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Abstract—Recursive code construction (RCC), based on the embed messages into the host sequence by modifying its

optimal transition probability matrix (OTPM), approachin g the
rate-distortion bound of reversible data hiding (RDH) has been
proposed. Using the existing methods, OTPM can be effectilye
estimated only for a consistent distortion metric, i.e., ifthe host
elements at different positions share the same distortion stric.
However, in many applications, the distortion metrics are msition
dependent and should thus be inconsistent. Inconsistentstortion
metrics can usually be quantified as a multi-distortion metic.
In this paper, we first formulate the rate-distortion problem of
RDH under a multi-distortion metric and subsequently propose
a general framework to estimate the corresponding OTPM,
with which RCC is extended to approach the rate-distortion
bound of RDH under the multi-distortion metric. We apply the
proposed framework to two examples of inconsistent distoibn
metrics: RDH in color image and reversible steganography.
The experimental results show that the proposed method can
efficiently improve upon the existing techniques.

Index Terms—recursive code construction, rate-distortion
bound, optimal transition probability matrix, inconsiste nt distor-
tion metrics, multi-distortion metric, reversible steganography,
reversible data hiding.

I. INTRODUCTION

R

histogram using methods such as difference expansion and
histogram shift.

One natural difficulty of an RDH scheme concerns identi-
fying the upper bound of the payload for the host sequence
under a given distortion constraint. For an independent and
identically distributed host sequence, this problem hasnbe
solved by Kalker and Willems [16], who formulated RDH as a
special rate-distortion problem and obtained the ratedien
function, i.e., the upper bound on the embedding rate under a
given distortion constrainf\, as follows:

Prev(A) = maximize{H(Y)} — H(X), 1)

where X and Y denote the random variables of the host
sequence and the marked sequence, respectively. Theentrop
is maximized over all transition probabilitie3,| x (y|x) sat-
isfying the distortion constraint

3" Px(@)Pyx (ylz)d(z,y) < A, @)

where Px () is the probability distribution oX, andd(x, y)
is the defined cost of modifying to y.

Eversible data hiding (RDH) is a special type of data As the above implies, to evaluate the capacity of RDH
hiding, whereby both the host signal and the embeddgfder a given distortion constraint, one should first caltul

data can be restored from the marked signal without logge optimal transition probability matrix (OTPMpy-|x (y|x)

This important technique is widely used in medical imaggat implies the optimal modification &. Using OTPM, Lin

[1], military image [2] and law forensics, where the oridinaet al [17] proposed a coding method approaching the rate-

signal is so precious that it cannot be damaged. Moreovergijktortion bound. By improving the recursive code consteurc

has been found that RDH can be quite heIpfuI in video errC{fRCC) [16]' Zhanget al. obtained the Opt|ma| embedding

concealment coding [3], reversible image processing [}, € methods of RDH for binary host sequences [18], [19] and
In the past decade, multiple RDH algorithms have begeneral grayscale host sequences [20] and furthermoregrov

proposed that can be roughly classified into three fundaahenhat RCC will approach the rate-distortion bound as long as
strategies: the lossless compression appending scheme 24 adopted entropy coder reaches entropy. A coding method
difference expansion [5]-[7] and histogram shift [8]. Th&ts similar to [20] was independently presented by Zhang [21].
of the art of RDH combined such Strategies with the reSidua|SOTPM is essential to Coding and decoding processes of
of images such as prediction errors (PEs) [9]-[15] to improkhe cited RCC schemes [17], [20], [21]. For certain specific
performance. distortion metrics, such as the square error distortion- met

Nearly all RDH algorithms consist of two steps. The firsfic 4(z,y) = (z — y)? or the L;-Norm distortion metric
step involves generating a host sequence with a small 8Ntrofz, y) = |z — yl, the corresponding OTPM has the non-
i.e., a sharp histogram, that can usually be achieved usiisy Rrossing-edges (NCE) property [17], [22]. By relying on the
combined with the sorting tephmque [10] or a pixel sglen:tloNCE property, the OTPMPy | x(y|z) can be analytically
strategy [13]. Subsequently, in the second step, userssiblie derived from the marginal distributionBx () and Py (y).
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A distortion metric is used to describe the cost inmetric into that under a consistent distortion metric. Efiere,
curred in changing the host element; we refer to positiothe rate-distortion problem of RDH under a multi-distontio
independent metric as consistent distortion metric and meetric can be solved using the existing methods [17], [23],
position-dependent metric as inconsistent distortionrimet [24]. The proposed framework can be used to improve RDH
For instance, assume that the host sequence consists of itwwearious applications; we consider RDH in color image and
pixels p; and p,. When modifying the pixels by the samereversible steganography as examples to show the advantage
magnitudek, we define the cost op; asd; (k) and the cost of the proposed framework.
on py asdz(k). If the cost functions satisfyl; (k) = da2(k), The rest of this paper is organized as follows. Section Il
we call the metric consistent distortion metric; otherwisdriefly introduces the existing methods for optimal RDH unde
we call it inconsistent distortion metric. Although a numbea consistent distortion metric. In Section Ill, we formelat
of algorithms have been proposed for estimating OTPNhe rate-distortion problem of RDH under a multi-distontio
all of them assume that the distortion metric is consistemhetric and describe a solution to this problem. In Section
significantly limiting the applications of RCC schemes. IV, two applications, RDH in color image and reversible
other words, for the existing RCC schemes, all elemerdteganography, are presented to demonstrate the powee of th
of the host sequence, e.g., the pixels of the host imageopposed framework. Finally, this paper is concluded whiid t
need to share the same distortion metric. However, from thescussion in Section VI.
perspective of the human visual system or the security of
data hiding, the changes in the s_moot.h regiqns of an image Il. EXISTING METHODS
are more noticeable than those in noisy regions. Therefore, ) ]
the distortions caused by modifications in smooth regioms an Throughout this paper, matrices and vectors are shown
noisy regions should be different; based on this obsemati¢" Pold. The sender embeds bits of a message into the
position-dependent distortion metrics for steganogrd@bj- host sequenc& = (z1,---,2n) by slightly modifying its
[28] and RDH schemes [29]-[32] have been proposed. Aflements to produce a marked sequelte= (yi1,---,yn).
other example is the human eye’s higher sensitivity to th¥€ denote the embedding rafe = L/N, where N is the
green channel and lower sensitivity to the blue channel,[33§ngth of the host sequence. Schemes are usually constructe
implying that for RDH in color image, the distortion causgd bt© minimize the average distortion betweZnand Y for a
a modification of the green channel should be defined higryeén embedding ratdz. The cost of changing: to y is
than that of the blue channel. In summary, the distortiorrimet defined asi(z, y), which could be the square error distortion
for each host element should be position dependent and tHIRC ds(z,y) = (= — y)?, the L;-Norm distortion metric
inconsistent. di(z,y) = |z — y|, or a specific distortion metric defined by

Several algorithms, such as [29]-[32], define inconsistetite user. We useX andY’ to denote the random variables
distortion metrics for RDH, which endow pixels from region®f the host sequence and the marked sequence, respectively;
of complex texture or complex structure with lower costs. [Hi€ probability distribution of the host sequeniée () can be
general, such algorithms select image pixels with lowetsco§Stimated by the histogram of the host sequeXicéVe denote
to carry messages, but their embedding methods are dieieref® entropy ofX by H(X) and the conditional entropy of
expansion or histogram shift without considering the optimgiven X by H (Y| X). . _ S
modification. It is usually hard to estimate the rate-diseor ~_ 1h€ optimization problem in Eq. (1) is for a distortion-
bound of RDH under inconsistent distortion metrics directimited sender. In practice, we usually consider a payload-
ly. However, in practical applications, inconsistent oitibn limited sender, as shown in Eq. (3), that minimizes the ayera
metrics can be quantified as several distortion levels, ae. distortion for a given embedding rate.
multi-distortion metric. That is to say we can well approzim P m—1 xn—1
inconsistent distortion metrics withya multi—distortﬁ)ﬁ)‘etric. m|nfm|ze La=o 2y=0 Px(@)Py x(yle)d(z, y)
Thus, an interesting problem concerns the estimation of the SuPiectto H(Y) = R+ H(X)
rate—distprtion bound of RDH under a multi—distortilon_ niret_r Asze X ={0,1,---,m—1},y €Y ={0,1,--- ,n—1},
and solving the corresponding OTPM. When a multi-distertioand x and) are both finite alphabet sets, the distortion metric
metric is considered, the host sequence is classified im&ae (. ) can be described with a distortion matrix such as
subsequences according to the distortion metrics. Soaidste
of a single histogram, multiple histograms are generated. d(0,0) d,1) .. d0,n—1)

Although RDH on multiple histograms has been studied by d(1,0) d(1,1) d(1,n—1)

Hu et al [34] and Li et al [35], the researchers’ distortion D = ) ) ) ) ,
metrics are both consistent. In this paper, we first forneula¢ : : : :

rate-distortion problem of RDH under a multi-distortiontnie d(m—1,0) dm—-1,1) .. dm—1,n-1)

and subsequently present the unified framework to estimate (4)

the corresponding OTPM that includes the framework undeméere d(z,y) in Eq. (4) has the same function form for all
consistent distortion metric as a special case. We combite mz = 0,,m — 1 andy = 0,,n — 1.

tiple histograms to form a compound histogram and constructFor several specific distortion metrics, such as the squared
a multi-distortion metric as a compound distortion methatt error distortion metric and thé-Norm distortion metric, it

can convert the problem of RDH under a multi-distortiohas been proven in [17], [22] that the corresponding OTPM
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Fig. 1: The primary steps of designing RDH schemes approgdhie rate-distortion bound.

Py x(ylr) can be analytically expressed by the host distribd-here will be at mostN inconsistent distortion metrics,
tion Px(x) and the marginal distributioy- (y) such that denoted by(d; (x,y),d2(x,y), - ,dn(z,y)). If N distortion
. metrics are identical, such a model will be one with a
Py x (ylz) = max{0, min{ Fx (z), Fy (y)} consistent distortion metric.

—max{Fx(z — 1), Fy(y — 1)}}, (5)  In practical applications, as many elements of the host
sequence will share the same or similar distortion metrics,
we can cluster such distortion metrics if (K < N)
classes. Accordingly, the host sequed€ds divided into K
subsequences denoted Ry = (21,22, -, Zi,N;), Where
N; is the length ofk;. All elements in the subsequenggwill
share the same distortion metric definedigs;, y), which can

where Fx (z) and Fy(y) are cumulative probability distri-
butions of X and Y, defined by Fy(z) = Y7, Px(i),
wherez = 0,---,m — 1, and Fy (y) = >_/_, Py (i), where
y = 0,---,n — 1. Note thatFx(—1) = Fy(-1) = 0,
Fx(m—1) = Fy(n—1) = 1, the functionmin{a, b} returns

the minimum va_lue ok andb, and the functiormax{a, b} also be described with the single distortion matfiix, where
returns the maximum value of andb. l<i<K

Lin et al [17] proposed a backward and forward iterative Now, the host sequenck containsk subsequences and

algorithm for estimating the optimaPy-(y), while Hu et al. i . ) ;
[23] proposed a fast algorithm for estimating the optimﬁus containsk’ histograms, withP’x, (z) representing the

Py () based on the Lagrangian duality. The general fram robability distribution ofx;, wherel < ¢ < K. However,
Y . - . . . .
work for estimating the OTPMPy x (ylz) from Py (z) and e shapes and distortion metrics of such histograms baoyh va

. . X . r a fix [ ifferent hi ram rform differentl
Py (y) under any consistent distortion metrics was proposed or afixed payload, different histograms perform differently

Zhanget al. [24]. According to the OTPM, we can reversibIyproi?;:%?g;?;;ﬁgﬁgdmg' As a result, a payload allocation
embed messages and minimize the average distortion with aRo. each subsequence, if we obtain its allocated em-

F;((.)‘,C sc helmde SUC.E as tEHM _(recurs;ve h|s:¢o§1ram mOd'f'CaF:Sﬁdding rate denoted bi; (relative tox;), we can calculate
[20]. Fig. 1 describes the primary steps of designing an e corresponding sub-OTPM denoted &g x, (y|x) using

scrllleznetr?ptprtlalatzhmgbthe rate—?stoglon ?r:)udnd.ﬂ 231 2 e existing methods for a consistent distortion metric and
ote that all the above-mentioned methods [17], [23], [ bsequently optimally modify its histogram to obtain the

for estimating OTPM require that the distortion metric i orresponding marked subsequence denotedbyThe to-
consistent and can be expressed as a single distortiorxmhtrital distortion caused by embedding the paylolﬁginto <
Eq. (4). However, as discussed in the Introduction, digtort Agenoted byJ;) is !

metrics in many applications are usually inconsistent, a

inconsistent distortion metrics can be quantified as a multi Ji = NiZPXi (7) Py, x, (y|z)di(z, y). 7)

distortion metric. Therefore, it is important to estimatéRM zy

and implement the optimal embedding for RDH under a multi- As for the entire payloadr, the corresponding payload

distortion metric. carried by the subsequensg is 2. Of course, the sum
of payloads of K' subsequences equals the total payléad

[Il. OTPM oF RDH UNDER A MULTI-DISTORTION METRIC I-€., K

A. Rate-distortion bound under a multi-distortion metric R= lelTXR (8)
In most cases, the dist_ortion c_au;ed by_modifying e_e_lch hosgased on the above discussion, given a payl@adthe

element should be associated with its position and nelgm@orprob|em of reasonably distributing the total paylaadmong

elements. Assuming that the distortion metric for §# 7 gypsequences to minimize the average embedding distortion
elementz; is d;(z,y), wherex; € X = (21,22," - ,ZN) can be formulated as
and1l < j < N, the corresponding distortion matrR; is

Problem |
djE0,0; don, 1; djgo,n — 1; minimize NS e ijx (%) Py, | x; (yl2)di (z,y)
d;(1,0 d;(1,1 e dj(l,n—1 v v v
Dj: ’ . ’ . . ’ . . Subjectto MZR+W
. . . . (9)
d;j(m—1,0) dj(m—1,1) .. dj(m—1,n—1) Eq. (9) provides the rate-distortion bound of RDH under a

(6) multi-distortion metric, matching that of Eq. (3) K = 1.



To minimize the average distortion, each optimal allocatdbe translation, the range afwill be enlarged by a factor of
payload R;, i.e., the sub-OTPMPy, x, (y|z), is needed for K, andz € X° = {0,1,2,---,km — 1}. We denote the
i = 1,2,..., K, which can be used to optimally modifif’ compound host probability distributioRx_(x) in the vector
subsequences and embed the corresponding messagesas®x, = [PXf,--- ,PX;(], where

each host subsequence. Py = [Px.((i—1)m),-- -, Px.(im—1)},1 <i < K. (11)

B. Compound histogram and compound distortion metric As the probability distributior x, results from normalizing

The host sequenc&X is divided into K subsequencesthe compound histogratl., we obtain
according to thgir di_stortion metrics, while e_gch sgbs_,eqe_le Py — %PX“ 1<i<K. (12)
has its own distortion metric and probability distribution :
The difficulty lies in obtaining the optimal payload for each Accordingly, the range of the marked sequence also
subsequence, i.e., obtaining the respective sub-OTPMs. €ldarged by the factor ok, andy € Y° = {0,1,2,--- ,kn —
solve this problem, we combin& subsequences to forml}. We define the compound probability distribution of the
a compound sequence denoted Ky and then design a marked sequence @y, = [Py, -+, Py ], where
compound distortion metric Qe_not(_ad by (z,y) for X. that CPyi=[Py((i—1)n), -, Py.(in—1)],1<i< K. (13)
can be used to solve the optimization problem of Eq. (9) with **

existing methods [17], [23], [24] for a consistent distorti ~We need to optimally modify the host subsequenggs
metric. to generate the corresponding marked subsequeyicesr

i = 1,2,..,K. Note thaty! must be generated only from
x 10 x!; otherwise, the modification will be meaningless. To avoid
‘ ‘ modifying the elements ok! to generate the elements pf
wheni # j, we define the cost of such a modification as
infinite. The distortion matrix for the compound host sequeen
under a multi-distortion metric is shown in Eq. (14), and
d.(x,y) represents the element irth row andyth column
of D..

1.5¢ ol 1

Count
[

D1 o0 0

oo Dy ... o0

0.5 D.= : L , (14)

oo 00 .. Dg

T e whereD; is shown in Eq. (15).

Bin By constructing the compound histogram and the compound
distortion metric, we convert the problem of RDH under a
multi-distortion metric into the problem under a consisten
A hat the hi fth b i d q distortion metric. The constructed compound distortioririoe
b Is{symet at_t el |stogr§m 0 tle su s‘eiu?qge en;){te can also be represented in a single distortion mddix In

y H;; we assign it an offset valuer; (i = 1,2,---, K). fact, we convert the optimization Problem | of Eq. (9) into
By translating each sub-histograhh; by the corresponding
; ’ ; Problem Il of Eq. (16).
offset ox; along the x-axis, we combin& sub-histograms
H, into a large compound histogra.. As depicted in Problem i
Fig. 2, three sub-histograms, shown in red, green and blueninimize ~ S"X"0 ™' S X" Py (2) Py, x, (y]2)de(x, )
are combined to form a single compound k_us_togra_m. Thergubject to  H(Y.) =R+ H(X.)
is no need to record the offset valwe;, as it is uniquely (16)

determined. Specificallypz; is selected to guarantee that The problem in Eq. (16) has the same form as that in Eq. (3);
there is neither overlap nor vacant space between any twénce, we can estimate the optimal distributiBp, (y) and
adjacent sub-histograms of the compound histogidm In  the OTPMPy, |x. (y|z) using methods of [17], [23], [24]. By
the proposed methodhzr; = (i — 1)m usually. Each sub- introducing the infinite distortion, in the optimal modiftizan
histogramH;, i.e., the subsequence, is translated by the that causes the minimal distortion, the elements/ofvill be
corresponding offsebz; along the x-axis. The translatednot modified to the elements gf. for i # j. Therefore, the
x; Is denoted byx;, with its elements being in the rangecorresponding sub-OTPM among andy". is zero, and the
{(i = m, (i —1)m + 1,---,im — 1}. SubsequentlyK  compound OTPMPy, x., (y|z) has the following form:
translated subsequences are combined to generate a cainpoun
sequenceX., as Eq. (10) shows. Pytixt 0 0

0 Pyox; - 0

X, =[xt xb .. xt] (10) Py x. = : : : : , (A7)

Fig. 2: Compound histogram.

By normalizing the compound histogra., the compound : : : '
host probability distributioPx, () is obtained. Note that after 0 0 o Pyrixe



di((i — D)m, (i — L))
di((i — ym + 1, (i — 1)n)
D; =

di((i — )m

di(im —1,(i — 1)n)

Py, 1x,((i = Dn|(i — 1)m)
Py 1x. (@ = Dn|(@ = )m + 1)
PY%t,‘X:, = .

where Py x: is shown in Eq. (18), andPy, x, (y|x)
represents the element in theh row andyth column of
Py, x.-

After obtaining the optimal distributioPy,, and the OTPM  6)
Py, x., the allocated payload for each subsequence is de-
termined, according to which we can optimally modify the
respectivek’ subsequences using RCC schemes. To this endy)
RCC needs to be performed times. Indeed, we can also
directly apply RCC to the compound host sequede to
embed messages and generate the marked seqiénee-
cording toPy, | x_. After obtainingY ., we need to retranslate
each translated marked subsequepfcéor i = 1,2, ..., K by
its corresponding offsety; (similarly, oy; = (i — 1)n usually)
along the x-axis to create the ultimate marked sequénce

The above analyses show that we can obtain the optimall)
solution of Problem Il using the existing methods [17], [23]
[24]; the theoretical and experimental proofs that theropti
solution of Problem Il can yield the optimal solution of
Problem | are provided in the Appendix.

5)

8)

2)
C. Embedding and extraction

Thus far, we have proposed a general framework for cal-4
culating the OTPM of RDH under a multi-distortion metric,
enabling us to embed messages using the optimal coding
methods such as RHM [20]. The proposed framework can be
implemented in various forms; a typical implementation of a 4
design of an RDH algorithm approaching the rate-distortion
bound of RDH under a multi-distortion metric proceeds as
follows.

Embedding

1) Reserve several elements of the host signal to embed thg)

auxiliary information, and generate the host sequéXice
from the remaining elements. The auxiliary information
will be embedded into the LSBs (least significant bits)
of the reserved elements, with the LSBs of such reserved
elements embedded ini§ as part of the payload.

(i —Dn+1)
di((i—1)m+1,(6— Dn+1)

di(im — 1, (i — )n +1)

Py, x,.((¢ = Dn+ 1|(i — 1)m)
Py x, (1 =Dn+1GE-1)m+1)

) Translate each marked subsequenge for i

di((i —1)m,in — 1)
di((t—1)ym+m—1,in—1)
(15)
d;(im — .1,in -1)
Py, x,((in —1)(i — )m + 1)
: (18)

With Px,, D, and the embedding rat8 as parame-

ters, calculate the optimal compound distribution of the

marked sequencBy, and the OTPMPy, x. .

According to Py, | x_, embed messages inf. with

RHM [20] to generate the compound marked sequence

Y..

Retranslate each marked subsequeg¢efor i
2, ..., K by the corresponding offsety; to create the

ultimate marked sequenceé.

Embed the auxiliary information into the LSBs of re-

served elements, primarily the location map of over-

flow/underflow pixels, the host histogra®x,_, the

embedding rate?, and the number of classés.

Extraction

Extract auxiliary information from the reserved ele-

ments, including the location map of overflow/underflow

pixels, the host histogra® x,, the embedding rat&,

and the number of classés.

Divide the marked sequendginto K classes according

to the distortion metrics, and obtain the marked subse-
guencey; fori =1,2,.... K.

1,2, ..., K by the corresponding offsety;, and combine
the results to generate the compound marked sequence
Y..

) UsingPx_, embedding ratd? and the constructe®.

as parameters, calculate OTPR4, x_ . Using Py, x ,
decode the compound marked sequeiteto extract

the embedded messages and restore the compound host
sequenceéX..

Retranslate each host subsequeticor i = 1,2, ..., K

by the corresponding offsetr; to reconstruct the host
sequenceX. Finally, reconstruct the reserved elements
using the extracted LSBs.

IV. APPLICATIONS TO INCONSISTENT DISTORTION

2) Divide the host sequen into K classes according to

their distortion metrics, and obtain the subsequexce METRICS

fori=1,2,..., K. At the beginning of this section, we first declared certain
3) Translate each subsequenxg by the corresponding settings for RHM [20] that can approach the rate-distortion

offset ox; to obtain x!, and normalize the combinedbound of RDH according to OTPM. As certain auxiliary
compound host histograi. to generate the compoundinformation guaranteeing reversibility, such as the hadst h
host probability distributiorP x, . togram and the location map of overflow/underflow pixels, is
4) Construct the compound distortion matd. as Eq. needed for RHM (see [20]), we should omit extra payload to
(14). carry such auxiliary information. Usually, the host higtam



accounts for most of the auxiliary information. In [24], theflgorithm 1 Guaranteeing the Raw Payload

differential pulse-code modulation encoder is used to aesyp Input: The compound host probability distribution Px,
the host histogram; however, we think that the host histngreand the length of raw messaged..

can be compressed more efficiently with the help of th@utput: The compound marked probability distributions,
histogram of the marked sequence. Indeed, after modifyiag t.e., Py..

host sequence to generate the marked sequence, the markedr = WL;M;

histogram will be very similar to the host histogram, espigi  2: tag = true?iteration =0, Rtest = R;

when the payload is low. The marked histogram can be res: while tag do

constructed from the marked sequence; we can further e2stoy: iteration = iteration + 1;

the host histogram from the marked histogram by calculating: if iteration > 6 then

and recording the difference between each bin of the formes: tag = false;

and the corresponding bin of the latter. Thus, to record the. end

host histogram, we only need to compress and record such CalculatePy,, using the fast algorithm by Het al
bin differences, allowing efficient compression of the host [23] with P, D, and Rtest as parameters;

histogram. . o if 0< H(Y,) — H(X.) — R < 0.005 then
In the experiments, assuming the length of raw messaggs tag = false;

to be L bits, we allocated.03L bits for auxiliary messages 1;.  glse

to record the location map of overflow/underflow pixels,s. Rtest:RtestH(Y)RH(X ;

Then, the embedding rate for calculatify,. andPy,x_ is

R = L2 Leere whereN), is the length of the host sequence 12 endend

and Lpgrq denotes the amount of information for recordin
45 return Py,;

parameters, including the host histogram, the embedditeg r
and the number of classes. Therefore, the number of reserved
elements is usually initialized ab.03L + Lparq. If it is
insufficient, we can further increase the number of reserved
elements.

Using the embedding rat® and the compound distortion
matrix D., we apply the fast algorithm by Hat al. [23] to
calculate the optimal probability distribution of the cooynd
marked sequence, i.ePy,. The real embedding rate corre-
sponding taPy,, is (H(Y.) — H(X.)) and may be close t&,
but not exactly equal t& because of the numerical precision.
To solve this problem in RCC schemes, a series of embedding
rates denoted byRtests are tested until

0< H(Y.) — H(X.) — R < 0.005. (19)

The details of the process used to calcuRRte and guarantee
the raw payload are shown in Algorithm 1.

A. Reversible data hiding in color image

RDH algorithms in grayscale image have been well-
established, in contrast to those in color image, despite thig. 4: Tested color images of size 52610: (a) Lena, (b) Baboon,
greater popularity of the latter. Among color RDH algorithm (c) Barbara and (d) Airplane.
[36]-[38], the method of Yacet al [38] is state of the art.
In the scheme of Yaet al, pixels of each color channel are
divided into two sets labeled dark and white, as shown in Fif9]. Studies by [39] and [38] provide the details of the gudd
3. Therefore, red, green and blue channels are divided irfiftering predictor.
6 sets, denoted bRy, R, Gy, G, By, and B,,, where The existing color RDH methods [36]-[38] embed messages
C, and C,, represent the sets of scales in channel C froim a color image primarily by exploring the correlations argo
the dark region and the white region, with C representing thiee three color channels to achieve a high peak signal-seno
red, green or blue channel. Before embedding, the payloadio (PSNR) for the color marked image, implying that for
is allocated adaptively to the 6 divided sets to reduce tlieese methods, modifications of the three channels have the
embedding distortion; subsequently, messages are embedsime impact on image quality. However, the sensitivity of
into the 6 sets one by one. When a given set is selected farman eye to colors varies with color. The formula in Eq. (20)
modification, the other 5 sets are used as references toajenerom Rec. 601 [33] is widely used for converting a color image
a sharp PE histogram through the guided filtering predictty grayscale, with the weights in Eq. (20) representing the
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relative luminance perceptions of typical trichromat hasia and blue channels can be defined as
to light of the precise additive primary colors. dn(@,y) = 0.299(z — y)?,
dg(w,y) = 0.587(z — y)?,
dp(z,y) = 0.114(z — y)?,

for red channel

f=0.299r 4+ 0.587¢g + 0.114b, (20) for green channel

wherer, g and b are the levels of the red, green and blue for blue channel

R afgong the three color channels, we also adopt the guided filte
[39] used in the method of Yaet al. to generate host PEs.
Similar to the method of Yaet al., the color host image is
2552 21 divided into 6 sets. Considering embedding in dark regians a

WEC)’ (21) an example, the PEs of sdis;, G, andB are first calculated

by a guided filter with the original host image as a reference

using the formulas

assessment of color marked image, denoted by C-PSN
computed as

C—-PSNR= 10[0910(

where

0 __ . .
and MSEr, MSEg and MSEg are the mean square errorsy ¥ EGa = GuideFilter(Ga, {Ra, Ruw, Gu, Ba, Bu})
from the red, green and blue channels, respectively. PEBg = GuideFilter(Bq, {R4, Ry, Ga, Gu, By })
Based on the above quality assessment, a reasonable multi- (24)

distortion metric for three host subsequences for the neirg For the three sets of PERERY, PEGY and PEBY from
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the red, green and blue channels, we define the multi-distorthost PEs, wheréV;, is usually six times the length of allocated
metric following Eq. (23). After the payload is given, we &pp messages, and the smoothness of a pixel is the variance of its
our framework to estimate the optional allocated payloads ffour neighboring pixels (see Fig. 3).

Ri, Gq andBy. _ Next, we compare the color RDH method under the
After obtaining the allocated messages for pixel 8i$Ga  proposed framework with two state-of-the-art color RDH

and B, we use RHM [20] to embed the allocated messaggshemes, the methods of @u al. [37] and Yaoet al. [38].

into PER, first and correspondingly modifiRs 10 Rj.  As the proposed method is an extension of RCC from a
Subsequently, we calculate the PES®f, denoted bfPEGa:  ¢onsistent to inconsistent distortion metrics, we also e

the proposed method to RHM [20]. Note that the random
scrambling PEs from the three color channels compose the
After finishing embedding foPEG, according to its allocat- single host sequence when performing RHM [20] on a color
ed message$z, is modified toG/,. Finally, the PEs oB;, image. To show that the strength of the proposed method
denoted byPEB,, are generated as follows: resulted from defining a multi-distortion metric, experime

on the proposed framework under a consistent distortion
metric, i.e.,dr(z,y) = do(z,y) = dp(z,y) = (v — y)?,

are also carried out for comparison.

PEG, = GuideFilter(Gg, {R}, Ry, Gy, Ba, By ). (25)

PEB, = GuideFilter(B4, {R), Ry, G, G, By }), (26)

andB, is changed tdB/, by modifying its PEs according to
its allocated messages. Of course, messages can be decodAd shown in Fig. 5, defining a multi-distortion metric for
in the inverse order at the receiver’s side. Afie, G, and RCC is particularly meaningful, as it can greatly outperfor
B, finish embedding, we will modify white regiorR.,, G,, the proposed framework under a consistent distortion metri
andB,, to embed messages the same way. Note that for eastd RHM [20] according to C-PSNR (Eq. (21). Furthermore,
set, only N, PEs with the highest smoothness are selected thge proposed method outperforms those ofé&wal [37] and



Yao et al [38], implying that the proposed method is morevhere X = (1,22, - ,2y) is the input image,C =
suitable for color images due to inconsistent distortioriric®  (cq,co,- -, cn) are the corresponding output cost valuks,
being reasonably defined by considering the characteyisfic andL, are two low-pass filters, anH") is a high-pass filter
the human eye. (please refer to [27] for the details of HILL).

In addition to C-PSNR (Eq. (21)), as the grayscale versionWe also divide pixels of the host image into two parts, as
of a color image is rather valuable for many applicationshown in Fig. 3, and obtain the PE of a pixel by subtracting its
to fully assess the performance of RDH in color image, warediction value, defined as the mean of its four neighboring
also convert both the host color image and the marked cofaikels (see Fig. 3). If the PEs of dark pixels are used to carry
image into grayscale images and calculate the PSNR betweaessages, we will replace dark pixels with their correspund
such two grayscale images, denoted by G-PSNR. Fig. 6 shquwediction values to generate an interpolated image. Subse
that the corresponding grayscale versions of marked imagggntly, we input such an interpolated image to calculage th
produced by the presented method are also of better visoast value of each dark pixel using Eq. (27). White pixeld wil
quality than those produced by the existing methods [2@],[3 not be modified while performing RDH; thus, the recipient
[38]. can recalculate the interpolated image and these costsvalue

Taking as examples the embedding of 50000 bits into typicefl dark pixels.

510 x 510 x 3 color images, we also compare the speed of After obtaining the cost of each dark pixel, we select host

our algorithm to those of the existing color RDH method$?Es adaptively from dark regions according to the given

the embedding times (measured in seconds) are shownpityload. Specifically, for payload, we selectN;, PEs with

Table I. Table | shows that our algorithm is even faster thdhe minimum cost values as host PEs, where

the methods of Yacet al and Ouet al. Note that in this .

paper, all test algorithms are implemented in MATLAB; speed Ny = min{6L, [0.4V]} (28)

comparison tests were run on a Lenovo personal computer wathd V' is the number of dark pixels. We can still enlaryg

an i3-4130 CPUQ 3.40 GHz and 4.00 GB of RAM. if the selected PEs are insufficient for accommodating the
given payload. The theoretical motivation for this novel PE

TABLE I: Speed comparisons of the proposed method and theélection strategy is twofold: first, preferentially embied

existing color RDH algorithms. messages into pixels with higher complexities, i.e., gixeth
Image [ona _Baboon Barbara Aiplane  (h€ smaller cost values, will increase the security of data
Ouet al's method [37] 153s 239 s 116 s 139 s hiding. Second, by scaling down the range of cost values, we
Yaoetal's method [38] 97s  96s 95 s 94 s can reduce the quantified loss when quantifying inconsisten
Proposed method 9ls 91s 86 s 85s

distortion metrics as a multi-distortion metric.

As for the selected host PEs with the cost values
(c1,c2,-++ ,cn,), We cluster the cost values int classes
by cluster algorithms such d@-means and denote the center
) ) ) ) of the ith class ag’;. Accordingly, the host PEs are divided

Reversible steganography [31], [32] is a special kind fis i subsequences, with the elements indhesubsequence
data hiding that has the reversibility of traditional RD"!;haring the same distortion metri(z,y) = Cilz — yl,
and the undetectability of traditional steganography.hSac \ynerei — 1,2,..., K. After the multi-distortion metric is

technique is desired in covert storage [32] applicatior®. fefined, the presented framework is applied to minimize the
guarantee reversibility, reversible steganography caba@s int5 distortion.

undetectable as traditional steganography. In this pagease  As mentioned above, we divide the host sequence kito
the typical steganalyzer SPAM [40] to test undetectabiliy classes by cost values. It seems that with a lafgewve can
done in [31] and [32]. All experiments are performed on thgptain a compound distortion metric that better fits the rhode
BOSSbase ver.1.01 [41] image database, which containD10@¢ agaptive steganography. However, if the number of sub-
grayscale images of size2 x 512. In the experiments, 5000 pistograms is large, the compound histogram will contain to
images are randomly selected for training, with the renmajni many bins; hence, the entropy of the compound host sequence
5000 images used_ for testing with ensemble classifiers [42]i| decline with increasings’. As shown in Eq. (1), for RDH,
We report the testing error, computed as the average of g smaller the entropy of the host sequence is, the beter th
false positive rate and false negative rate, randomlytsgit 5:hievable performance of RDH. We can apply the following
the training and the testing images a total of 10 times. AS f@fethod to determine the suitablé for each host sequence.
steganography, a higher detecting error rate implies @G0 After the total distortion between the host sequence and the
undetectability. marked sequence denoted /5§ has been calculated for each

Currently, the most successful steganographic approachggs numbeik, the optimalK is determined by
[25]-[28] are devoted to embedding messages while mini-

K
mizing the total distortion, which is the sum of costs of all Kop = argminJ©, K =1,2,3,... . (29)

modified elements. In this paper, we define the cost for eaﬁrblear disadvantage of the above method is high computation

element by HILL [27] as al complexity. The problem of obtaining the optimal numbtker o
C- 1 ® L 27) classes not only adaptively but also effectively will bedséal
T IXQHD QL » thoroughly in the future.

B. Reversible steganography
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We provide examples using payloads bf= 6000 bits, Taking as examples embedding 14000 bits into typical
L = 8000 bits and L = 10000 bits to show the influence 510x 510 grayscale images, the embedding times (measured in
of K on performance, using 1000 randomly selected imagssconds) of our method and the previous reversible stegano-
from BOSSbase ver.1.01 [41] as test images. It can be shognaphic methods are listed in Table Il. Table Il shows that
from Fig. 7, under the adopted HILL distortion metrics, thadur algorithm is faster than that of Hongt al [31] and
the total distortion by the presented framework reaches thightly slower than those of Zhangt al. [32] and RHM
minimum atK = 3. Therefore,K = 3 is adopted empirically [20]. Compared to the existing RCC schemes for a consistent
for the steganalysis experiments in this subsection. distortion metric such as RHM [20], the additional openasio

by our method involve calculating the cost of each pixel and
constructing the compound histogram and distortion metric

32001 = L=6000 bits i which usually have low computational complexity, as shown
23000 —o— L=8000 bits by Table Il. Therefore, as an extended RCC framework, it does
g —v—L=10000 bits Y not introduce too much computational complexity in terms of
2800+ 1 the existing RCC schemes.
2600} 1 . L .
o TABLE II: Comparison of the running times of our algorithm
™ 2400 ) and the earlier reversible steganographic algorithms.
2200\9\/ image Lena Baboon Barbara Airplane
Hong et al’s method [31] 7s 7s 8s 7s
20007 1 Zhanget al's method [32] 2 s 2s 2s 2s
RHM [20] 1s 1s 1s 4s
1800:E\E\/’ Proposed method 2s 3s 2s 7s
1600 ‘ :
1 2 3 4 5

The value of K

. . . . . V. CONCLUSIONS ANDDISCUSSION
Fig. 7: The influence of K on the total distortion under different . ] ]
payloads. In this paper, we present the rate-distortion bound of

RDH under a multi-distortion metric and develop a unified
framework for estimating the optimal transition probalili
matrix under a multi-distortion metric that enables us ttepg
—E—F‘>roposed‘ method recursive code construction schemes to applications afinc
Zhang et al.'s method [32] sistent distortion metrics. The experiments demonstiizdg t
Hong et al.’s method [31] |1 . g .
—+— RHM [20] | the proposed method significantly outperforms the previous
methods.

Inconsistent distortion metrics are quantified into a multi
distortion metric when performing reversible steganobyap
As discussed above, increasing the number of sub-histayram
is not necessarily beneficial. Obtaining the optimal numdfer
classes not only adaptively but also effectively is a difficu
theoretical problem to be solved in the future. On the other
hand, we apply HILL to define the cost of modification for

Error rate

0'02’ ‘ ‘ ‘ ‘ ‘ ‘ | each pixel; however, it is clear that such distortion mettised
0 2000 4000 6000 8000 10000 12000 14000 in steganography should not be applied directly to revésib
Payload(bits) steganography. In the future, we will design special diiior
Fig. 8: Comparisons among the previous methods and the propodBgtrics for reversible steganography and then design more
method for resisting SPAM [40]. secure RDH algorithms.
We compare the proposed method with two advanced VI. ACKNOWLEDGMENTS

reversible steganographic algorithms, the methods of Hongl_
. he authors thank Owt al. and Yaoet al for offer-
et al [31] and Zhanget al. [32], um_jer the detectl_on bying the source codes in their papers [37], [38]. To help
SPAM [40]. Zhanget al’s RHM [20] is also added in the T
eaders apply the proposed framework, we will post the

comparison experiments for contrast. As shown in Fig. ; . . .
: . ) : L ATLAB implementation of this paper on our website at
with the consistent distortion, it is difficult for RHM [20pt http://home.ustc.edu.cn/%7Ehoudd.

resist detection by SPAM. However, by extending RHM with
the distortion metrics of adaptive steganography, the gseg
method significantly outperforms the previous methods,[20]
[31], [32]. The power of our algorithm arises from defining We prove that the optimal solution to Problem Il can
the distortion metrics with the advanced HILL and minimgin provide the optimal solution to Problem | both theoretigall
the total distortion by the presented framework. and experimentally as follows.

APPENDIX



AssumePy, | x, in the form of Eq. (17) to be the optimal
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With Eqg. (12) and Eq. (37), the corresponding marginal

solution of Problem II, an®y, given by Eq. (13) is the cor- distribution is given byPYt = iP;ﬁ, and
responding optimal distribution of the marked sequencés Th .
solution reaches capacity such thatd (Yo) — H(X¢c) = R. Py, =[Py Yio y;(]- (39)
We denote the average distortion achieved by this solution a
Km—1Kn—1
comp - Z Z PX PY | X, (y|£B) (l‘,y) (30) 14000
12000+
With the op'umal solutionPy, | x,, we can construct a
solution of Problem | such that 10000t
Py, x, =Py xs, 1 <i < K. (31) +« so00}
From Eq. (12),Px, = NﬂiPX;,; hence, Eq. (31) implies that 3 6000
the corresponding optimal marginal distribution of the kear
sequence satisfies N 40001
Py, = FP)/:. (32) 2000+
The solution Eq. (31) can reach capaciybecause 05 20 0 60 80 50
SEONixH(Y;)  YE N x H(X;) Bin
N N Fig. 9: Two generated subsequences following the Laplace
=H(Ye) — H(X¢) distribution.
=R . (33)

Additionally, the corresponding average distortidg,,;; sat-
isfies

K m—1 n— 1
Zi:1 N; an:() Zy () ( )PY\X (y|x) ( ay)
Jmult = N

Km—1Kn—1 g
= Z Z Px,(z) Py, x, (y|z)de(z,y) £
=0 y=0 Rz
S
= Jcomp . (34) T
°
l—

Next, we prove that the solution in Eq. (31) is the optime
solution of Problem I. If it is not, there exists another $wio
of Problem I that can reach capacig/and achieve a smaller
average distortion. We denote such a solution as

and the corresponding marginal distribution of the mark
sequence a®3. for 1 < ¢ < K. The average distortion
achieved by the solution in Eq. (35) is

Zz 1 Vi Yo Zy o Pxi(x) Y|X (ylz)di(z,y)
~ (36)

*
mult —

satisfyingJ, ..; < Jmuit.

Using the solution in Eq. (35), we can construct a solution
for Problem II. DefineX} andY;" by adding offsete:z; and
oy; to the ranges ofX; andY;, respectively, and define

4.

x 10

25

2.3}

21r

1.9}

1.7¢

*‘(optimal point 1
02 04 06 08 1 12 14 16 18 2
L (bits) % 10%

1.5¢ ’

0

10: Searching for the optimal strategy of payload aloc
tion causing the minimum distortion.

Clearly, the solution in Eq. (38) to Problem Il can reach the
same capacity? because

H(YZ) — H(Xc)
SEINox H(Y?)  SE N x H(X))
N B N
= R. (40)

P =Py iy, 1<i< K. 37) How_ever, the average distortioff,,,,,, achieved by the solu-
s tion in Eq. (38) satisfies
Furthermore, define Kome1 Kn1
Pyixg 0 0 Toomp = D D Px.(@)Py x (yl2)de(w,y)
0 P;’\X’ 0 =0 y=0
;’C|XC = : : (38) o Zz lN Zz 0 Zy () ( PY‘X (y|l‘ (x7y)
: : 5 = N
0 0 PY’ | Xt = ‘]mult < It = Jcomp . (41)



This is contrary to the assumption tHay,, | x. is the optimal

[12]

solution of Problem II. Thus, we have proven that the sofutio

Eqg. (31) is the optimal solution of Problem I.

[13]

In fact, following a similar method, we can also prove
that the optimal solution of Problem | can yield the optimatlm]

solution of Problem II.

The optimality of the proposed method can be illustrated

with a simple example. Two subsequences following differe
Laplace distributions are generated with the range [0, 4€l] a

iR

the same length of00000, and the corresponding histogram$16]
are depicted in red and green in Fig. 9. The correspond-

ing distortion metrics are defined a& = (¢ — y)? and

[17]

dg = 2%(x — y)?, respectively. Assume that the length of

the message to be embeddedlis= 20000 bits. We can

estimate the optimal strategy of payload allocation betwegg;
the two subsequences by an exhaustive search. Assume thatversible Data Hiding,” in Proc. of 13th Information Hidingo@ference,

the payload for the red subsequenceLig bits; hence, the
remaining payload for the green subsequencelis- Lgr
bits. We try a series ofLyp with the step length of 2000

[19]

bits to estimate the optimal solution that can minimize tHé%
total distortion. As shown in Fig. 10, the total distortion

reaches the minimal value &tz close t012000 bits. Clearly,
the computational complexity of finding the optimal soluatio
by an exhaustive search will be too high if the number

[21]

2]

subsequences increases. However, using the proposeddnetho
the optimal point, represented by the red point in Fig. 10, CﬁS]

be solved for easily.
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