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Improving pairwise PEE via hybrid-dimensional
histogram generation and adaptive mapping
selection

Bo Ou, Xiaolong Li, Weiming Zhang, and Yao Zhasenior Member, |EEE

Abstract—Pairwise prediction-error expansion (pairwise PEE) data embedding differs from one image/region to another and
isarecent_techniquefor high-dimensional revers_ible c_jata hiding. calls for a finer modification depending upon the content.
However, in the absence of adaptive embedding, its potential Among them, a new derived RDH technique, namely pairwise

has not been fully exploited. In this paper, we propose the S . - .
adaptive pixel pairing (APP) and the adaptive mapping selection prediction-error expansion (pairwise PEE) [25], is proposed to

for the enhancement of pairwise PEE. Our motivation is twofold: consider every two pixels jointly for data embedding, and has
building a sharper two-dimensional (2D) histogram and designing been verified effective in reducing the embedding distortion
the effective 2D mapping for it. In APP, we consider to increase for low capacity. In the method, every two neighboring pixels
the similarity between pixels in a pair, by excluding rough pixels i, 5 giagonal or anti-diagonal direction are combined into a
from pairing and only putting the smooth pixels into pairs. In this . L .

way, the pixels in a pair have a larger possibility of being equal, Pal- Such pairing is based on the assumption that, the nearby
and thus the resulted 2D prediction-error histogram (PEH) has a Pixels usually have similar intensities and so the similarity
lower entropy. Next, the adaptive mapping selection mechanism between pixels can be indicated by their spatial distance. By
is introduced to properly determine the optimal modification, ytilizing the similarities between the neighboring pixels, the
based on “whether it fits for the resulted PEH" rather than by ,q_gimensional prediction-error histogram (2D PEH) has a
the heuristic experience. _Th_e_ expe_rlmental results show th_at t_he | ¢ than th -di . | (1D) PEH and th
proposed method has a significant improvement over the pairwise ower en VOPV an : .e qne imensional (1D) - an en a
PEE. more effective modification manner can be designed.

Index Terms—Reversible data hiding, pairwise prediction- Although pairwise PEE. has demonstr.ated an improved
error expansion, adaptive pixel pairing, 2D histogram modifi- perfqrmance Compared. with the conver_monal 1D mthods,
cation. the issues about 2D histogram generation and adaptive 2D
histogram modification still need to be investigated. In the
latest work [28], Dragoi and Coltuc proposed a novel pixel
pairing to classify the prediction-errors into three categories at

Reversible data hiding (RDH) is a branch of digital wafirst, and then combine the pixels of a specific category into
termarking to deal with the secret message transmission f@irs. The pairing starts in a pixel-wise manner, and each pixel
sensitive image processing [1]. The warelersible denotes finds its partner within the category. This strategy helps to form
the perfect recovery of both the original content and the hidd#re sharply distributed 2D PEH, and thus an improvement is
data. As such, RDH can be intensively used in a variety obtained over [25]. In view of the measurement for pixels’
secure applications, say, law enforcement, archive managgnilarities, both [25] and [28] adopt the spatial correlations to
ment, image authentication, etc. In literature, three categoriggnulate the similarity of pixels. However, the pixel similarity
of RDH methods can be distinguished: (1) compression bagedy not be simply characterized by the spatial distance, and
methods [2]-[7], (2) histogram modification based methods ifhie imperfect pairing would result from the structure and the
cluding histogram shifting (HS) [8]-[13], difference expansioedge of an image. Besides, designing a content-based mapping
(DE) [14], [15] and prediction-error expansion (PEE) [16]4s still a blank, as the current 2D mappings are empirically
[30], and (3) integer transform based methods [31]-[34]. designed but not adaptively determined.

Recently, the interest in the field of RDH has been renewedIn this paper, within the framework of pairwise PEE, we
due to the new perspectives about adaptive embedding [10pose two new techniques for histogram generation and
[17], [19], [21], [22], [25], [28], [35]-[37], in which the modification, called adaptive pixel pairing (APP) and adaptive

mapping selection respectively, to further improve the high-
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magnitude prediction-errors in the pairwise manner, which it & g g a
content-based and thus well suited to the 2D PEH. For th

rough pixels, we use them to form a 1D PEH and only perforn b I p d b | p d
the shifting operation on them in the pixel-wise manner for the it =
sake of reversibility. Experimental results demonstrate that th

proposed method can improve the performance of pairwis ¢ | Py € B 72

PEE, and also yield a better performance than some state-(
the-art methods. P h f h

The main contribution of this paper is the hybrid framework
of 2D and 1D PEE that we formulate, which goes beyond thc®

S|mple PEE, and encapSUIate the following two aspects: Fig. 2. Pairing modes for the shadow and the blank layers.,H&ery two
« a hybrid histogram generation mechanism, allowing theighboring pixels in the diagonal or anti-diagonal direction are combined
1D and 2D PEHs to carry out the RDH jointly, into a pair.
« and an effective adaptive 2D mapping selection to make
the histogram modification manner suited to the resulted ) ) )
PEH, while releasing the computational complexity. ~Pix€l value is obtained ag; = p; + ¢;. Since the above

The rest of paper is organized as follows. The framework g}od!flcatlon 1S conducted In a p|er-W|se mannet, the PEH
pairwise PEE is briefly reviewed in Section Il. Then, Sectiorr{]an'pmatmj in data embedding is 1D and defined as
[l pre_sents the pr(_)posed method in de_tails, and gnalyzes iFs hi(ky) = #{i:e; = ki} 1)
benefit. The experimental results are given and discussed in
Section 1V, and the conclusions are drew in Section V. ~ Where # returns the cardinality of a set. In essence, the
transformation between the original PEH and its marked PEH
Il. PAIRWISE PEEFRAMEWORK can be simply represented as a mapping. The 1D mapping is

shown in the left sub-figure of Fig. 1. For pairwise PEE, every

We_ first briefly review the pairwise PEE [25] to ShQW hov‘fw neighboring prediction-errors are jointly counted, and the
PEE is represented in the 2D space, and then describe the PEH o (kr, k) s
2\, h2

vantages of transforming RDH in the high dimensional space.

Pairing mode in shadow layer *  Pairing mode in blank layer

Since pairwise PEE is based on the double-layer embedding ho(ki,ke) = #{i: egi_1 = k1, €0 = ko}. (2)
and the two layers are processed in a similar way, we only
take the single layer's embedding for illustration. When viewed in this higher dimensional space, it is interesting

Firstly, the pixels of a single layer are collected as tp find that a further improvement can be obtained by exploit-
Sequence(pl, -~-;pN) according to a Speciﬁc scanning Ordeﬂ.-ng the hlgh order correlations, and a lower entropy of PEH is
Then, the prediction-errors between the pixels and their efiPtained [25]. In this case, the reversible mapping is changed
mates are obtained for data embedding, where the predictifHo a 2D form as shown in the right sub-figure of Fig. 1.
error sequence is denoted @s, ..., e ). Because the predic- In the second step, a special design is that pairwise PEE
tion decorrelates the image, the derived prediction-errors &@beds a less amount of bits into the most smooth pairs
more efficient in data embedding than the original pixels. Nextfi €xchange of distortion reduction. One factor affecting the
like the other PEE-based methods, pairwise PEE consistse¥fhange is the number of smooth pairs, which is determined
two major steps, hamely histogram generation and histogr&n the way of pixel pairing. According to the common
modification. experience, the nearest pixels are more correlated. So, the pixel

In the first step, the frequencies of prediction-errors af@mbination is designed to pair up the nearest two together as
counted to derive the PEH, which reflects the statisticéhown in Fig. 2. For a pixel paip; = (p2;—1,p2:), its predic-
property of image content and varies from one to anoth&@n context contains eight pixel§a, b, ..., f} which belong
The PEH is the basis of PEE-based RDH, and the differenigethe other layer. Then, according to the rhombus prediction,
between the pairwise PEE and the conventional one liestii¢ prediction-error paie; = (e2;—1, €2;) is computed as
whether_the pred|ct|on—errors_ are jointly modified o_r_not. In the e9i-1 = poic1 — [(a+b+c+ d)/4]
conventional PEE, the prediction-errors are modified one by { €21 = poi — [(c+d + e + f)/4]
one, and so the modifications on them are independent. Taking ' '
the case ofl’ = 1 for illustration (I" denotes the maximum where[-] denotes the ceiling function. To preferentially pro-
modification on a pixel), a prediction-erref is modified in cess the smooth pairs, the noise level is introduced to measure
four cases below. the local complexity for the pair. Formally, the noisy lever,

o If ¢; = 0, then the marked prediction-errords = ¢; +b, for the paire; is calculated as

whereb € {0,1} i? a binary bit. NLi=la—b+|b—c| +|c—d| +|d—a| +

o If e, =—1, thene; =¢e; — 0. .

e If e; > 1, thene| = e; + 1. le=FI+1f —el+le—d +]d—g| +]c—hl

o If ; <0, thene] = e; — 1. After that, a new 2D mapping is employed as shown in Fig. 3,
With the help of invariant prediction, the modification on avhere the new mapping is compared with the conventional one
prediction-error can be correctly retrieved, and the markéar illustration. Note that only the first quadrant is compared

3)

(4)
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Fig. 1. Representations of the data embedding in the covedtPEE from the 1D and 2D views.

Conventional PEE Pairwise PEE

as the other three quadrants employ the similar 2D map . o N o o A o
pings. Compared with the conventional PEE, the differenci 10,3)1 R 23) /'(3,3) (wT L7 23) /13&
is that, by discarding the large-distortion modification from 1,7~ By a0

[ ]

-

[ Shifting @ [ ) @ Shifting @

(321-_17 621') = (O, O) to (eIQifla 6’22) = (1, 1), the pair(O, 0) is (o,z): A1) 2) (3,2) (©0.2) 4 AL, 22 (3.2)
only mapped t0(0,0), (0,1) or (1,0), respectively, and thus ~ ws! %= S / ol /
is embedded withog,3 bits instead of 2 bits. The benefit is ° J e ° ° °
that the total embedding distortion will be reduced, and the *" Fkal e ‘ AT A
experimental results also show that the capacity is equaled | __»./_/_». __*./_/_*.
or larger than the conventional one. f’

(1,0 (2,0) (3,0)

However, the drawback of pairwise PEE is that the pixel
combination and the employed 2D mapping are not adaptive
Once designed, the pixel pairing and the 2D mapping are , , _ .
fixed no matter how the image’s characteristics vary. On OFI .3 ] 2D mapping comparison for' the cpnvgntlonal and_thezmm PEE
xe - 9 ) y ] he first quadrant. The difference in design is marked with gray.
hand, a better pairing mode can be achieved by considering the
smooth prediction-errors first. On the other hand, the optimal

2D mapping should be adapted to the statistical characteristics I1l. PROPOSED METHOD

of PEH, and seeks to minimize the distortion while preserving we propose to further improve the pairwise PEE from two
the capacity. Of course, the computational price paid for thgpects: 1) construct a sharper 2D PEH and 2) design an
adaptation must be affordable. This requires a reasonagifactive 2D mapping for it. The framework of the proposed
optimization strategy designed by the sophisticated encodeimbedding is given in Fig. 4. It is a hybrid procedure of 1D

Before introducing our scheme, we give an example &pd 2D maodifications, and aims to inherit the advantages of
show how the pixel pairing affeéts the capacity and tHRairwise PEE for a low embedding distorion. We use the APP
distortion. The data in the example is artificial and only usedjrategy to select the most suitable prediction-errors for the 2D

to illustrate the possibly better pairing. Suppose that there arg'| 9eneration, and take the rest of ones to form a 1D PEH.
four prediction-errors®, 8, 1, 10” with the spatial indices T, Here, the 2D PEH consists of the small-magnitude prediction-

2, 3, 4. In [25], the four prediction-errors are combined intc'T0rS: and the 2D mapping for it is adaptively chosen. While,
two pairs(0,8) and (1, 10) sequently, with the index pairs Ofthe _1D PE!—|_ contains the Iarge-magnltude predlctlon—errors,
(1,2) and (3,4). The two pairs could be embedded wih and is modified by the conventional 1D mapping to guarantee

bits, and the total distortion i. But if we restrict the to- e reversibility.
be-combined prediction-errors to be no larger than 1, on'I&/ _ o _

one pair would generate and the derived paiisl ) with the A Pixel pairing for 2D PEH generation

index pair(1, 3). Because the unused prediction-errors “8, 10" Besides designing an effective 2D mapping, an advanced
usually have the large noise levels, they will be skipped durifgstogram generation offers the most immediate way for
data embedding. In this ideal case, the capacity by using therformance enhancement. This is because that a sharply
one pair is the same as that of two pairs, but the distortiaiistributed PEH consists of more expandable pairs near zero,
is reduced ta3/2. Similarly, in another example, when twoand a given capacity can be satisfied with a low cost in shifting
pairs (1,5) and(1,6) are reduced td1, 1) by using the new the pixels. For pairwise PEE, a better PEH generation could
pairing, not only the gain is obtained in distortion reductiobe accomplished by increasing the similarity of pixels within
from 2 to 1, but also in capacity increase from 0 to 1. a pair.

Difference zone between
conventional and pairwise PEE
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Small-magnitude Adaptive mapping . .

prediction-errors H 2D-PEH )—’[ e oction Homlmal 2D mapping

Original Image

Void
range * Transform into high-
dimensional PEH
1
Used for high- Void |:> Generate 1D PEH
Used for 1D PEH v
\ dimensional PEH Used for:1DIPEH eee I I | range : eee directly
_______________________ e .

-d-3-d-2 d+1 d+2

® Intensity range of prediction-errors

Fig. 5. General idea for the proposed method using the hyliidsPof 1D and high dimensional, where the small-magnitude prediction-errors are used to
constitute the higher dimensional PEH in order to better exploit the high-order correlations.

1 3 range of[—2, 1] are combined into pairs.
- Except the pairing manner, the proposed scheme adopts the
2 o same mechanism as [25], including the double layer embed-

e ding, the rhombus prediction (3) and the noise level definition
5\‘ ,17\ (4). Denote the pixel's noise level as. According to the
EWEs "4 pairing mode in Fig. 2, every two neighboring pixels_; and

p2; Share the same noise level of pair, "1 = no; = NL;

------ > Scan direction in (4). By setting a thresholt] the smooth enough pixels with

n; < t are collected, and then sorted based on the scanning
order. For simplicity, the derived prediction-error sequence
is still denoted as(ey,..,ex), where N is the number of

. . - ... pixels with n; < t. The prediction-errors are classified into
To this end, we propose to combine the similar predictiof}- .

. ! O . the smooth and the rough sets respectively as
errors into pairs based on their intensities, and construct two

independent PEHs. The main idea for the proposed histogram Soqy={ei: —2<e <1} 6)
generation is given in Fig. 5. In the general form of hybrid R(_39) = {ei:e; < =3 ore; > 2}.

histogram generation, the predlctlon-eﬁrorS are classified infpyig way, the large-magnitude prediction-errors are excluded
the smooth and the rough sets respectively as for pairing, and the pair sequence is created by combining
S aray=1{ei:—d—1<e <d} 5) the small-magnitl_Jde ones. T_he _prediction—errors of the set
R4 oaiy=1{ei:e;<—d—2ore; >d+1} S(—2,1) are combined into pairs in an ascending scan order
. . . . as ((ea(l)aea(Q))v <0y (60(2711—1)7 ea(2'rn)))’ where 2m is the
and only the ones falling into the intensity ranged — 1, d| cardinality of 5(_,) and o is a mapping function from
(i.e., the setS_4_; 4)) are utilized to form the high dimen- {1,...2m} to {1, .f.,N} such thate(1) < ... < o(2m).
sional PEH. The motivation is to better exploit the correlations,, petter illustration, an example for the generation of the
within the smooth pixels, because these prediction-errors haﬁa@r sequence is given in Fig. 7. In addition, to show the
higher correlation than the others. To verify this, we compaggfectiveness of this hybrid histogram generation, we conduct
the entropies of the 2D PEHs derived from the prediction; comparison between the entropies of the conventional and
errors of different intensity ranges. Table | shows the resulige hybrid PEHs. Denote the entropies of the proposed 1D and
It is observed that the 2D PEH derived by the small magnitugey pgHs ast; and E,, respectively. The entropsi},, .4 for

prediction-errors yields a lower entropy than the original 2k, hybrid PEH is a weighted average value, and computed as
PEH, and the more smooth the pixels, the lower entropy is

obtained. Based on the well-known commonsense, the low- Hpypria = (7)
entropy PEH will be beneficial for efficient RDH. In our M+ 2 X1

method, the parameter of hybrid histogram generation is seterern; andn, are the numbers of the pixels in 1D PEH
asd = 1. It means that only the prediction-errors within thend the pixel pairs in 2D PEH, respectively. The weighted

Fig. 6. Scanning order for a single layer.

H1 X771+H2X7]2
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TABLE |
ENTROPIES OF2D PEHS DERIVED FROM DIFFERENT INTENSITY RANGESTHE INTENSITY RANGES OF[—00, +00], [—5, 4] AND [—2, 1] ARE OBTAINED
BY USING THE PARAMETERd = 00, d = 4 AND d = 1, RESPECTIVELY

Intensity range  Airplane  Baboon Barbara Boat Elaine Lake alLenPeppers

[—o0, +00] 7.485 11.627 9.635 9.459 9.708 9.768 8.067 8.917
[—5,4] 4.961 6.036 6.056 4812 4.690 4.931 4.546 4.429
[(—2,1] 3.869 3.998 3.988 3.997 3991 3,990 3.986 3.997

An optimal 2D modification
€z determined by 2D-AM

QO Void bin @ Available bin

Prediction-errors

Index

PE

I
PE Pair

‘ (0,0) ‘ (1,1) | | (0,1) ‘ i\/AppIied for pairing }
I
| | |
‘ 1,3) | 5.7) ‘ ‘ IN-LN) ‘ : () Abaddoned for pairing 3
), ) ) |
|

|
|
|
(e e ———————

Spatial index

Fig. 8. The proposed data embedding includes both 1D and 2Dfinatitns,

nd the modification on a prediction-error is determined by the intensity. Note
n at the 1D modification is fixed, but the optimal 2D mapping is adaptively
Yetermined by the 2D PEH.

Fig. 7. An example of of the proposed APP, where the predigtioar pair
sequence is a result of trimming off the original prediction-error sequenc
and the large-magnitude prediction-errors are all excluded from pixel pairi

average entropy is defined to measure the average amount of S . .

. . d L : . ones can be guaranteed, and no side information for this

information carried by a prediction-error in the hybrid PEH. In e : I Lo
. . . . classification is required. Within the set, the reversibility is

the denominator part of (7), the pair numbgris multiplied

by 2 to obtain the number of prediction-errors in the 2D PEI?.n.Swed by _th_e employed reversible mapping. That is, the
. ' o . original prediction-errors are recovered from the marked ones
The detail of entropy comparison is given in Table II. B

the table, it is seen that the entropy of ours is lower than —>'"9 the corresponding mapping inversely.

the conventional pairwise PEE. In other words, the proposedseen.fror.n another point of V|ew,.the proposed hlstograr_n
neration is a matter of transforming the conventional pair

. . . ! e
histogram generation better decorrelates the image and is more . :

- sequence of pairwise PEE into a reduced one. For ease of
helpful for the efficient RDH.

After the histogram generation, the data embedding understanding, we take the non-negative prediction-errors for

proceeded as shown in Fig. 8, where the prediction-erré‘EgStratlon’ and mark them with three types according to

of the setsS and R are modified by 2D and 1D mappings € intensity: "0", "1" and 2", where z > 1. Besides, the

i L o - T~ YYingredient of prediction-error paifa,b) or (b,a) is denoted
respectively. For a pair in the s8f it is modified in a pairwise . .
: o . : . as {a,b}. Since the proposed APP only combines a small
manner according to a specific 2D mappiagwhich will be

determined by the optimal mapping selection (see the Iat{éL#mber of prediction-errors into the pair sequence, it can be

description of 11I-B). For the prediction-errors in the sit viewed as a process of rec_:ombmmg the convennpnal pairs
; . of [25], where some two pairs of [25] are reduced into only
we use the conventional 1D mapping to substrate or add them- o .
by 1 ie one in the proposed method. Specifically, compared with
y 1€, e b1 if e >2 the conventional pairing, the recombination process has the
P = { ez _ 1: if ez <3 - (8) following three transformations, including
. . o o {0, 0,z} = {0,0}.
The reversibility of the hybrid embedding is based on the . }1 21}1 2 N }1 1{
correct classification of prediction-errors both at encoder and {O’Z} n {1’2} - {07 1}'

decoder. Because the maximum modification on a pixel ish° ¢ . the left bined into the riaht
restricted to 1, the original intensity range of predictionw ere two pairs on the left are recombined into the 1g

error in the setS; »1 is [-2,1], and the range for the one in the 2D PEH, as the is abandoned for pairing. It is
marked predictiorf—ieryrc))rs 53 ’2] ,after embedding. While possible for the distributed smooth pixels to be combined into

for the prediction-errors ik, _s 5, the ranges before and afteP@irs without the restriction of spatial distance. We observe
embedding aré—oc 73]U[2(’+’Og) and(—oo, —4]U[3, +-00) the data embedding on the first 30 prediction-errors on Lena

respectively. As a result, at the decoder, the marked sl§gcompare the capacity and distortion by using [25] and
g andR’ . .. are classified as ours, where the 2D mapping is used as the one in [25]. The
(=21 (=3,2) comparison is shown in Fig. 9. It is seen that, the proposed

E—2 = {ef:—3<e <2} method can not only increase the capacity, but also reduce the
R .. —{e:iei<—dore >3} (9) distortion. Combined with the results in Table II, it is verified
(=3.2) ‘ N N that the proposed APP indeed improves the pairwise PEE. In

There is no overlap between the séfs , ,, and R_,,, at fact, the benefit would be increased when the low noise level
decoders. Hence, the correct classifications for the markiedutilized. In that case, it is easier to make large-magnitude
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TABLE I
HISTOGRAM ENTROPY COMPARISON BETWEEN THE CONVENTIONAL PAIRWISPEEAND THE PROPOSED METHODBY TAKING BOTH THE 1D AND 2D
PEHS INTO ACCOUNT, THE ENTROPY OF THE PROPOSED METHOD IS CALCULATED ACCORDING T(@).

Images Airplane  Baboon Barbara  Boat Lake Lena
Conventional 3.742 5.813 4.818 4729 4.884 4.034
Proposed 2.904 5.323 4.150 3.925 4.113 3.108

Image Coordinates
Row/Column

Capacity: log,3bit  1bit 1bit  log3bit  1bit 1bit  1bit

Proposed 2D Sequence | (0,0) | (-1,1) [(-2,-2)| (0,0) | (0,-2) | (0,-2) | (1,1)
Distortion : 2/3 15 1 2/3 15 15 1
Capacity : No bits embedded

Proposed 1D Sequence -3 2 2 -4 2 -3 |
Distortion : Uniformly shifted by 1 |

Image Coordinates /
Row/Column

( ) Pixel Pair

Unused Boundary
Pixels 3

Capacity : logs3bit bt 0 bit 0bit

it 1bit bt 1bit 1kt Obit /
/
Conventional 2D Sequence | (0,0) | (-1,1) |(-3,-2) | (-2,2) | (-2,0) | (0,-4) | (2,0) | (-2,0) | (-2,1) | (1,-3) | /
/
Distortion : 2/3 15 2 2 15 15 15 15 1 Z/
s /
pd r
-~
_ - - _ -

Remark: both capacity gain and distortion reduction are obtained by the proposed method! - - =

Fig. 9. Comparison in terms of the pixel pairing between theppsed method (upper) and the pairwise PEE (bottom) on Lena image. Here, the first 30
prediction-errors in the upper-left of Lena image are given for comparison.
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Fig. 10. Comparison in the adaptive pixel pairing strategytf® proposed method and Dragoi and Coltuc’s method [28], where.., vg denote the
prediction-errors in the context specified by [28].
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prediction-errors unprocessed. '* R 2 ’,1'
Before further introducing the proposed design in histogram ) ! ‘
modification, we simply illustrate the difference of APP s- (a) (b) (©) ()

trategy compared with that of Dragoi and Coltuc’s metholgI 11 Four possible inouts for a 2D bin
[28]. Both the proposed method and [28] consider to limit? P P ’

the pairing of two prediction-errors by the intensity, however,

there still exit some differences as follows. o O o
o The pixel pairing in [28] is not determined by intensity, (0.2 4 /7'(1’2) /7' 2)

but also related to the distance between pixels. It employs bl b1 / b=l
a three-step pairing mechanism as shown in Fig. 10, | &y
which first combines the small-magnitude prediction- © 1). ‘\ }(1 1 )
errors in a local context, and then gradually extends | begy > // ’
the paring range. More specifically, a small-magnitude B / b=l
prediction-error will first search another small-magnitude I’ }' >
one within a small local context (including four diagonal Y e R @
prediction-errorsvy, ve, vz and vy). If it fails to find (0,0) (1,0) (2,0)

the partner, it continues to search in a larger context
in the second step, which additionally includes v, Fig. 12. The input'choices for_the 2D bins in the first quadrasta result,
v, andus. If it fails again, it will be left temporally as e ¢an dervesst different feasible 2D mappings.
a remaining to-be-paired one. At last, all the remaining
prediction-errors will be paired two by two in a scanning
order. In summary, for a pixel, the search stops until ththe 2D PEH could be referred to [25], and are omitted here
current pixel is successfully paired. for simplicity. Intuitively, the mapping in [25] is just a special
o In contrast with [28], the strategy of the proposedase in the 2D space, and may not be suitable for different
method is straightforward. We combine every two smalPEHs. A better 2D mapping should be designed depending
magnitude prediction-errors in a scanning order, and tapon the characteristic of the PEH. In our method, since the
pixel pairing is finished in one step. By the comparisori,D PEH is modified by the conventional 1D mapping, we only
it can be found that the APP algorithms in ours andeed to optimize the mapping for the 2D PEH. The proposed
[28] are different. For a pixel's pairing, the method [28PD PEH is special, and only consists of the small-magnitude
gives a higher priority for the eight nearest neighbofsrediction-errors. In the first quadrant, there are four 2D bins
(four in diagonal direction and the other four in thencluding (0,0),...,(1,1). Hence, the optimization is just to
horizontal/vertical directions), but the proposed methadodify the four bins, and many variations can be obtained in
just finds the nearest small-magnitude prediction-errtite combination of their modifications. We give three solutions
according to the scanning order. for the 2D mapping selection including one fixed mapping
As a result, the two APP strategies will produce differselection and two adaptive mapping selections, each of which
ent pairing results. Of course, both strategies can makecan be used in the hybrid data embedding to yield a better
contribution in performance enhancement compared with taerformance than [25].

conventional pairwise PEE [25], and the improvements are1y Fixed mapping selection (FM): In this solution, the same

verified in experimental results in Section IV. 2D mapping in [25] is adopted for the data embedding of
smooth setS, which is constant for all images. The pixels
B. Adaptive mapping selection in Sc_,,) are paired up, and then modified in the manner

There is no question that a RDH method can be represen
as a reversible mapping. Consider an-dimensional space
the general form 0® can be defined asZ™ — P(Z") where
P(Z") is the power set oZ™ [38]. The reversibility requires

Eédshown in Fig. 12. The only difference from [25] is the
istogram generation. Here, by rejecting the large-magnitude
" prediction-errors for the 2D PEH, the 2D mapping is limited
in the small range and the void circle in the figure represents
that ©(z) N O(y) — 0 holds for anyz # y andz,y € Z". that the number of the pair is zero. The rest of pixels in the

Because there exist various mappings, defining of the optirﬁ'g'lage are c|a§S|f|ed into the_ s&| and are ad_ded or subtracted
mapping naturally becomes the key concern of RDH whié?1y 1, respectively. AS_ the f_|xed Mmapping 15 u_sed, we do_not
depends both on the employed PEH and the required capa _d to solve 'Fhe optimization (10), and so this solution gives
For a givenn-dimensional PEH, the optimal mappirty is aast processing speed.
determined to fulfill the following objective 2) Adaptive mapping selection using generic search
O — argmin E2 _(AMG): For the adaptive mz_apping sele_ction, the direct soluti(_)n
{ subject 10 ECE>CPS (10) is to enumerate all the variants and find the best result using
= (10). However, this is very time-consuming. So, we consider
where EC and ED are the derived capacity and the embede simplify the optimization by introducing some constraint,
ding distortion, andPS is the required payload size. Accord-and call this solution for optimization as the generic search.
ing the specific mapping, the calculations®f’ and £D on In the mapping, we modify the input of a 2D bin to obtain its
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variation. The possible input for a 2D bin is defined as i

Ounput(k1, k2) = {(c1,¢2) 1 i € g(ki), i € {1,2}}  (11) ® ®
where g : Z — P(Z) is a function constrained by (2.0 21) (2.2)
|z — g(x)| < 1. It denotes where a marked 2D bin can be @ @
mapped from. We can enumerate the possible inputs as the 10
variations for a 2D bin, and then generate a complete mapping (1) (1) (1.2)
once the inputs of 2D bins are determined. It is easily induced 1 ) 1
that the mapping is reversible if and only if each 2D bin has (0,0) (\E{] 02) e
one input. Otherwise, there is an ambiguity for data recovery. ’ !
Based on the above definition, the constraint on the variation f@“rieﬁuﬁr;rl?he_ circle denotes the |
of a 2D bin is defined as follows. | possible input choices for the point |

» For an efficient 2D mapping, the high-occurrence 2D blng 13. The input choices for the 2D bins in the first quadrasta result,
could be mapped to a low-occurrence one, but the MaRzre are132 different combinations.
ping from the low-occurrence one to the high-occurrence
one is prohibited.
This can be best understood through the comparison with 1 Lena S Airplane Barbara
movement of water, i.e., the water always flows down into tt
nearest low terrain. Taking the first quadrant of 2D PEH fc

1 (2454|2029 1| 712 | 719 1 |5162 | 2839 1 (1917 | 1644

illustration, the marked paiik;, k5) can only be mapped from o |197s | 1803 0| 683 | 668 0 | 2662 | 2008 0 | 1785 | 1505
the four 2D values, i.e., 0 1 0 1 . 0 1
(k1, k2), if case (a) -
s ) (k=1 k), if case (b) |
(k1 k) = (kl, o — 1), if case (c) (12)
(ki —1,ky — 1), if case (d) lfi

because that the 2D PEH is a Laplacian-like dlstrlbuno}
centered at(0,0) and the occurrences of these neighboi
are higher than that ofki, k2). In this case, only four
possible input choices are available for a 2D b}ﬁn k2> as Fig. 14.  The occurrences of 2D bins in the first quadrant by gusive
shown in Flg 11. Referrlng to (11) we ha@Enput(k?'l, kg) proposed method and the corresponding optimal 2D mapping using AMG.
{(kﬁl,kg), (kl — 1,]€2), (kl,kg — 1),(k31 — 1,k2 — 1)} Sim-
ilarly, the other three quadrants adopt the same philosophy
for the variations. The inputs of 9 bin®,0), ..., (2,2) in
the first quadrant construct the complete 2D mapping f
the four bins(0,0), ..., (1,1). One can obtain the possible,
input choices for each bln as shown in Fig. 13, and tq
number of candidate 2D mappings in theory4i¥2. In the
figure, the number in the circle denotes the possible choic-3) Adaptive mapping selection using optimal transition
es for the 2D bin. For instanc&)inpu:(0,0)= {(0,0)} and probability matrix (AMO): The third solution is to design
Oinput(1,1)= {(0,0),(0,1),(1,0),(1,1)}, then the numbers the best 2D mapping by using the optimization algorithm,
of choice are#0;,put(0,0) = 1 and #0Oi,,ut(1,1) = 4. which aims at analyzing the property of the problem and
However, some candidates are irreversible, in which at leastives it without the exhaustive search. In the past, a large
one 2D bin is assigned with more than one input. So, by fueffort of watermarking community has gone into develop-
ther eliminating these invalid mappings, the actual candiddtey methods for solving optimal embedding. For a spread-
number is only336. The solution space is not large, and thuspectrum watermarking, the classical optimal embedding is
the optimization in (10) can be solved within an acceptabte determine the modification amplitude for the host signal
cost by exhaustively enumerating all candidate mappings. adaptively, so as to minimize the bit-error-rate for a given
After generating the PEH, the optimal mapping is detedistortion level at receivers [39], [40]. It is formulated as the
mined by solving the optimization (10). Compared with th&rade-off between the average bit-error-rate of secret messages
conventional pairwise PEE with a fixed mapping, the proposedd a total distortion constraint. Slightly different from that,
method supports more choices for adaptive embedding, &hd optimality of RDH is to minimize the distortion with a
thus has a potential for better performance. To show tleenstraint of capacity requirement. Here, our solution is based
adaptivity of the proposed method, we compare the optimah the recent technique of optimal transition probability matrix
2D mapping determined by (10) on different images. FigOTPM), which is proposed by Zharej al. [13]. The work
14 shows the occurrences of 2D bhins in the first quadrgiB] provides a more efficient mechanism for optimizing the
of 2D PEH in our method, and gives the optimal mappindata embedding of long term cover sequence, and the optimal
correspondingly for 10,000 bits. From Fig. 14, one can see tltata embedding is formulated as a rate-distortion minimization

Baboon Airplane Barbara

the proposed 2D mappings are different from that of pairwise
EE, and each has its own speciality based on the PEH. Here,

the threshold in the example is set as maximum to include all
fie prediction-errors irb_y 1).
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TABLE Il
THE OPTIMAL TRANSITION MATRIX OF LENA USING AMO FOR THE CAPACITY OF10,000BITS. HERE, ONLY THE PIXELS OF THE FIRST LAYER ARE
USED FOR THE TEST

X/Y (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
(0,0) | 0.5720| 0.1823 0 0.1701 | 0.0756 0 0 0 0
0,1) 0 0.3409 | 0.4417 0 0.1020 | 0.1153 0 0 0
(1,0) 0 0 0 0.3384 | 0.1229 0 0.4169 | 0.1217 0
(1,1) 0 0 0 0 0.1358 | 0.2814 0 0.2629 | 0.3199

TABLE IV
THE OPTIMAL TRANSITION MATRIX OF LENA USINGAMO FOR THE CAPACITY OF20,0008BI1TS. HERE, ONLY THE PIXELS OF THE FIRST LAYER ARE
USED FOR THE TEST

X/Y | 00 | 01 | 02 | Lo | @) | L2 | @0 | @) | @2
(0,0) [ 0.4902| 0.2072| 0 | 0.2065] 0.0961| 0 0 0 0
01 | 0 | 02624| 04446 0 | 0.0964 | 0.1966| 0 0 0
LO) | 0 0 0 | 02625] 00956| 0O | 0.4431| 0.1988] O
@D | 0 0 0 0 | 01623] 02225 0 | 0.2185| 0.3968
problem as IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
minimize 3, >, Px () Py x (ylz) D(z,y) In this section, we study the performance of the proposed
subjectto  — 3" Py (y)logy(Py(y)) = Hy method by comparing it with the conventional pairwise PEE
>, Px(z)Py|x(ylz) =Py (y),Vy  (13) [25] and three other state-of-the-art methods [17], [27], [28].
>, Prix(ylz) =1V In the experiment, the two layers are equally embedded with
Py x(ylr) > 0,Yz,y a half size of payload, and the higher-dimensional mapping

where X and Y are the cover and the marked sequence?, €ach layer will be optimized by the adaptive mapping
H(-) denotes the entropy functiofy|x (y|z) is the transition selection. After the first layer is embedded, its marked pp«lals
possibility matrix, P(-) denotes the possibility distribution,are then taken as the context for the second layer. In addition,
and D(z,y) returns the Euclidian distance between the co@S three different high-dimensional implementations (i.e., FM,
responding two pairs of andy. In our method, the cover AMG and AMO) are considered, the proposed method using
sequenceX is generated fron$_, ), and the derived marked the three solutions for 2D modification in IIITB are denoted
sequence ranges from3 < ¢/, _,, e}, < 2. According to [13], @S Pro-FM, Pro-AMG and Pro-AMO, respectively.
we first transform the 2D cover sequence into a 1D one, byWe first compare the overall embedding performance for
projecting each 2D prediction-error pdir;—1, e2;) into a 1D different embedding rates (the unit is bit per pixel, and ab-
valueé; as breviated to BPP), and two comparisons are conducted on six
- standard images with size 612 x 512. The first comparison
€; = (e2i—1 +3) x 6+ (e2i + 3). (14)  petween Pro-AMO with the counterparts is reported in Fig.

The projection here is slightly different from [13] because th&5, and the other comparison for the proposed method using
lower and upper bounds of the to-be-optimized predictiotihree different mapping selections (i.e., Pro-FM, Pro-AMG and
errors in the marked sequence are symmetrically setas2]. Pro-AMO) is plotted in Fig. 16. It is seen from Fig. 15 that
By counting the possibility distributiof’y, we use the OTPM Pro-AMO can outperform the conventional pairwise PEE [25]
to determine the optimal modification froo¥ to Y. Note and the other compared methods. Our gain over the previous
that in X, the possibilities for the void bins (i.e., the 2D birworks is mainly due to the low-entropy PEHs and the adaptive
contains at least one prediction-error with the value of -3 onapping selection. Besides, it is observed that the consistent
2) are zero-valued. Tables. Il and IV show the correspondiiggin can also be obtained over the improved pairwise PEE
OTPMs of Lena for the capacities of 10,000 and 20,000 bitgth APP stragegy [28]. The average gain of Pro-AMO over
respectively, where only the transition possibilities for the fir§28] is 0.53 dB on the test images for different embedding
guadrant of 2D PEH are given. rates. It is demonstrated that the proposed APP combined with

In summary, based on our experimental results (see Sectamtaptive mapping selection can make a further enhancement.
IV), the above three solutions can enhance the conventiokrabm Fig. 16, we can see that Pro-AMG and Pro-AMO
pairwise PEE, and the two adaptive solutions obtain the bettmth yield a higher PSNR than Pro-FM. By simply using
results. The merit of the two adaptive solutions is that the 2he hybrid embedding without the adaptive modification, the
modification is adaptive for the PEH. Of course, the PEH jroposed method Pro-FM can also improve the conventional
not just determined by the image, but also related to the nojsarwise PEE. The details of comparison for the capacities
level threshold. So, the threshold is another parameter for data10,000 and 20,000 bits are given in Table V and VI,
embedding. For a given capacity, in each solution, the strateggpectively. As shown in the tables, the average performance
for the determination of threshold is to first enumerate all thaff the proposed method is the best. For 10,000 and 20,000 bits,
thresholds of noise level, and then select the one to achiglie average PSNR gains by Pro-FM over [25] are 0.43 and
the best embedding performance. 0.24 dB, respectively. By using the adaptive 2D mapping, the
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TABLE V TABLE VII
COMPARISON OFPSNRFOR THE CAPACITY OF10,000BITS, WHERE THE PERFORMANCE COMPARISON IN TERMS OSSIM. THE symBoL “-”
UNIT IS DB. DENOTES THAT THE CORRESPONDING METHOD CANNOT FULFILL THE
CAPACITY.
Images [17] [27] [25] [28] Pro-FM Pro-AMG Pro-AMO
Capacity Images
Lena 58.20 60.10 59.75 59.89 60.02 60.42 60.77 Methods
BPP Lena Baboon Airplane Barbara Lake Boat
Baboon 54.16 55.21 55.21 55.72 55.76 56.00 56.10
Pro-AMG 0.1 0.9997 - 0.9998 0.9998 0.9997 0.9997
Airplane 60.40 62.43 63.76 63.84 63.79 64.15 65.08 0.2  0.9996 - 0.9996  0.9996 - -
Barbara 58.15 60.66 59.48 59.94 59.91 60.50 60.58 Pro-AMO 01 0.9997 - 0.9998 0.9998 0.9997 0.9997
0.2 0.9996 - 0.9996 0.9997 - -
Lake 56.66 59.93 58.72 59.02 58.47 59.11 59.35
Pro-FM 0.1 0.9997 - 0.9998 0.9998 0.9997 0.9997
Boat 56.14 57.42 57.55 58.04 57.95 58.15 58.41 0.2  0.9995 - 0.9996  0.9996 - -
Average 57.29 59.29 59.08 59.40 59.32 59.72 60.05 (17] 0.1 0.9997 0.9995 0.9997 0.9997 0.9997 0.9996
0.2 0.9994 0.9983 0.9995 0.9994 0.9990 0.9991
TABLE VI 27] 0.1 0.9999 0.9996 0.9999 0.9999 0.9999 0.9999
COMPARISON OFPSNRFOR THE CAPACITY OF20,0008ITS, WHERE THE 02 09998 09986 0.9999 0.9998 0.9996 0.9997
UNIT IS DB. [25] 01 09997 - 0.9998 0.9998 0.9997 0.9997
0.2 0.9995 - 0.9996 - - -
Images [17] [27] [25] [28] Pro-FM Pro-AMG Pro-AMO 28] 01 09994 - 0.9997 0.9996 0.9997 0.9995

Lena 55.04 56.59 56.29 56.42 56.52  57.00 57.25 02 09991 - 09995 09994 - -
Baboon 49.39 49.84 50.12 51.18 51.22  51.28 51.69 TABLE VI

Airplane 57.32 59.51 60.20 60.35 60.22 60.54 61.41 THE PERFORMANCE COMPARISONPSNRIN DB) FOR A CAPACITY OF
10,000BITS UNDER ADDITIVE WHITE GAUSSIAN NOISE, WHERE THE
Barbara 55.04 57.11 56.27 56.65 56.56  57.10 57.24  NOISE PARAMETERS ARE SET AS MEAN= 0, VARIANCE = 0.01, 0.03. FE
Lake 5271 53.17 53.76 54.31 54.22 54.30 54.66 SYMBOL “-” DENOTES THAT THE CORRESPONDING METHOD CANNOT
FULFILL THE CAPACITY.

Boat 52.65 53.52 53.34 53.94 53.86 54.08 54.40

Average 53.71 54.95 55.00 55.48 55.43 55.72 56.11 Methods Gaussian noise Images
Variance Lena Baboon Airplane Barbara Lake Boat
Pro-AMG 0.01 52.55 51.48 52.7 52.48 52.02 52.11

corresponding gains by Pro-AMG and Pro-AMO are 0.72 and 003 5005 4923 501 4988 4976 4981

1.07 dB for 10,000 bits, respectively, and the improvements po-avo 201~ 5258 5152 5268 5252 52.06 5211
. . .0 0. . 0. . .80 .
for 20,000 bits are 0.64 and 1.11 dB, respectively. Compared 003 072 1929 5043 4992 4980 498

. P 0.01 52.41 51.36 52.55 52.36 51.89 52.00
W|t_h the Iat_est pairwise PEE-based method [28], our average Pro-FM 0.03 1098 4013 4999 498 4967 4973
gains obtained by Pro-AMO are 0.65 and 0.73 dB for the 001 5164 5023 5168 5139 5099 5107
capacities of 10,000 an 20,000 bits, respectively. The method [17] 0.03 1917 4652 4916  48.86 48.73 4859
[28] p_er_forms slightly bet_ter than Pro-FM. It is indicated that on 001 5433 5119 5440 5338 5335 53.45
the similarities of both distance and intensity can be further 0.03 50.86 48.68 50.53  49.64 49.87 49.53
exploited to improve the_histogram generation. The ste_lble gain - 0.01 5179 5058 5192 5175 5127 51.34
for the complex texture image, such as Baboon, confirms that 0.03 4933 - 49.27  49.05 48.93 48.93
our method is content-based embedding and therefore can 28] 0.01 5219 51.2 5268 5221 51.79 51.88
yield a better performance on the relatively complex images 0.03 49.72 4913  50.11  49.83 49.56 49.70

on which the conventional methods cannot work well.
In order to demonstrate the performance of adaptive map-
ping selection, we present the optimal mapping in (10) onamd the marked one, we use the structural similarity index
given PEH. In the hybrid PEH, only the higher-dimensiong5SIM) [41] to make a further comparison as shown in Table
mapping needs to be optimized, and the 1D mapping \4l. Here, we compare the SSIM performance for a relative
constant. So, we merely investigate the optimal mapping foigh embedding rate of our method, i.e., 0.1 and 0.2 BPP,
the high-dimensional PEH. The employed high-dimensionadspectively. From the table, we can see that the listed methods
PEH is determined by two parameters, i.e., the image and tan all provide a very high SSIM value, and the image
required capacity. We fix one parameter when investigating teegucture is well preserved after data embedding. The reason is
other one, and take the histogram modification of Pro-AM@Given as follows. On one hand, the proposed method is a high-
for illustration. The optimal 2D mappings of two layers ardidelity algorithm where the maximum modification on a pixel
given in Fig. 17 for different cases. The proposed 2D mappiiigy 1, and therefore the degradation of image is limited. On the
can be adaptive to the characteristic of PEH, which is quitgher hand, unlike the watermarking scheme, RDH does not
different from the conventional 2D mapping in [25]. It is duattempt to change the image structure, and tends to modify
that the 2D mappings of both two layers are optimized.  the pixels in smooth regions preferentially and keep the rough
In order to demonstrate the embedding performance witixels less modified.
respect to the structural change between the original imagelo examine the performance for the practical scenario, we
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Fig. 15. Performance comparisons in terms of capacity-disto trade-off.

conduct the comparisons on the degraded images as sh@arameterized with the mean = 0, and its variance is set as 0.01
in Tables VIl and IX. Here, the degraded image is obtaineat 0.03. For the saltz peppers noise, the corrupted probability
by applying two common noises respectively on the standasfla pixel is set as 0.01 or 0.03 as shown in Table IX. Itis found
image, including the additive white Gaussian noise and the sthilat the proposed method is more sensitive to the noise, and
& peppers noise. The two noises are often used to stimultie performance gain of Pro-AMO over Pro-AMG and Pro-
the practical environment, such as satellite and deep sp&dé diminishes. Obviously, the high-fidelity embedding of our
communication. Besides, they are mathematically tractabtesthod relies on the high correlation of neighboring pixels.
to give insight into the algorithm. The PSNR is evaluateds the correlations are destructed, the advantage of adaptive
between the original image and the marked noisy one. In thmbedding is reduced. It is noted that our method can still
stimulation, as shown in Table VIII, the Gaussian noise @ovide a better embedding performance compared with the
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Fig. 16. Performance comparisons of the proposed method tisine mapping strategies, including FM, AMG and AMO.

methods [17], [25], [28], and the method [27] yields the best V. CONCLUSION

result in this case. In this paper, we propose a new implementation for the
design of high-dimensional RDH, which is based on the hybrid
histogram generation and the adaptive mapping selection. For
At last, for the computational complexity, the cost of théhe histogram generation, we use the APP to classify the
proposed method is not expensive. By using the acceleratprgdiction-errors into the smooth and rough sets, and derive
technique, the runtime of once embedding for Pro-AMG arttie high-dimensional PEH by only combining the small-
Pro-AMO are 18 and 64 seconds respectively on averageagnitude prediction-errors. We show that the hybrid PEH
where the method is implemented by Matlab and on a persoiglmore helpful for RDH with a lower entropy than the
PC. conventional single 2D PEH. For histogram modification, the
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TABLE IX
THE PERFORMANCE COMPARISONPSNRIN DB) FOR A CAPACITY OF 3210-3237, 2016. )
10,0008ITS UNDER THE SALT AND PEPPERS NOISENVHERE THE [2] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless
CORRUPTED PROBABILITIES ARE SET A®.01AND 0.03,RESPECTIVELY generalized-LSB data embeddin¢f"EE Trans. Image Process,, vol. 14,
no. 2, pp. 253-266, 2005.
[3] W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive histogram modification:
Methods S2i-Peppers Images Establishing equivalency between reversible data hiding and lossless data
probability Lena Baboon Airplane Barbara Lake Boat gc;rgsprezzsign,”lEEE Trans. Image Process,, vol. 22, no. 7, pp. 2775~
Pro-AMG 0.01 60.03 5578 6328 60.11 58.71 57.88 [4] X. Zhang, “Separable reversible data hiding in encrypted imadeEE
0.03 59.38 55.37  61.99 59.35 57.90 57.22 Trans. Inf. Forens. Security, vol. 7, no. 2, pp. 826-832, 2012.
boamo 001 60.37 5592 6477 60.28 58.84 58.02 [5] —, “Reversible data hiding with optimal value transfelZEE Trans.
003 5938 5537 6199 59.35 57.90 57.22 Multimedia, vol. 15, no. 2, pp. 316-325, 2013. , ,
[6] Z. Qian and X. Zhang, “Reversible data hiding in encrypted images with
Pro-EM 001 5957 5556 6301 5957 5859 57.61 distributed source encoding,EEE Trans. Circuits Syst. Video Technal.,
0.03 59.00 55.19 61.78 58.90 57.82 57.02 vol. 26, no. 4, pp. 636-646, 2016.
1 0.01 58.07 53.74 6025 58.02 56.37 55.83 [7] F. Hua_ng, X. Qu, H. J. Kim,_ an(_j J. Huang, “Reversible data hiding in
0.03 5768 5228 60.05 57.64 55.68 55.17 JPEG images,1EEE Trans. Circuits Syst. Video Techn., vol. 26, no. 9,
pp. 1610-1621, 2016.
[27] 0.01 60.09 55.15 6191 6060 57.24 57.35 [8] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hidintZEE
0.03 59.98 54.93 6179  60.50 57.13 57.10 Trans. Circuits Syst. Video Technal., vol. 16, no. 3, pp. 354-362, Mar.
28] 001 5882 548 6192 5861 57.83 56.85 B . . > _
0.03 5753 5413 5959 57.47 56.58 55.92 [9] P.Tsai, Y. C. Hu, and H. L. Yeh, “Reversible image hiding scheme using
predictive coding and histogram shiftingdgnal Processing, vol. 89,
(28] 0.01 59.27 55.33 62.81 59.61 58.62 57.43 no. 6, pp. 1129-1143, 2009.

0.03 ~ 5892 5503 6178 588l 5782 57.12  [10] H.-T. Wu and J. Huang, “Reversible image watermarking on prediction
errors by efficient histogram modificationdgnal Processing, vol. 92,
no. 12, pp. 3000-3009, 2012.
. . . . . . . [11] X. Li, B. Li, B. Yang, and T. Zeng, “General framework to histogram-
corresponding high-dimensional mapping is adaptively €h0os™ * shifiing-based reversible data hidinglEEE Trans. Image Process.,
to make the data embedding well suited to the derived PEH. vol. 22, no. 6, pp. 2181-2191, 2013.
; ; ——, “General framework to histogram-shifting-based reversible data
The proposed_ methoq_ls t.ested on thel stan.dard images, HAY hiding EEE Trans. Image Process, vol. 22, no. 6. pp. 21812191
the two adaptive modifications for the high-dimensional PEH 5913
based on generic search and OTPM are implemented. All fhg] W. Zhang, X. Hu, X. Li, and Y. Nenghai, “Optimal transition prob-

; ; ability of reversible data hiding for general distortion metrics and its
experimental results demonstrates the consistent pen‘ormanceEmplmﬂons,,,IEEE Trans Image Pr Vol. 24, o, 1. pp. 204-304,

gains by using our method, some of which are significant. 2015.
[14] J. Tian, “Reversible data embedding using a difference expansEBE
REEERENCES Trans. Circuits Syst. Video Technal., vol. 13, no. 8, pp. 890-896, 2003.
[15] X. Li, W. Zhang, X. Gui, and B. Yang, “A novel reversible data hiding
[1] Y. Q. Shi, X. Li, X. Zhang, H. T. Wu, and B. Ma, “Reversible data scheme based on two-dimensional difference-histogram modification,”
hiding: Advances in the past two decadekEEE Access, vol. 4, pp. IEEE Trans. Inf. Forens. Security, vol. 8, no. 7, pp. 1091-1100, 2013.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2859792, IEEE

14

Transactions on Circuits and Systems for Video Technology

[16] D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques fi@0] M. Li, Q. Liu, Y. Guo, B. Wang, and X. Kong, “Amplitude-adaptive

[17]

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

reversible watermarking,JEEE Trans. Image Process., vol. 16, no. 3,
pp. 721-730, 2007.

spread-spectrum data embeddindT Image Processing, vol. 10, no. 2,
pp. 138-148, 2016.

V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversib[é1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

watermarking algorithm using sorting and predictiohEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 7, pp. 989-999, 2009.

G. Coatrieux, C. L. Guilou, J.-M. Cauvin, and C. Roux, “Reversible
watermarking for knowledge digest embedding and reliability control i
medical images,IEEE Trans. Inf. Techn. in Biomedicine, vol. 13, no. 2,
pp. 158-165, 2009.

H. J. Hwang, H. Kim, V. Sachnev, and S. Joo, “Reversible watermarking
method using optimal histogram pair shifting based on prediction an
sorting,” K3 Transactions on Internet and Information Systems, vol. 4,

no. 4, pp. 655-670, 2010.

X. Gao, L. An, Y. Yuan, D. Tao, and X. Li, “Lossless data embedding
using generalized statistical quantity histogranEEE Trans. Circuits
Syst. Video Technol., vol. 21, no. 8, pp. 1061-1070, 2011.

X. Li, B. Yang, and T. Zeng, “Efficient reversible watermarking based
on adaptive prediction-error expansion and pixel selectit#EE Trans.
Image Process., vol. 20, no. 12, pp. 3524-3533, 2011.

W. Hong, “Adaptive reversible data hiding method based on error energ
control and histogram shiftingOptics Communications, vol. 285, no. 2,
pp. 101-108, 2012.

G. Coatrieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens, and C. Rot
“Reversible watermarking based on invariant image classification ar
dynamic histogram shifting,JEEE Trans. Inf. Forens. Security, vol. 8,
no. 1, pp. 111-120, 2013. —

C. Qin, C.-C. Chang, Y.-H. Huang, and L.-T. Liao, “An inpainting- s
assisted reversible steganographic scheme using histogram shift f",;/f’f
mechanism,”|EEE Trans. Circuits Syst. Video Techn., vol. 23, no. 7,

pp. 1109-1118, 2013.

B. Ou, X. Li, Y. Zhao, R. Ni, and Y.-Q. Shi, “Pairwise prediction-
error expansion for efficient reversible data hidindgEE Trans. Image
Process., vol. 22, no. 12, pp. 5010-5021, 2013.

X. Wang, J. Ding, and Q. Pei, “A novel reversible image data hiding
scheme based on pixel value ordering and dynamic pixel block partition,
Information Sciences, vol. 310, no. 0, pp. 16 — 35, 2015.
J. Wang, J. Ni, X. Zhang, and Y.-Q. Shi, “Rate and distortion optimiza-
tion for reversible data hiding using multiple histogram shiftindsEE
Trans. Cybernetics, vol. PP, no. 99, pp. 1-12, 2016.

I. C. Dragoi and D. Coltuc, “Adaptive pairing reversible watermarking,”
IEEE Trans. Image Process., vol. 25, no. 5, pp. 2420-2422, 2016.

C. Qin, X. Chen, D. Ye, J. Wang, and X. Sun, “A novel image hashing
scheme with perceptual robustness using block truncation coding,
Information Sciences, vol. 361-362, no. Supplement C, pp. 84 — 99,
2016.

C. Qin, P. Ji, X. Zhang, J. Dong, and J. Wang, “Fragile image
watermarking with pixel-wise recovery based on overlapping embeddin¢
strategy,”Sgnal Processing, vol. 138, pp. 280-293, 2017.

D. Coltuc and J. M. Chassery, “Very fast watermarking by reversible
contrast mapping,JEEE Sgnal Process. Lett., vol. 14, no. 4, pp. 255— \
258, 2007. ‘ s
S. Weng, Y. Zhao, J. S. Pan, and R. Ni, “Reversible watermarking base

7

quality assessment: from error visibility to structural similarityZEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.

Bo Ou received the B.S. degree and the Ph.D. de-
gree both from Beijing Jiaotong University, Beijing,
China, in 2008 and 2014, respectively. After that,
he has been a faculty of Hunan University (HNU),
Changsha, China. Currently, hs is the assistant pro-
fessor in HNU. His current research interests include
image processing and data hiding.

Xiaolong Li received the B.S. degree from Peking
University (China), the M.S. degree from Ecole
Polytechnique (France), and the Ph.D. degree in
mathematics from ENS de Cachan (France), in
1999, 2002, and 2006, respectively. He worked as a
postdoctoral fellow and then a researcher at Peking
University in 2007C2016. He is currently a Professor
with the Institute of Information Science, Beijing
Jiaotong University. His research interests are image
processing and information hiding.

Weiming Zhang received his M.S. degree and Ph.D.
degree in 2002 and 2005 respectively from Infor-
mation Engineering University, Zhengzhou, China.
Currently, he is a professor with University of Sci-
ence and Technology of China. His research interests
include multimedia security, information hiding, and
privacy protection.

Yao Zhao received the B.S. degree from the Ra-
dio Engineering Department, Fuzhou University,
Fuzhou, China, in 1989, the M.E. degree from
the Radio Engineering Department, Southeast U-
niversity, Nanjing, China, in 1992, and the Ph.D.
degree from the Institute of Information Science,
Beijing Jiaotong University (BJTU), Beijing, China,
in 1996,where he became an Associate Professor and
a Professor in 1998 and 2001, respectively. From
2001 to 2002, he was a Senior Research Fellow
with the Information and Communication Theory

on invariability and adjustment on pixel pairdEEE Sgnal Process.  Group, Faculty of Information Technology and Systems, Delft University of
Lett., vol. 15, pp. 721-724, 2008. Technology, Delft, The Netherlands. In 2015, he visited the Swiss Federal
X. Wang, X. Li, B. Yang, and Z. Guo, “Efficient generalized integennstitute of Technology, Lausanne (EPFL), Switzerland. From 2017 to 2018,
transform for reversible watermarking/EEE Sgnal Process. Lett, e visited University of Southern California. He is currently the Director with
vol. 17, no. 6, pp. 567-570, 2010. the Institute of Information Science, BJTU. His current research interests in-
F. Peng, X. Li, and B. Yang, “Adaptive reversible data hiding schemgude image/video coding, digital watermarking and forensics, video analysis
based on integer transforn&gnal Processing, vol. 92, no. 1, pp. 54-62, and understanding, and artificial intelligence. Dr. Zhao is a Fellow of the IET.
2012. He serves on the Editorial Boards of several international journals, including
C. Wang, X. Li, and B. Yang, “Efficient reversible image watermarkingas an Associate Editor for the IEEE TRANSACTIONS ON CYBERNETICS,
by using dynamical prediction-error expansion,” noc. IEEE ICIP,  a Senior Associate Editor for the IEEE SIGNAL PROCESSING LETTERS,
2010, pp. 3673-3676. and an Area Editor for Signal Processing: Image Communication. He was
G. Xuan, X. Tong, J. Teng, X. Zhang, and Y. Shi, “Optimal histogramnamed a Distinguished Young Scholar by the National Science Foundation
pair and prediction-error based image reversible data hidingigital  of China in 2010 and was elected as a Chang Jiang Scholar of Ministry of
Forensics and Watermaking, vol. 7809, 2013, pp. 368-383. Education of China in 2013.

X. Li, W. Zhang, X. Gui, and B. Yang, “Efficient reversible data hiding

based on multiple histograms modificatiodEEE Trans. Inf. Forens.

Security, vol. 10, no. 9, pp. 2016 — 2027, 2015.

S. Cai, X. Li, J. Liu, and Z. Guo, “A new reversible data hiding scheme

exploiting high-dimensional prediction-error histogram,”Rnoc. |EEE

ICIP, 2016, pp. 2732—-2736.

M. Gkizeli, D. A. Pados, and M. J. Medley, “Optimal signature de-

sign for spread-spectrum steganographfEE Transactions on Image

Processing, vol. 16, no. 2, pp. 391-405, 2007.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



