in our experimental dataset, the machine cannot see
where objects are (the first two rows in Figure 5), let alone
identifying what specific category they belong to. For a small
number of images, even if the machine is really aware that

there may be some objects in the image, it cannot locate them
exactly or classify them correctly (the last row in Figure 5). In
short, in the vast majority of cases, the machine will give the
wrong answer. To give a quantitative analysis, we introduce a
newmeasurement, cloak thickness, which will be explained in
detail in Section 5.3.

In addition, we show the other ten trivial but interest-
ing ways of modifying images to interfere with detection
machines in Figure 6. We use PSNR (Peak Signal to Noise
Ratio) to evaluate the visual quality of the processed images.
These methods include both global and local modification.
Local processing here is on the location of objects, rather than
a random location.

(i) Whether global mosaic in Figure 6(b), local mosaic
in Figure 6(c), global blur (Gaussian blur here) in
Figure 6(d), or local blur in Figure 6(e), compared
to other ways, their PSNR value is a bit larger.
This indicates that although the perturbation is not
very considerable, the image gets disgustingly murky.
People usually cannot endure viewing such images
on the Web. Sadly, although people cannot bear it,
the machine can still detect most objects correctly.
Thus some smoothing filters (like mosaic or Gaussian
blur) are unable to resist DNN-based detector. We
think DNNs could compensate for the homogeneous
loss of information; that is, once a certain pixel is
determined, a small number of surrounding pixels are
not very critical.

(ii) As shown in Figures 6(f) and 6(g), an image with
large Gaussian noise has poor quality judged by its
low PSNR value. But the machine is also able to
draw an almost correct conclusion. This shows that
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Figure 6: Images processed by diverse methods of disturbing are detected by the detection framework based on Faster RCNN. Each two
horizontal images compose a pair, respectively, representing processed images and the results from the detector.
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adding Gaussian noise is not a good way to deceive
the detector, either.

(iii) As for a large area of occlusion on key objects,
whether black occlusion in Figure 6(h) or white
occlusion in Figure 6(i), they both make the quality
deteriorate drastically. In spite of a large amount of
information loss, the detection result is still almost
accurate surprisingly.

(iv) From Figure 6(j), we can see that adjusting the image
brightness to a fairly low level cannot resist the
detector, either. It causes the greatest damage to the
image simultaneously so that human eyes cannot see
anything in the image at all. But the detector gives
rather accurate results.

(v) In order to make the machine unaware of the exis-
tence of objects in the image, another natural idea is
to make objects become transparent in front of the
machine. So we try to change its transparency and
hide it in another image, as shown in Figure 6(k). And
yet it still does not work.

(vi) On the contrary, from Figure 6(l), we can see that
our Stealth algorithm substantially has the smallest
damage to image quality and it is also resistant to
detection effectively. In order to better illustrate its
effectiveness, we have carried out other larger-scale
experiments which will be described next.

5.3. Privacy Insurance. In order to depict the degree of
privacy protection in our algorithm, we define a parameter,
cloak thickness 𝜏, to weight the trap-door between privacy and
visual quality. Users can tune this parameter to determine the
adversarial disturbance intensity on each pixel. For a specific𝜏, the modification to each pixel is obviously uneven. What
we need to do is multiplying 𝜏 by the gradient value of DNN
backpropagation.This is equivalent to expanding the gradient
of each pixel by 𝜏 times simultaneously, and it is considered
as the final modification added to the image. Greater gradient
value of pixel means further distance away from our target, so
we need to add more adversarial interference on this pixel.
Certainly, different 𝜏 values also influence the results. The
added interference is proportional to 𝜏 value. The greater 𝜏,
the thicker the cloak the image is wearing, and the machine
will be more blind to it. But, of course, the visual quality will
go down.

We test on nearly 5000 images and calculate the PI using
ZF-net and VGG-net, and the results can be found in Table 2.
The 20 classes include airplane, bicycle, bird, boat, bottle,
bus, car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train, and tvmonitor. Except
for very few classes, the PI values of the vastmajority are fairly
high.This roughly means that we have successfully protected
the users’ most information in images.

Assume that a user shares many pictures and then tries to
protect his privacy by using different methods of perturbing
images. We test the PI values of all these methods, as shown
in Figure 7. We can see from it that our Stealth algorithm
can protect most privacy, and mosaic comes second, but it

nevertheless has destructive effects on image. Other methods
not only fail to protect privacy, but also cause terrible visual
quality of images that users cannot put up with. Of course,
users can get more insurance for their privacy by increasing
the cloak thickness 𝜏, but they may have to face the risk of
image quality deteriorating, as shown in Figure 8. From this
figure, we can find 𝜏 = 0.3×103 could be an appropriate value,
at which we can not only get a satisfactory privacy insurance
but also ensure the visual effects. Even if the value of cloak
thickness is fairly large (e.g., 𝜏 = 1.2 × 103), the PSNR is
still greater than any other methods. The Stealth algorithm’s
modification to a pixel is related to the current value of the
pixel, so it does not seem so abrupt after the processing.

From the above experimental results, we can see our
algorithm works well, but the fact that there exist classes with
low PI value (e.g., Class 8 “cat,” Class 12 “dog,” and Class 14
“motorbike”) is worth thinking about. Here we present some
illustrations and thoughts on this question. The extracted
feature of each region proposal corresponds to a point in
a high dimensional space. The correctness of the judgment
is related to the classification boundary. Our work is to
change positions of these corresponding points by adding
perturbation to an image, so that the points can cross the
boundary and jump to another class (from be-object class to
not-object class).

Our algorithm is independent of the specific class of the
object. That is to say, to offset the generation of region pro-
posal, we use the same number of iterations (Γ) and multiple
times (𝜏) when we superimpose the gradient disturbance for
all classes. In the abstract high dimensional space, features
of different classes occupy different subspaces, which are
large or small. So perturbations with the same iterations and
multiple times are bound to cause a problem where features
of some classes are successfully counteracted, while some
few other classes may fail. The reason for failure may be
that the number of iterations is insufficient or the magnitude
of modification is not enough for these classes. For each
region proposal feature in the detector, Figure 9 gives a vivid
illustration of the following four cases.

Case 1. The region proposal features of some classes are
successfully counteracted after the image is processed. In
other words, the corresponding feature point jumps from
be-object subspace to not-object subspace. In this case, our
algorithm can be deemed a success.

Case 2. Region proposal features of some classes are coun-
teracted partly. So the feature point jumps to a be-object
subspace, but features in this subspace are not strong enough
to belong to any specific class. That is to say, these proposals
will be discarded in the following classification stage for their
scores of each class are lower than our set threshold. In this
case, the final result is that objects cannot be detected, so it is
an indirect success.

Case 3. The feature point jumps from one object class to
another. Result is that the detector will give a bounding box
approximately, but its label might be incorrect. This case is
just a weak success.
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Figure 7: Different ways of fooling detection machine. Assume that the user shares many pictures and then tries to protect their privacy by
differentmethods of image scrambling. Obviously our veil algorithm can protect themost privacy.Mosaic comes second, but it has destructive
effects on image itself.
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Case 4. The feature point only jumps within an object
class subspace. Its range might be larger than others or its
position is farther away from the boundary of not-object
class subspace. It is kind of equivalent to saying that the
trained detector has better robustness for this specific class.
An adversarial algorithm may fail when encountering this
case.

The classes with low PI value after our Stealth algorithm
may fall into Case 4. The iteration and multiple times which
we set are not enough to make the proposal feature jump out
of its original subspace. However, in order to ensure a good
vision quality, we should not set them very high. It is a trade-
off between human vision and machine vision.

5.4. Transferability of Cloak. The Stealth interference gener-
ated for one particular DNN also has an impact on another
DNN, even if their network architectures are quite different.
We call it the transferability of different cloaks. When we put

the adversarial images generated for ZF-net, which is with a
slightly larger cloak thickness, onto theVGG-net for detection,
we can calculate that its privacy insurance, PI, is 0.66. And, at
this time, the visual quality is still satisfactory.Theremay exist
some subtle regular pattern only when seeing it from a very
close distance, but it is much better than mosaic, blur, and
other methods for human eyes. Likewise, we detect the VGG
adversarial images on ZF-net, and the PI value is 0.69.

So far we have been focusing on the white-box scenario:
the user knows the internals, including network architecture
and parameters of the system. To some extent, the trans-
ferability here leads to the implementation of a black-box
system. We do not need to know the details of network.
What we only need to know is that the detection system we
try to deceive is based on some kind of DNN. Then we can
generate an adversarial example for the image to be uploaded
against our local DNN. According to the above experimental
results, the generated images on local machine are very likely
to deceive the detection system of online social network.
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Figure 9: An intuitive understanding of adversarial images for detection task in the high dimensional space. (a) Different cases that feature
point moves between the be-object class and not-object class in the high dimensional feature space. (b) Different cases that feature point
moves among different specific classes. Each subspace with a color represents a specific class. The subspace in the be-object region but not
belonging to any specific class represents its score of belonging to any class which is lower than our set threshold.

6. Conclusion and Future Work

In this paper, we propose the Stealth algorithm of elaborating
adversarial examples to resist the automatic detection system
based on the Faster RCNN framework. Similar to misleading
the classification task in previous work, we also add some
interference to cheat the computer vision of ignoring the
existence of objects contained in images. Users can process
images to be uploaded onto social networks through our
algorithm, thus avoiding the tracking of online detection
system, so as to meet the goal of minimizing privacy dis-
closure. In effect, it is like objects in images wearing an
invisibility cloak and everything disappearing in machine’s

view. As a comparison, we conduct experiments ofmodifying
images with several other trivial but intriguingmethods (e.g.,
mosaic, blur, noise, low brightness, and transparency). The
result shows our Stealth scheme is the most effective and has
minimal impact on image visual quality. It can guarantee both
high image fidelity to human and invisibility to machine with
high probability. We define a user adjustable parameter to
determine the adversarial disturbance intensity on each pixel,
that is, cloak thickness, and a measurement to indicate how
much privacy can be protected, that is, privacy insurance.
And we have further explored the relation between them.
In addition, we find the adversarial examples crafted by our
Stealth algorithm have transferability property; that is, the
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interference generated for one particular DNN also has an
impact on another DNN.

One of our further researches will be a theoretical analysis
about the transferability property between different network
models. And, according to it, we will try to find a method
of crafting adversarial examples with good generalization
performance on many different DNNs. Even if its fooling
performance on any one of DNN models will not be as
good as the specific adversarial example, it can maximize
the average performance on all models. Furthermore, it is
evident that our algorithm is a global processing on images.
So another ongoing study should be conducted to only add
partial adversarial perturbation to achieve the same deceiving
effect. That is to say, we try to modify only part of pixels,
instead of processing the image globally. But this requirement
may lead to significant changes on a few pixels, which will
cause an uncomfortable visual effect. So we should try to
find out some ways to make the processed image look more
natural.
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