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ABSTRACT
Deep neural network based steganalysis has developed rapidly in
recent years, which poses a challenge to the security of steganog-
raphy. However, there is no steganography method that can ef-
fectively resist the neural networks for steganalysis at present. In
this paper, we propose a new strategy that constructs enhanced
covers against neural networks with the technique of adversarial
examples. The enhanced covers and their corresponding stegos are
most likely to be judged as covers by the networks. Besides, we use
both deep neural network based steganalysis and high-dimensional
feature classifiers to evaluate the performance of steganography
and propose a new comprehensive security criterion. We also make
a tradeoff between the two analysis systems and improve the com-
prehensive security. The effectiveness of the proposed scheme is
verified with the evidence obtained from the experiments on the
BOSSbase using the steganography algorithm ofWOW and popular
steganalyzers with rich models and three state-of-the-art neural
networks.
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1 INTRODUCTION
In recent years, information hiding researchers have proposedmany
advanced steganographic algorithms to hide secret information into
a cover image. Most of the schemes embed secret messages in spa-
tial domain or frequency domain, such as HUGO [16], WOW [7],
S-UNIWARD [8], HILL [14], J-UNIWARAD [8] and UERD [6]. These
methods can minimize a heuristically-defined embedding distor-
tion while hiding secrets into a given image to lower the statistical
detectability. And based on an oracle used to calculate the detectabil-
ity map, a new steganography called ASO [13] is proposed which
can preserve both cover image and sender’s database distributions
during the embedding process.

In order to detect whether there is hidden information in an
image, the traditional method of steganalysis is divided into two
steps, high-dimensional feature extraction and machine learning
classifier training. An excellent steganalyzer is the Rich Model (RM),
which is usually used in the first step. There are several versions of
Rich Models such as Spacial Rich Model (SRM) [4] and its variants
[3, 19] in spatial domain and JPEG-SRM (J-SRM) [10] in frequency
domain. The most common choice of machine learning classifier is
Ensemble Classifier (EC) [11]. The combination of SRM and EC has
achieved excellent detection performance.

In the past two years, steganalysis based onConvolutional Neural
Network (CNN) models has made a tremendous progress. Com-
pared with the traditional methods, CNN-based steganalysis uses
various network structures to learn the effective features of images
to distinguish cover images and stego images. Qian [17] used a
CNN architecture with Gaussian activations function to construct
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a model for steganalysis. Xu [23] designed another CNN structure
with tanh activation function. Wu [20–22] proposed a CNN model
made full use of the advantage of residual network for image ste-
ganalysis. Ye [24] proposed a CNN model whose first layer was
initialled with the high-pass filter set used in SRM and introduced
a novel activation function TLU and a selection-channel-aware
scheme for CNN-based steganalysis. The performances of Ye and
Wu exceed that of SRM+EC.

Therefore, deep learning steganalysis has become a severe chal-
lenge to steganography. In fact, the tasks of neural networks for
steganalysis and networks for object classification are very similar.
The difference between them are the structure of networks and the
number of classification targets. Steganalysis is a binary classifica-
tion problemwhile object classification has multiple category labels.
Adversarial example is a technique that adds carefully crafted small
adversarial noise to the input to cheat the object classification net-
work producing incorrect outputs. Szegedy [18] and Goodfellow
[5] made a seminal work and put forward a method of adversarial
example construction based on neural network gradient. Then a
lot of related outstanding works came up [1, 12, 15].

In a steganographic process, let C be the cover image, S be the
stego and we usem to denote the secret message. An intuitive way
to combine the technique of adversarial examples with steganog-
raphy is to add adversarial noise nad to S in order to turn S into
an adversarial example Sad = S + nad . We assume that the object
network will judge S as cover successfully, but nad will prevent
the receiver from getting the messagem correctly. In a word, there
is some difficulty in applying technique of adversarial examples
directly to steganography.

In this paper, we propose an adversarial example construction
method suitable for steganography, that is, reverse the order of
adding adversarial noise and embedding messages. We first add
the adversarial noise to C to construct a robust enhanced cover
C ′, then embed the message m into C ′ to get S . In this way, the
receiver can extract m from S successfully. Our method can make
the adversarial example C ′ robust enough to withstand the influ-
ence of the message embedding process, so S will still be misjudged
by the deep learning classifier as cover. We have also considered
how to generate adversarial examples against multiple neural net-
works for steganalysis. However, in the process of constructing
the adversarial examples, modification would be introduced to the
images unavoidably. Actually, the larger modification would be
likely exposed to SRM+EC. We have analyzed how to control the
noise intensity to obtain a reasonable trade-off, so that the overall
security of steganography is improved.

The rest of this paper is structured as follows: In Section 2 we
review a method to construct adversarial examples and describe
details of our adversarial training methods. Section 3 describes our
experiment settings and results. Conclusions are drawn in Section 4.

2 STEGANOGRAPHY BASED ON
ADVERSARIAL EXAMPLES

In this section, we introduce the technique of adversarial examples
and describe our method of training robust adversarial cover images
for a given network. We also illustrate ways to construct adversarial
examples for multiple networks.

cover image C
noisy image 

Cn=C+n

backpropagation 

with neural network N

 performance test with network N

true label

gradient η

coefficient є

×+

Assign

random noise n

enhanced cover C’
adversarial 

noise nad

Figure 1: Diagram of the process of constructing enhanced
covers using the technique of adversarial examples.

2.1 Adversarial Examples
Similar to the classic “fast gradient sign method”[5], our method
to construct an adversarial example is as follows. For a given neu-
ral network N , we use θ to denote its parameters. Let C be the
input image, y be the target label associated with C (when we are
constructing adversarial examples against neural network for ste-
ganalysis, the target would always be set to 0 which means cover,
while 1 presents stego) and LN(θ ,C,y) be the loss of the network.
Fix θ and compute the gradient of LN as η:

η = ∇CLN(θ ,C,y), (1)

A perturbation that coincides with η will make C more easily be
judged as cover byN . Note that the η could be computed efficiently
by back propagation in the network. We can simply multiply the
gradient η by a coefficient ϵ and add it to C to get the adversarial
example C ′:

C ′ = C + ϵη. (2)
ϵ is related to the learning rate of deep learning. By choosing appro-
priate ϵ ,C ′ can misleadN successfully. The above are the construc-
tion procedures of adversarial examples. However, just misleading
the networks is far from enough.What we need are robust enhanced
covers that can withstand the message embedding processing in
steganography. We will discuss how to construct the enhanced
covers in Section 2.2.

2.2 Adversarial Examples Against Neural
Network for Steganalysis

In order to let cover images resist steganographic noise, we intro-
duce a model which can iteratively construct enhanced covers. The
model is shown in Figure 1. The process starts at cover imageC . We
define a noise vector, n, which has a considerable strength relative
to the steganographic noise that we are going to resist. We add
noise n to C to get Cn. Then a gradient η is obtained by back prop-
agation of network N . Multiply η by the coefficient ϵ to obtain the
adversarial noise nad . The sum of nad andC is the enhanced cover
C ′. Performance test on C ′ with N is the last step in this iteration.
If C ′ passes the test at this time, it will be used as an enhanced
cover for steganography, otherwise we will assignC ′ toC and start
the next iteration.

2.2.1 Construction Process. In order to constructC ′ successfully
and ensure the robustness, we usually need to go through several
loops to construct an enhanced cover.We set the number of required
training loops toq. To ensure the stability and strength of nad , there
would be k iterations in each loop. Given a cover image C (C0) and
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a neural network N with parameters θ in the i-th (1 ≤ i ≤ k)
iteration of a loop, we simulate the steganography with random
noise ni on Ci−1 (after i − 1 rounds of iterative calculation of C) to
get the noisy imageCni and then feed it toN . After that, we can use
the method described in Section 2.1 to calculate the i-th gradient
ηi . Here we add the adversarial noise nadi = ϵηi calculated on
Cni to Ci−1 to complete the i-th update iteration, which means
Ci = Ci−1 + nadi . The modification vector ∆ obtained from k
iterations can be expressed as:

∆=
k∑
i=1

(ϵ∇C+∆i LN(θ ,C + ∆i + ni ,y)), (3)

where ∆i is the cumulative modification vector after i iterations of

training, that is ∆i =
i∑
j=1

nadj . As i increases,C + ∆i will gradually

adapt to the noise interference and ηi will convergence to a vector
close to zero.

After k iterations, the pixel values would be rounded to integers
and bounded to 0 to 255 so that the pixels are saved as integers and
the overflows/underflows caused by changes are avoided. Then we
will test the performance ofC ′ (Ck ). The testing process is as follows.
Using the specific steganographic method and relative payload, we
embed v group random messages on C ′ to obtain v stego images
{S1, S2, ..., Sv }. When the probability that Si (1 ≤ i ≤ v) is judged
as a cover by N is greater than that of as a stego, Si misleads the
network N . C ′ pass the test of N only if the corresponding stegos
can misleadN with a probability greater than a threshold denote as
Th. OtherwiseCk will be assigned toC and begin the next loop of k
iterations. In this way,C ′ will converge to a stable, robust enhanced
cover. Finally, the messagem is embedded into the enhanced cover
C ′ to generate the stego object S , which will be send to the receiver.

2.2.2 Intensity Control. Using this method, we can implement
thewhite-box attack [9] on current neural networks for steganalysis.
Unfortunately, the noise introduced during the adversarial example
construction process will be exposed to SRM+EC.

Because the L2-norm would control the number and magnitude
of image pixel modifications and it could be easily utilized by the
network to calculate the gradient, we choose the L2-norm of the
modified vector as a regularizer by adding the L2-loss to the loss
function. LetT denote the number of pixels that need to be modified.
We want to control the modification of the image when L2-loss
exceeds T , so we use a threshold bounded loss as the regularizer
which is denoted as LT2 . The process of calculating∆will be changed
as follows:

∆=
k∑
i=1

(ϵ∇C+∆i (LN(θ ,C + ∆i + ni ,y) + εLT2 )), (4)

LT2 = max(∥∆i ∥2 −T , 0), (5)

where ε is the coefficient of LT2 , which is used to control the strength
of the regularization. With loss function (4), we can now construct
robust adversarial examples for a specific neural network and con-
trol the intensity of the modification vectors.

As we already know, adversarial examples can mislead the net-
work to recognize an input image as an object of another target

category. Because of the fact that adversarial perturbations are
highly aligned with the weight vectors of a model and different
models learn the similar functions in the stage of training to per-
form the same task, adversarial examples in object classification
networks have got a generalization across different models [5].
However, steganalysis is a binary classification based on image
residual feature extraction. It abandons the semantic information of
images, so the generalization of adversarial examples between dif-
ferent models is not strong. This conclusion has been confirmed in
our follow-up experiments. Then, how to get a cover image against
multiple neural networks is what we are going to solve in the next
subsection.

2.2.3 Against Multiple Neural Networks. In this subsection, we
focus on the problem of construction of adversarial examples against
multiple neural networks. The main framework still follows the
model shown in Figure 1. The differences lie in the method of
gradient calculation which is shown in Figure 2 and the part of
performance test.

For given h neural networks {N1,N2,...,Nh }, a stego image need
to mislead all h networks to pass the performance test. We con-
nect these h networks to form a joint network with one input and
multiple outputs. For the process of gradient calculation, we take
the weighted sum of the cross-entropy loss {loss1,loss2,...,lossh } of
each network as the total loss of all networks. Because we do not
know the adaptability of the current image to each network, the
initial values of weights {α1,α2,...,αh } are set to 1 and they will be
updated in the construction process. If the performance test of i-th
(1 ≤ i ≤ q) loop fails, the weights of failed networks will be updated.
For the failed network Nt (1 ≤ t ≤ h), the average probability that
stegos are judged as cover by network Nt after i training loops is
represented as pt,i . Then we use γt,i = 1 − pt,i as the update step
for αt which means that the loss weight of Nt would be updated
to αt + γt,i .

Similarly, we can control the intensity of adversarial perturba-
tions against multiple networks by adding LT2 to the total loss of
networks. Now the loss function of multiple networks is shown as
Equation (6):

TotalLoss = α1loss1+α2loss2+ · · · +αh lossh+εL
T
2 . (6)

With TotalLoss we can calculate C’s modification vector ∆ to con-
struct an adversarial example against multiple networks.

∆=
k∑
i=1

(ϵ∇C+∆i TotalLoss), (7)

3 EXPERIMENTS
In this section, we will validate the validity of the proposed model.
The image dataset used for all experiments is the BOSSbase ver.1.01
[2]. The BOSSbase contains 10,000 images with the size of 512×512
and is a standard database for evaluating steganography and ste-
ganalysis. Taking the speed of operation and the amount of data into
account, we cut each image of the dataset into four non-overlapping
256×256 images in our experiment. Therefore, we used a cropped
BOSS containing 40,000 images to organize our experiments.

We will get different parameters of a neural network if different
steganographic algorithms and relative payloads are utilized. Here
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Figure 2: Diagram of gradient calculation for multiple neural network.
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Figure 3: Testing error of adversarial examples by single net-
work under steganography ofWOWwith a relative payload
of 0.4 bpp.

we choose theWOW algorithm under relative payload 0.4 bpp as an
example to generate 40,000 stego images. 35,000 randomly selected
pairs of cover and stego images are used to train neural networks for
steganalysis and SRM+EC, while the other 3000 pairs as validation
dataset and the remaining 2000 pairs as testing set. Our experiments
use the state-of-the-art neural networks for steganalysis of spacial
images, such as Xu’s [23], Ye’s [24] and Wu’s [22] networks. Each
network uses an input image size of 256×256, while all other settings
are based on the author’s source code or description in their essays.

In all experiments, the learning rate is set to 1.0. The number of
quantification loops per image, q, is set to 50 and the number of
iterations in a loop, k , is 30. The number of testing stego images,
v , is set to 300 and the value of Th is 90%. The output loss is cal-
culated with cross-entropy. ε is set to 5 × 10−6. In order to explore
the effect of different modified intensities, we use λ= T

256×256 as
the intensity parameter of the modification and to represent the
percentage of image pixel modifications. Because we are trying to
generate enhanced secure covers that can accommodate unknown
steganographic noise, n is set to a random matrix of -1,0 and 1.

3.1 Against Single Network
For each network, we use 2000 testing images to construct adver-
sarial images for each λ. Then the corresponding network tests
the stegos generated by these adversarial images. In most of our
experiments, the training images used by networks and SRM+EC
are original cover images in BOSSbase and stegos generated by
WOW directly. In other words, in most experiments, we didn’t use
the classifiers retrained with adversarial stegos, and thus our ap-
proach does not have an impact on the false alarm rate. Therefore
we evaluate the performance only with the probability of missed
detection PMD.

Figure 3 shows the testing error of adversarial examples. As
λ increases, the performance gets better, but different networks
have different effects. For Wu’s network, due to the use of the
residual network, we only need to change less than 1% (in fact
only 0.2%) of the pixels to make an image a satisfactory adversarial
example. However, for the Xu’s network, we have to introduce a
large number of changes to the image to achieve similar results.
Modifying 2% of the pixels of an image can make the missing
detection probability of Ye’s network reach 80%. So when λ is large
enough, the constructed images with secret messages embedded are
difficult to be detected by specific neural network. This result means
that we have successfully constructed adversarial cover images for
a single neural network. The average number of iterations of each
image is 1.31 and it takes 27.8 seconds on the GPU of NVIDIA Tesla
K80.

In order to explore whether there exists generalization in our
constructed images, we input images made for a specific network
to other networks for steganalysis. The testing result is shown in
Figure 4. G in the figure means the networks which construct the
image and T means the testing networks. It can be seen is that the
generalization of adversarial examples is very limited. So although
the images have been modified, they still cannot effectively resist
other networks.

3.2 Against Multiple Networks
Defending as many defensive systems as possible is a goal of stenog-
raphers. Similarly, constructing an adversarial example that simul-
taneously resists multiple neural networks for steganalysis is an
important part of this paper. In order to verify the correctness of
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Figure 4: Testing error of adversarial examples by other net-
works under steganography ofWOWwith a relative payload
of 0.4 bpp.
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Figure 5: Testing error of multiple networks’ adversarial ex-
amples under steganography of WOW with a relative pay-
load of 0.4 bpp.

the method described in Section 2.2.3, we use multiple λ values
to construct adversarial examples for multiple networks. The vali-
dation dataset is used to construct adversarial images for each λ.
Each network then detects the images. It is important to emphasize
that we use a strict definition of multiple networks testing error
rate PMul

E , which represents the probability that all networks are
misled.

The testing error of each network and multiple networks is
shown in Figure 5. Multi-network adversarial examples have a
very good performance for all networks and as λ increases, PMul

E
can raise from 7.0% to 67.3%. And during the construction of the
adversarial examples, the average number of iterations required for
each image is 9.93, which will take 583s on a GPU of NVIDIA Tesla
K80.

3.3 Tradeoff With SRM+EC
Since SRM+EC is an important and powerful steganalysis system,
we have to consider the impact of the construction process of the
adversarial images on it. We put adversarial images for multiple
networks of different λ into trained SRM+EC. Unfortunately, while

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PMD
o

 (0.154%,20.65%)

Multiple Networks

SRM+EC

Figure 6: Testing error of multiple networks’ adversarial ex-
amples by multiple networks and SRM+EC under steganog-
raphy of WOW with a relative payload of 0.4 bpp.

facing SRM, the safety of the modified cover images gradually de-
creases as λ increases as is shown in Figure 6. It shows that the
images we construct will reduce the performance against steganal-
ysis of high-dimensional features, but we should apply the “Cask
Effect Theory” to evaluate the security of steganography algorithms.
In other words, if there are several steganalyazers, the security of
steganographic algorithm should be defined by the minimum test-
ing error rate. Herein, we define the security of the images as PBE ,
which is the minimum testing error rate of both systems. Our ob-
jective is to find a suitable λ that can maximize PBE and is stated in
Equation (8):

maximize
λ

PBE ,

subject to 0 ≤ λ ≤ 1,
(8)

where PBE = min(PSRME , PMul
E ). From Figure 6 we can see that,

increasing λ from 0% to 0.154% can increase PBE from 7.0% to 20.6%
which is the highest value that PBE can reach and the correctness of
the result has been verified on the testing dataset.

In addition to the construction of enhanced secure covers, we
can also design a scheme against both neural network and SRM+EC
steganalysis by combining the framework of minimizing distortion
steganography with the proposed adversarial example technique.
For instance, denote the adversarial noise on the ith pixel as ni, and
the ±1 distortion on the ith pixel as ρ+1i and ρ−1i respectively which
is defined with a steganographic algorithm such as WOW or HILL.
If ni is positive, we will reduce the value of ρ+1i according to the
magnitude of ni and vice versa. Stegos generated from the modified
distortion, which is called the "adversarial distortion", will have
the ability to resist SRM+EC while misleading neural networks
for steganalysis. Some experimental results on the adversarial dis-
tortion steganography (ADS) are shown in Table 1, in which the
ADS-WOW is constructed with the adversarial distortion on the
multi-CNN based steganalyzer. It can be seen that, with adversarial
distortion, we can not only increase the ability of WOW to resist
CNN based steganalyzers but also increase its ability to resist SRM.
We also retrained SRMwith stegos generated by ADS, and labeled it
as SRM ( retrained). As shown in the last line of Table 1, retraining
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SRM significantly reduces the PE on detecting ADS, but suffers
from greatly increase of PE on detecting the original WOW.

Table 1: Testing error of WOW and ADS-WOW under differ-
ent steganalyzers with a relative payload of 0.4 bpp

Error Rate(%) WOW ADS-WOW

Steganalyzer PMD PFA PE PMD PFA PE
Xu’s CNN 25.54 26.60 26.07 86.71 26.60 56.66
Ye’s CNN 21.34 18.55 19.95 74.26 18.55 46.41
Wu’s CNN 28.04 35.17 31.61 75.34 35.17 55.26
Multi-CNN 7.01 58.43 32.72 56.28 58.43 57.36
SRM 25.23 25.77 25.50 47.81 25.77 36.79
SRM (retrained) 23.90 44.72 34.31 13.33 44.72 29.03

4 CONCLUSIONS
In this paper, we propose a method of iteratively constructing ro-
bust enhanced cover images that can resist the neural networks for
steganalysis and the intensity of adversarial noise is controllable.
The stegos, obtained by using the constructed images as cover,
can effectively avoid the detection of network-based steganalyz-
ers. Besides, we also consider how to simultaneously fight against
network-based steganalyzers and SRM+EC and define the compre-
hensive security criterion PBE under the two systems. We have made
a tradeoff between the two systems and evaluated the performance
of our model using the BOSSbase dataset, the WOW steganogra-
phy method and three state-of-the-art networks. Results show the
effectiveness of our method and comprehensive security level has
been improved.
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