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Abstract

We describe an effective and efficient strategy building steganography detector for patch synthesis based

steganography, one case of which is reversible texture synthesis based steganography method proposed by

Wu et al. [12]. By exploiting the observation that steganography destroys optimization of matching extent

between the synthetic patch and optimal candidate patch, we reconstruct the two patches from an overlapped

region to extract the existence of optimality, which are distinct between cover and stego images, to form

features. Support vector machine (SVM) is implemented for classification. Meanwhile, a variant of Wu et

al.’s steganographic method is proposed with reinforced security, by padding redundant regions carrying

no message around the periphery of the synthesized image and generating additional candidate patches to

increase capacity. Experiments demonstrate that the modified algorithm offers not only better resistance

against the state-of-the-art steganalysis methods and steganalytic attack we developed, but also a larger

embedding capacity.

Keywords: Texture image, steganalysis, texture synthesis, steganography.

1. Introduction

Steganography is a technique for covert communication and privacy protection, which is now a fairly

standard concept in computer science. The process of modern steganography is that a steganographic system

embeds hidden content in unremarkable cover media so as not to arouse the suspicion of an eavesdripper [1].

Currently, the majority of image steganographic methods adopt natural images as cover images to embed

data, where the most successful approach to design content adaptive steganography is based on minimizing

the distortion between the cover and the corresponding stego object, which is acquired by assigning a cost
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of changing each cover element. Syndrome-Trellis Codes (STCs) [2] are used to embed messages after

minimizing the total distortion as a sum of costs of all modified elements. The principle of distortion’s

definition is that pixels that are easily modelable in regions should be assigned high costs. Methods such as

HUGO [3], WOW [5], UNIWARD [7], HILL [8], MiPOD [9] and CPP [23] are brought up successively based

on the principle.

However, steganography may be attacked by steganalysis which aims to expose the presence of hidden

data. In general, steganalytic approaches are classified into two categories: specific and universal. The former

detects the presence of a message embedded by a particular steganographic algorithm, while the latter targets

at message detection on comprehensive steganographic algorithms with varying embedding strategies. As

for universal image steganalyzers, much have been well-studied in the literature. It is noteworthy that

since plenty of practical steganographic algorithms perform embedding by applying a mutually independent

embedding operation to all or selected elements of the cover, the effect of embedding is equivalent to adding

to the cover an independent noise-like signal called the stego noise [4]. Steganalyzer’s features are usually

generated by exploiting correlations between the predicted residuals of neighboring pixels[10]. Fridrich et

al. [17] and Ker [18] propose methods specifically for the detection of LSB replacement. Early feature-

based steganalysis algorithms used only a few dozen features, e.g., 72 higher order moments of coefficients

obtained by transforming an image using quadratic mirror filters [16]. The SPAM [4] set for the second-order

Markov model of pixel differences has a dimensionality of 686. Whereafter, SRM [6] is proposed with 34,671

dimensions to have a better performance in steganalysis, and maxSRM [25] forms the co-occurrence matrices

considering the maximum estimated modification probability of a group of pixels as a weight coefficient, for

which the steganalytic feature is inclined to extract features from targeted region.

Since the demand for synthetic texture images boosts greatly with the development of computer graphic,

applications of which include online games, cinefex, 3D roads, virtual reality, etc., texture images can serve

as favorable carriers for secret message. The first attempt to design texture synthesis based steganography

appeared in [19, 20] by Otori and Kuriyama with pixel-based texture synthesis combining data coding.

Secret messages are encoded into colored dotted patterns picked from textures and they are directly painted

on a blank image. The rest of the pixels are filled using pixel-based texture synthesis method, where the

capacity is determined by the dotted patterns. Wu et al. [12] proposed a reversible texture synthesis based

steganography method, which resamples a smaller texture image and synthesizes a new texture image with

a similar local appearance and an arbitrary size. Message is embedded by the selection of candidate regions

generated from the source image. Qian et al. [21] proposed a robust steganography that can counter JPEG

compression at the cost of low capacity.

The design of texture image features is more challenging since it has similar complexity between cover and

stego texture images. As far as we know, steganography will break down the correlation among adjacent

pixels, and it is more noticeable to find the modifications in smooth areas than in textural areas after
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steganography. Therefore, it will be less effective for steganalysts to extract prominent features of pixels in

texture areas. Zhou et al. [22] proposed a specific steganalytic algorithm on Wu’s method by inspecting

mirroring region and reconstructing the original texture image. However, steganographers can fix the flaw

by finding a substitute for mirroring region to avoid information leakage during steganography. To the best

of our knowledge, there is no literature that related texture image with steganalysis.

The revised method of Wu [12] represents state-of-the-art texture steganography. We further analyze

the approach [12] through specific steganalysis to evaluate its security, explore possible security holes and

put forward security-enhanced steganography on texture images.

In this paper, we propose a specific steganalytic algorithm for determining whether the synthesized image

generated by the method proposed by Wu et al. contains message, which is now a superior steganographic

algorithm on texture images. Such steganography makes the optimality between two adjacent patches to

be synthesized drop to a certain extent, while it is expected to be optimal without steganography. We have

improved the expression by the following modifications: Specifically, we reconstruct the original adjacent two

patches from synthesized regions, and exploits the suitability degree of matching between them to conduct

steganalysis. Thus we coin a new acronym ReSid standing for Reconstructed Similarity Degree detector.

We also propose a security-enhanced texture steganographic algorithm with improved undetectability and

larger capacity over Wu et al.’s. The new algorithm pads redundant regions carrying no message around

the periphery of the synthesized image by identical image quilting technique [13]. It is nearly impossible

for attackers to estimate the sizes of redundant regions and determine the actual size of synthesized image

and then implement steganalysis algorithm that we put forward. We even improve the maximum capacity

of a single patch by generating more candidate patches to form a larger candidate set. Experimental results

show that the proposed addition of redundant regions offers improved performance against the proposed

steganalytic attack and traditional state-of-the-art steganalytic methods.

The rest of the paper is organized as follows: Section II starts with some notations, a brief review of Wu

et al.’s texture synthesis based steganography and proposed steganalytic method. Section III illustrates the

security-enhanced steganographic algorithm. Some implementation issues and performance comparison are

discussed in Section IV. The conclusions and further directions are drawn in Section V.

2. Steganalytic Algorithm on Wu et al.’s Method

In this section, we first briefly describe the texture steganographic algorithms by Wu et al. [12] and

then present in detail the proposed steganalytic method against the algorithm. Throughout this paper, the

calligraphic font will be used solely for sets. Vectors will be always typeset in boldface lower case, while we

reserve the blackboard style for matrices (e.g., Aij is the ijth element of matrix A).
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2.1. Wu et al.’s Texture Synthesis Steganography

This section contains an overview of candidate sorting based steganographic algorithm using texture

synthesis [12]. We denote the source image by A, the synthetic image by S and the embedded message by

m. A patch represents a user-specified block of the source image, the size of which is denoted by Pw×Ph, as

shown in Figure 1(a). A patch contains the central kernel region with a size of Kw ×Kh and the boundary

region with a depth of Pd. We denote the size of A by Sw × Sh and the size of S by Tw × Th.

The course of steganography is elaborated as follows. First, divide A into same-sized non-overlapped

kernel blocks. A kernel-centered expansion with a depth of Pd is operated, as illustrated in Figure 1(b). The

four boundaries of a patch are replicated from the nearby kernels. The expansion on the boundary of A is

implemented with a mirroring operation. To synthesize an image with a given size, a random padding step

is first carried out by employing the total source patches with a user-specific secret key, as shown in Figure

1(c). The number of patches nT in S is acquired by

nT = Tpw × Tph =

(

Tw − Pw

Pw − Pd

+ 1

)(

Th − Ph

Ph − Pd

+ 1

)

. (1)

And then, in A, a sliding window is employed with stride size of one pixel following the scan-line order to

create candidate patches to pad into S. The number of candidate patches nC are derived by

nC = (Sw − Pw + 1)(Sh − Ph + 1), (2)

where each candidate patch is marked with a sequence number.

Image quilting technique [13] is adopted to reduce the visual artifact during the synthesis period, which

targets to find a seam line between two blocks on the pixels where the two textures match best. We

denote two regions by Bl and Br that overlap along their vertical direction respectively, as shown in Figure

1(e). The synthesized region is called an OverLapped Region (abbreviated to OLR). Let D denote some

perceptual distance between two patches, which is a normalized sum of squared differences metric. Denote

vertical seam line by q = {qj |j = 1, 2, ...,Kh}, and the minimal one q̂ is acquired by

q̂ = argmin
q

Kw
∑

j=1

D(qj , j)
2

s.t.|qj − qj−1| ≤ 1.

(3)

The shortest path problem can be solved by dynamic programming algorithms. Similar procedure can be

applied to horizontal overlaps.

Virtually the process of padding is a zigzag pattern for message embedment, as is shown in Figure

1(d). Since there exist OLRs when padding a candidate patch to one blank space in S in an iterative way,

descending sort of the mean square error (MSE) of the OLRs between the candidate patch and synthesized

area is obtained to form a rank table. The smaller the MSE, the more similar the candidate is to the
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(a) (b)

(c) (d)

(e)

Figure 1: The structure of patches and kernels in a source image A and a synthetic image S. (a) A patch consists of a kernel

and boundary regions. (b) Source patches generated by expanding or mirroring the boundary regions of kernel blocks in A.

(c) S after a random padding step. (d) Zigzag padding pattern of synthesizing S. (e) Two regions Bl and Br from two patches

to be synthesized together using image quilting technique. The OLR represents the spliced region.
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Figure 2: An overview of feature extraction and steganographic texture image detection flowchart. B
′

l
, B′

r and B′ are recon-

structed from OLRs to simulate the process of image synthesis. We then obtain a re-ranking MSE list to get a corresponding

rank. Traversing all the OLRs, we aggregate all the ranks to form a rank set. Features of the proposed steganalyzer are

extracted from the rank set, followed by a linear SVM for cover/stego image classification.

synthesized area. After we produce the rank table above, the decimal number of the embedding message

decides the selection of the candidate patch whose rank equals the value of message.

As for the receiver side, a legal recipient can recover A with the secret key. By simulating the process of

synthesizing S, candidate patches and a new synthetic image S′ are generated. In a zigzag way of padding

candidate patches onto S′, each time we compute the MSEs of OLR between the current patch and candidate

patches, and generate a sequence of MSE values in descending order. On the other hand, we calculate the

MSE of the OLR between the electee in S with the current patch. By observing the position of the patch in

the sequence, we extract the message carried on this electee. Thus we retrieve message m. As for attackers

without key, they cannot recover A, hence can hardly get any message directly.

For brevity, Wu et al.’s method, Candidate Sorting based texture synthesis steganography is abbreviated

to CASO.

2.2. Proposed Steganalytic Algorithm

CASO is insecure for its construction, which may be attacked by eavesdroppers. Since steganography

destroys the optimization of matching degree between the synthetic patch and optimal candidate patch, by

reconstructing the two patches from synthesized images and extracting the existence of optimality, we can

conduct efficient steganalysis. It is noteworthy that five shapes1 of OLR occur in S, where each shape can

be decomposed to several rectangle regions. If every rectangle region is the optimized matched patch, then

the shape possesses optimality. What it comes down to is to capture the existence of optimality between

two rectangle patches.

CASO employs Bl as the fixed region to be synthesized and Br selected from sorted candidate patch

list B = {B1,B2, ...,BnC
} with MSE metric. The chosen B∗ is decided by the rank of sorted MSEs equal

the value of the message. Suppose that attackers are able to extract the hidden message that equals the

1The five shapes of OLR are not shown for lack of space (see [12]).
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(a) (b)

(c) (d)

Figure 3: (a) Structure of synthetic images. Squares represent kernels that are not modified. (b) A sliding window with a size

of Kh × Pd and a stride size of one pixel in a kernel. (c) The chosen candidate patch B
∗ is located over 4 kernel regions in a

source image. (d) Br is separated into two parts (Bdr and Bur) in a synthetic image.
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rank given the same Bl and B, we aim at recovering Bl and B. However, it is impossible to reconstruct the

process of synthesization losslessly. For attackers, since they do not own the key to find the source patches

generated by expansion or mirroring, potential B cannot be recovered to the original version; since Bl and

Br have been synthesized together, they cannot recover Bl and Br directly. Next we describe the recovery

of B and Bl individually.

It is clear that B can only be generated from A; without key, B can no longer be generated. Thus

we use a substitute to approximate B to reproduce the process of MSEs’ numeration, denoted by B′. A

sliding window with a size of Kh × Pd (assume that Kh and Pd are given) and a stride size of one pixel is

employed in all the kernels collected from S, producing large amount of candidate regions, which represent

the approximation of candidate patches, as shown in Figure 3(a, b). We denote the number of candidate B′

patches by n′

C . It is evident that a larger relative payload will cause a larger rank in the statistic point of

view, making the substitution feasible.

Most of Bl and Br can be recovered, yet not directly. The keystone and difficulty of this paper are

the reconstruction of Bl and Br. Owing to the fact that a sliding window moves over A with a stride of

one pixel, the chosen candidate patch B∗ may be located over 4 kernel regions in most instances, which is

shown in Figure 3(c). The left boundary Br of the patch is made up of Bur and Bdr in A. Since source

patches have already been randomly padded into S, in most cases, Br is located in two parts in S, that is

the upper region Bur and the lower region Bdr, as shown in Figure 3(d). Therefore, the reconstruction of

Br is equivalent to the process of finding residual chips Bur and Bdr in the kernels from S. With that said,

we search some cells of Bur or Bdr in kernels to find matched ones, and extend them to make up B′

r. The

recovered B′

r is same with Br in most cases. Bl is recovered in the same way.

After we reconstruct B′

l and B′, we are able to get an approximative rank from each OLR and form a

rank set R = {ri|i = 1, 2, ..., N}, where N is the amount of ranks. Parenthetically, two types of priority

locations for strategy of patch distribution in [12], L1 and L2 based resolution, are treated in the same

manner. As far as we are aware, a cover synthetic image has all near-zero ranks while a stego synthetic

image has much larger ranks. This is why we take the ranks as features to distinguish stego images from

cover images. We aggregate the ranks and extract features to implement support vector machine (SVM)

training and classification. Four statistics including mean (µr), median (mr), variance (δr) and kurtosis (kr)

of the ranks are chosen for representation. These statistics are exploited to form the feature vector vr,

vr = [µr,mr, δr, kr]
T , (4)

representing a given synthetic image.

If we are unaware of Pw, Ph and Pd, a traversal process is implemented first to find the three scaling

parameters. To gain possible values, Eq. (1) is adjusted to solve an integer programming problem with a
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linear equations group:

(Pw − Pd)× Tpw + Pd = Tw (5)

and

(Ph − Pd)× Tph + Pd = Th. (6)

Since they are underdetermined linear equations, there are several possible solutions. By traversing all

the solutions, we have t groups of {Pw, Ph, Pd}, where the matched group of parameters is homologous to

the situation that kernels patitioned from synthetic images are from the original kernels or formed by four

kernel fragments in source images that contain no OLRs, as shown in Figure 3(c, d). In comparison, kernels

generated from mismatched groups more or less contain OLRs. Such evaluation is effective in discriminating

cover images from stego images.

The procedure of steganalysis contains five steps, as shown in Figure 2. In Figure 5(a), the CASO-ReSid

pair (black rhombic solid line) shows the effectiveness of proposed ReSid feature. We have provided the

source codes for steganalysis on the website2.

3. Security-Enhanced Texture Steganography

In a bid to improve the anti-steganalytic properties of CASO algorithm, we develope a steganographic

algorithm utilizing padding technique with redundant areas carrying no data. The four peripheries of

synthetic image are broadened with key-specified depths respectively.

Regarding capacity, security and generality, the following insights are given:

• Instead of synthesizing texture images with precalculated sizes under fixed pattern, we are able to set

synthesized texture image with arbitrary size and preserve high steganalysis-resistant ability.

• Since CASO uses sliding windows to generate a certain number of candidate patches to carry mes-

sages which are restrained by sizes of patches and source image, the maximum embedding payload is

blog2 nCc. By considering that any synthesized patch by two original similar patches are similar to the

original ones but not identical, we augment the quantity of candidate patches by synthesizing similar

candidate patches to increase the embedding rate.

3.1. Synthesized Image with Arbitrary Size

Additional redundant regions contribute to the security of synthesized texture images, since it is hard

for attackers to estimate the size of patches and depth of kernel to further implement steganalysis. Hence,

one way to invalid steganalysis is adding redundant regions around the periphery of the synthesized image.

2Available: http://home.ustc.edu.cn/∼zh2991/
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Figure 4: Anticipated synthesized image R with redundant regions around original synthesized image S. Peripheries are in

order generated by MRF-based image quilting method.

Assume the anticipated synthesized texture image R (slightly larger than S) by Rw × Rh, thus the total

accessorial width is L = (Rw−Tw)+(Rh−Th). To increase the width, two regions are synthesized, as shown

in Figure 4, where the redundant widths of left, right, up and down side are Ll, Lr, Lu and Ld respectively.

Markov Random Field (MRF) is used for texture synthesis. We assume that the probability distribution

of values for a region given the values of its spatial neighborhood is independent of the rest of the image. Let

Bs ∈ B be the patch to be synthesized. The neighborhood of Bs is modeled as several rectangles windows

around that region. Let w(Bs) ⊂ S be the adjacent regions of Bs. To synthesize patch Bs, we first construct

an approximation to the conditional probability distribution P (Bs|w(Bs)) and then sample from it.

Based on our MRF model we assume that Bs is independent of S\w(Bs) given Bs. The closest match

B∗

s is acquired by

B∗

s = argmin
w

D(w(Bs), w), (7)

and the patch is padded on R. Likewise, other peripheries are padded until R is synthesized. Of course,

the artifacts of peripheries are fairly mild in that the best matched patches are synthesized.

3.2. Capacity Enlargement

The relative embedding payload γ is measured in bit length of message per patch (in bpp), which is

related to the performance of steganography. The maximum γmax of CASO algorithm depends on the size

of source image and depth of kernel region, which is γmax = blog2 nCc. To enlarge the capacity, quantity of

candidate patches should be increased without causing certain artifact. Under the assumption that patches

with similar complexity share approximate texture structures, one solution is to generate additive candidate

patches from the set of existing candidate patches B.

Formally, we cluster the elements of B to create a new set Bs with more candidate patches. Let nD be the

number of elements in the subset representing the degree of cluster, and the subset is denoted by Rsi ⊂ B,
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Rsi = {Bi·nD+1, Bi·nD+2, ..., B(i+1)nD
}, i = 1, 2, ...,

⌊

nC

nD

⌋

. Texture synthesis is implemented between any

two elements in each subset Rsi , and the total quantity of candidate patches nS is obtained by

nS = nC +

⌊

nC

nD

⌋(

nD

2

)

. (8)

Thus the maximum embedding rate γmax = blog2 nSc, whose upper bound approaches

⌊

lim
nD→nC

log2 nS

⌋

≤

⌊

lim
nD→nC

log2

(

nC +
nC

nD

(

nD

2

))⌋

= log2 [nC(nC + 1)]− 1.

(9)

To adequately express the message in a patch, we have the following limiting constraint:

2γ ≤ nS ≤ nC +
nC

nD

(

nD

2

)

. (10)

The decision threshold n∗

D is given by:

n∗

D =

⌈

2γ+1

nC

− 1

⌉

=

⌈

2γ+1

(Sw − Pw + 1)(Sh − Ph + 1)
− 1

⌉

.

(11)

Thus given an arbitrary embedding rate γ, degree of cluster n∗

D can be decided.

The total capacity C of the anticipated synthesized texture image R is

C =

(

nT −
Sw × Sh

Kw ×Kh

)

γ, (12)

and the enlarged capacity ∆C compared with that of CASO is

∆C =

(

nT −
Sw × Sh

Kw ×Kh

)

(blog2 nSc − blog2 nCc) , (13)

with the overhead of accessorial width L which takes up additional area ∆S = Rw ×Rh − Tw × Th.

Notice that the enlarged synthetic image R has more patches than S, showing that with the same length

of embedded message R has a slightly smaller relative payload γ̂, which has to be aligned to the original

relative payload γ. The calibrated relative payload is obtained by

γ̂ =
Sw × Sh

Rw ×Rh

· γ. (14)

It is stated in [12] that no significant visual difference exists among pure synthetic image and stego

synthetic textures with varying relative payloads. Since the visual artifact around the image periphery is

milder than other region with best fit regions padded, we can infer that the anticipated synthesized texture

images preserve equal visual quality. We coin a new acronym CASY standing for Candidate Synthesis

based texture synthesis steganography.

11



  

3.3. Security Analysis

In this subsection we discuss the probability of hitting the exact patch size {Pw, Ph, Pd}. Once these

parameters are perceived, with the proposed steganalytic algorithm, CASY algorithm can be broken down.

The eavesdroppers try to crop out redundant width L0 of image periphery to further conduct steganalysis,

where the constraint condition lies on that the scope of L ≥ L0. The probability of revealing the correct S

from R is calculated by

Ps(L) =
1

1 + 4 + 42 + ...+ 4L
=

3

4L+1 − 1
. (15)

As aforementioned, t candidate scaling parameters are concatenated to each {Pw, Ph, Pd}, causing the

ultimate probability of breaking down CASY:

Pb(L) =
1

1
Ps(L)
∑

i=1

ti

=
1

4L+1−1
3
∑

i=1

ti

, (16)

where ti is the number of candidate sizes of the i-th tentative synthetic image.

We present an example to provide more insight for the security of CASY. Suppose L = L0 = 16, and on

average 4 widths increase of pixels on each periphery of synthetic image is created, and mostly smaller than

Pd, which has an opportunity of Ps(16) ≈ 2 × 10−10 to retrieve the exact synthetic texture image. Since

ti ≥ 1 as an integer varies dissimilarly among sizes, Pb(16) < Ps(16), manifesting that such a brute-force

attack on acquiring the accurate {Pw, Ph, Pd} is fairly difficult.

In addition, mismatched case: locating the correct position with biased size of S is experimentally de-

scribed in Section IV-C, the result of which shows that only the accurately estimated parameter {Pw, Ph, Pd}

and L provide the most accurate steganalysis results.

4. Experiments

The performance of ReSid against Wu et al.’s method CASO and the security-enhanced version CASY

is validated in Section IV-B and Section IV-C, respectively.

4.1. Setups

1) Database: All experiments are conducted on Brodatz Textures [14]. First, we use the CASO stegano-

graphic method to generate synthetic images. Since texture images are comparatively rare in Brodatz

Database, we create some images by cropping and zooming techniques. Finally, we take 10,000 proper

images (128× 128) as source images2. Though CASO tests four texture images that are color images, it is

uninfluential to the steganalysis if we consider grayscale images, since a preprocessing including transforming

color images into grayscale images or adopting one color channel is available. Let us suppose that we wish to

design a synthesis and embedment mechanism with a relative payload of γ varying from 1 bpp to 13 bpps,
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10,000 embedded synthetic images with each relative payload and identical number of synthetic images that

are not embedded with messages are generated. In the procedure of texture image steganalysis, we use the

same parameters employed in CASO: Tpw = Tph = 488, Pd = 8 and Pw = Ph = 48. And the configuration

makes nC = 6, 561.

Table 1

Detectability in Terms of PE Versus Relative Embedding Payload Size in Bits per Patch (bpp) for CASO and CASY

on Texture Database with Three Feature Sets

Feature
Embedding

method
1 3 5 7 9 11 13

SPAM
CASO .4288 ± .0016 .4350 ± .0015 .4669 ± .0017 .4588 ± .0021 .4550 ± .0028 .4509 ± .0015 /

CASY .4630 ± .0012 .4422 ± .0015 .4720 ± .0022 .4811 ± .0020 .4670 ± .0015 .4637 ± .0015 .4570 ± .0014

SRM
CASO .3116 ± .0035 .3138 ± .0051 .3105 ± .0067 .2451 ± .0052 .1929 ± .0023 .1413 ± .0020 /

CASY .3935 ± .0023 .3406 ± .0042 .3741 ± .0161 .3180 ± .0109 .2526 ± .0061 .1908 ± .0051 .1252 ± .0041

maxSRM
CASO .2402 ± .0017 .2009 ± .0042 .1831 ± .0057 .1153 ± .0043 .0739 ± .0012 .0453 ± .0017 /

CASY .3935 ± .0023 .3406 ± .0042 .3741 ± .0161 .3180 ± .0109 .2526 ± .0061 .1908 ± .0051 .1252 ± .0041

ReSid
CASO .4240 ± .0014 .2700 ± .0033 .1840 ± .0031 .1400 ± .0101 .1110 ± .0067 .0500 ± .0032 /

CASY .4970 ± .0031 .4870 ± .0043 .4640 ± .0021 .4450 ± .0024 .4200 ± .0032 .3880 ± .0019 .3390 ± .0059

2) Training and Classification: The texture image steganalysis is evaluated empirically using binary

classifiers trained on a given cover source and its stego version embedded with a fixed relative payload.

Five-fold cross validation of SVM is employed to conduct training and classification. Each test is repeated

10 times, and results are averaged to evaluate the final performance. Soft-margin SVMs with the Gaussian

kernel k(x, y) = exp(−γ‖x − y‖22), γ > 0 is used. The values of the penalization parameter C = 5 and the

kernel parameter γ = 0.5. Our experiments show that Radial Basis Function (RBF) SVM has competitive

results, and LIBSVM [15] is utilized here as the classifier for low computing complexity.

We compare results of our features on the generated database with the popular steganalytic features,

SPAM [4], SRM [6] and maxSRM [25]. The classifier is implemented using the ensemble [11] with Fisher

linear discriminant as the base learner. A number of 5000 randomly selected cover images and their stego

counterparts are used for training, while the rest 5000 cover images and their stego counterparts are used for

testing. The security is quantified using the ensembles out-of-bag (OOB) error EOOB, which is an unbiased

estimate of the minimal total testing error under equal priors [11],

PE = min
PFA

1

2
(PFA + PMD), (17)

where PFA and PMD are the false-alarm probability and the missed-detection probability respectively.

4.2. Steganalytic Algorithm Validation on CASO

We conduct an adaptive search approach to find {Pw, Ph, Pd}. By solving Eq. (5-6), we get candidate

scaling parameters T = {(Pw, Ph, Pd)|(15, 15, 4), (15, 26, 4), ..., (108, 108, 32)} and ‖T ‖ = 150. The result

2Texture Database is open to download: http://home.ustc.edu.cn/∼zh2991/
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Figure 5: (a) Detection error PE for CASO and CASY schemes when steganalyzing with SPAM [4], SRM [6], maxSRM [25] and

ReSid for varying relative payloads. The plot corresponds to the results given in Table I. (b) Global detection error Global PE

for CASO and CASY schemes for varying relative payloads.
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is effectual with a detection accuracy of greater than 97% finding the matched scaling parameters in both

cover and stego images.

Table I shows the average total probability of error PE and its standard deviation for a range of relative

payloads for CASO and CASY steganographic schemes described in the previous section. The proposed

detector ReSid provides a substantial improvement in detection accuracy over SPAM, SRM and maxSRM

feature sets with a linear SVM classifier (see solid lines in Figure 5(a)). For small relative payload with

γ = 1, ReSid is not as effective as SRM, which is most likely because SRM’s 34,671-dimentional feature set

collects more comprehensive minus difference between cover and stego image than ReSid’s 4-dimentional

feature set. Throughout the figure, the diversity between cover and stego is imperceptible to SPAM feature,

the reason of which might be that the second-order Markov residuals are insensitive to the discrepancy of

the two carriers, causing the detection error to be around 45%. Compared with SRM, the performance

improvement of ReSid averaged over relative payloads is 5.6%, exhibiting valid and impact feature set over

the CASO algorithm.

To make a fair comparison when we consider the scaling parameter as prior knowledge, maxSRM should

replace SRM and be considered. We define the map of maxSRM by the following rule: the weights of kenel

regions are set by 0 and weights of synthesized regions are set by 1. From Figure 5(a), we can conclude that

once steganalyzer has prior of synthesized regions, the detection accuracy increases; our proposed ReSid

does not exceed maxSRM but still share near performance when payload is large, but since the dimension

of features of ReSid vs. maxSRM is 5 vs. 34,671, the average computation time of maxSRM is 1,455 times

much longer than ReSid over varying payloads, showing the superiority of proposed method. As for CASY-

maxSRM, map is difficult to acquire and thus the performance of CASY-maxSRM is similar to CASY-SRM.

From another perspective, both scaling parameter estimation and ReSid utilize global matching of similar

cells to form synthesized region, and to some extent could be set down as a whole.

4.3. Security-Enhanced Steganographic Algorithm Validation

Figure 6 displays visual quality of cover and stego synthetic images generated by CASY algorithm with

corresponding source images3 with a size of 512 × 512 and thus L0 = 16. To have a maximum relative

payload of γmax = 13, by Eq. (11), we get the number of clusters n∗

D = 2, thus by Eq. (8), number of

candidate patches is nS = 9841. Clearly, the enlarged capacity ∆C = 128bits. The advantage of CASY’s

assignable size might be that since the size information will leak to the eavesdroppers, a normal image size

(e.g. 512 × 512) is more noteless than patch property specified image size (e.g. 488 × 488). No vision

disparity exists between cover and stego image.

3The four demonstration image (a∼d) are randomly selected from Texture Base we collected, which are ‘1.bmp’, ‘4.bmp’,

‘3110.bmp’ and ‘8762.bmp’ respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Source texture images and corresponding synthetic texture images. (a)∼(d) are the source images. (e)∼(h) are

the synthesized texture images containing no secret messages. (i)∼(l) are the synthesized texture images containing secret

messages, relative payloads of which are 5 bpps.
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Steganalysis is executed on CASO and CASY methods, which are shown in Figure 5(a). To make a fair

comparison, we use the calibrated relative payload γ̂ given in Eq. (14). To align to the original γ, γ̂ = 0.908γ.

The CASY based scheme improves the level of security under SPAM, SRM and maxSRM, contributing to

the manipulation that adjacent similar patches are synthesized. While ReSid cannot be directly utilized in

steganalysis on CASY, a preprocessing with rough estimations of size of S are implemented before using

ReSid. We take Tw = Th = 489 to conduct steganalysis, and the selection region is located on the center of

R, which shows the steganalysis results with a little deviation of estimation of parameters {Pw, Ph, Pd} and

L. Values of parameter {Pw, Ph, Pd} are thus estimated: {45, 45, 8}. The results show that ReSid is capable

of detecting CASO than SPAM and SRM features, and a biased estimation of Tw and Th is still unable to

conduct effective steganalysis on CASY than SRM feature.

Note that one steganographic method is broken as long as there exists one steganalytic algorithm that

can detect it with a high accuracy rate. Therefore, we introduce another measurement Global PE to depict

the comprehensive undetectable ability of the steganographic method [24]:

Global PE = min
i∈F

P i
E, (18)

where F represents the set of used steganalysis algorithms. P i
E is the value of PE under the attack of the

i-th steganalysis algorithm.

The comprehensive security performance on resisting SPAM, SRM, maxSRM and ReSid is shown in Fig-

ure 5(b). It can be seen that the proposed CASY outperforms CASO method with an average improvement

of more than 10%. Apart from SPAM, Steganalysis algorithm SRM and ReSid attack the steganographic

methods based on two different respects. SRM is designed using the statistical characteristics change in lo-

cal regions and ReSid utilizes the optimality between adjacent synthesized patches. In our proposed CASY

method, we not only invalidate ReSid feature with obscure {Pw, Ph, Pd}, but also preserve the optimality of

synthesized patches with increased similar patches and suppress the associated prediction error during data

embedding. Meanwhile, the inability of acquiring map makes maxSRM degenerate to SRM. Therefore, the

proposed method can obtain a better comprehensive security performance than CASO method.

5. Conclusion

As demonstrated by the experimental results, the developed steganalysis (ReSid) is able to detect the

parameters of patches by Wu et al.’s [12] algorithm (CASO) with an accuracy of 97%, and with a compu-

tational time 1,455 times faster than maxSRM detector under some degradation of detection error. While

the proposed steganalytic algorithm was specifically designed to target Wu et al.’s algorithm, the main idea

could be applied on several other algorithms that embed data with patch synthesis based steganography

since a preprocessing of patch parameter estimation is proposed with a high accuracy.
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The proposed steganographic algorithm (CASY) is based on a random padding carrying no message

around the periphery of the synthesized image to invalidate the parameter estimation of patches. To enhance

security and improve capacity, additional candidate patches are generated through synthesizing similar

original candidate patches. The experimental results demonstrate that it outperforms Wu et al.’s algorithm

in terms of security and capacity.

In the future, we will work to apply the proposed steganography method to texture synthesis related

applications such as online games, 3D roads, and virtual reality.
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Highlights 

 

 Build an effective and efficient steganography detector for patch 

synthesis based steganography and thus improve the steganalysis 

performance to a large extent. 

 Improve the maximum embedding capacity of steganography 

compared with previous art. 

 Improve the security of steganography against state-of-the-art 

methods and steganalytic attack we developed.  

  


