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Reversible Data Hiding under Inconsistent
Distortion Metrics

Dongdong Hou, Weiming Zhang, Yang Yang and Nenghai Yu

Abstract—Recursive code construction (RCC), based on the
optimal transition probability matrix (OTPM), approachin g the
rate-distortion bound of reversible data hiding (RDH) has been
proposed. Using the existing methods, OTPM can be effectively
estimated only for a consistent distortion metric, i.e., ifthe host
elements at different positions share the same distortion metric.
However, in many applications, the distortion metrics are position
dependent and should thus be inconsistent. Inconsistent distortion
metrics can usually be quantified as a multi-distortion metric.
In this paper, we first formulate the rate-distortion problem of
RDH under a multi-distortion metric and subsequently propose
a general framework to estimate the corresponding OTPM,
with which RCC is extended to approach the rate-distortion
bound of RDH under the multi-distortion metric. We apply the
proposed framework to two examples of inconsistent distortion
metrics: RDH in color image and reversible steganography.
The experimental results show that the proposed method can
efficiently improve upon the existing techniques.

Index Terms—recursive code construction, rate-distortion
bound, optimal transition probability matrix, inconsiste nt distor-
tion metrics, multi-distortion metric, reversible steganography,
reversible data hiding.

I. I NTRODUCTION

REversible data hiding (RDH) is a special type of data
hiding, whereby both the host signal and the embedded

data can be restored from the marked signal without loss.
This important technique is widely used in medical image
[1], military image [2] and law forensics, where the original
signal is so precious that it cannot be damaged. Moreover, it
has been found that RDH can be quite helpful in video error-
concealment coding [3], reversible image processing [4], etc.

In the past decade, multiple RDH algorithms have been
proposed that can be roughly classified into three fundamental
strategies: the lossless compression appending scheme [2],
difference expansion [5]–[7] and histogram shift [8]. The state
of the art of RDH combined such strategies with the residuals
of images such as prediction errors (PEs) [9]–[15] to improve
performance.

Nearly all RDH algorithms consist of two steps. The first
step involves generating a host sequence with a small entropy,
i.e., a sharp histogram, that can usually be achieved using PEs
combined with the sorting technique [10] or a pixel selection
strategy [13]. Subsequently, in the second step, users reversibly
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embed messages into the host sequence by modifying its
histogram using methods such as difference expansion and
histogram shift.

One natural difficulty of an RDH scheme concerns identi-
fying the upper bound of the payload for the host sequence
under a given distortion constraint. For an independent and
identically distributed host sequence, this problem has been
solved by Kalker and Willems [16], who formulated RDH as a
special rate-distortion problem and obtained the rate-distortion
function, i.e., the upper bound on the embedding rate under a
given distortion constraint∆, as follows:

ρrev(∆) = maximize{H(Y )} −H(X), (1)

where X and Y denote the random variables of the host
sequence and the marked sequence, respectively. The entropy
is maximized over all transition probabilitiesPY |X(y|x) sat-
isfying the distortion constraint

∑

x,y

PX(x)PY |X(y|x)d(x, y) ≤ ∆, (2)

wherePX(x) is the probability distribution ofX, andd(x, y)
is the defined cost of modifyingx to y.

As the above implies, to evaluate the capacity of RDH
under a given distortion constraint, one should first calculate
the optimal transition probability matrix (OTPM)PY |X(y|x)
that implies the optimal modification ofX. Using OTPM, Lin
et al. [17] proposed a coding method approaching the rate-
distortion bound. By improving the recursive code construction
(RCC) [16], Zhanget al. obtained the optimal embedding
methods of RDH for binary host sequences [18], [19] and
general grayscale host sequences [20] and furthermore proved
that RCC will approach the rate-distortion bound as long as
the adopted entropy coder reaches entropy. A coding method
similar to [20] was independently presented by Zhang [21].

OTPM is essential to coding and decoding processes of
the cited RCC schemes [17], [20], [21]. For certain specific
distortion metrics, such as the square error distortion met-
ric d(x, y) = (x − y)2 or the L1-Norm distortion metric
d(x, y) = |x − y|, the corresponding OTPM has the non-
crossing-edges (NCE) property [17], [22]. By relying on the
NCE property, the OTPMPY |X(y|x) can be analytically
derived from the marginal distributionsPX(x) and PY (y).
Therefore, the problem of estimating OTPM is converted to
that of estimating the optimalPY (y). To estimatePY (y), Lin
et al. [17] proposed the first algorithm, and Huet al. [23]
presented a fast algorithm. A general method for estimating
OTPM without relying on the NCE property was presented in
[24].
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A distortion metric is used to describe the cost in-
curred in changing the host element; we refer to position-
independent metric as consistent distortion metric and to
position-dependent metric as inconsistent distortion metric.
For instance, assume that the host sequence consists of two
pixels p1 and p2. When modifying the pixels by the same
magnitudek, we define the cost onp1 asd1(k) and the cost
on p2 as d2(k). If the cost functions satisfyd1(k) = d2(k),
we call the metric consistent distortion metric; otherwise,
we call it inconsistent distortion metric. Although a number
of algorithms have been proposed for estimating OTPM,
all of them assume that the distortion metric is consistent,
significantly limiting the applications of RCC schemes. In
other words, for the existing RCC schemes, all elements
of the host sequence, e.g., the pixels of the host image,
need to share the same distortion metric. However, from the
perspective of the human visual system or the security of
data hiding, the changes in the smooth regions of an image
are more noticeable than those in noisy regions. Therefore,
the distortions caused by modifications in smooth regions and
noisy regions should be different; based on this observation,
position-dependent distortion metrics for steganography[25]–
[28] and RDH schemes [29]–[32] have been proposed. An-
other example is the human eye’s higher sensitivity to the
green channel and lower sensitivity to the blue channel [33],
implying that for RDH in color image, the distortion caused by
a modification of the green channel should be defined higher
than that of the blue channel. In summary, the distortion metric
for each host element should be position dependent and thus
inconsistent.

Several algorithms, such as [29]–[32], define inconsistent
distortion metrics for RDH, which endow pixels from regions
of complex texture or complex structure with lower costs. In
general, such algorithms select image pixels with lower costs
to carry messages, but their embedding methods are difference
expansion or histogram shift without considering the optimal
modification. It is usually hard to estimate the rate-distortion
bound of RDH under inconsistent distortion metrics direct-
ly. However, in practical applications, inconsistent distortion
metrics can be quantified as several distortion levels, i.e., a
multi-distortion metric. That is to say we can well approximate
inconsistent distortion metrics with a multi-distortion metric.
Thus, an interesting problem concerns the estimation of the
rate-distortion bound of RDH under a multi-distortion metric
and solving the corresponding OTPM. When a multi-distortion
metric is considered, the host sequence is classified into several
subsequences according to the distortion metrics. So instead
of a single histogram, multiple histograms are generated.
Although RDH on multiple histograms has been studied by
Hu et al. [34] and Li et al. [35], the researchers’ distortion
metrics are both consistent. In this paper, we first formulate the
rate-distortion problem of RDH under a multi-distortion metric
and subsequently present the unified framework to estimate
the corresponding OTPM that includes the framework under a
consistent distortion metric as a special case. We combine mul-
tiple histograms to form a compound histogram and construct
a multi-distortion metric as a compound distortion metric that
can convert the problem of RDH under a multi-distortion

metric into that under a consistent distortion metric. Therefore,
the rate-distortion problem of RDH under a multi-distortion
metric can be solved using the existing methods [17], [23],
[24]. The proposed framework can be used to improve RDH
in various applications; we consider RDH in color image and
reversible steganography as examples to show the advantages
of the proposed framework.

The rest of this paper is organized as follows. Section II
briefly introduces the existing methods for optimal RDH under
a consistent distortion metric. In Section III, we formulate
the rate-distortion problem of RDH under a multi-distortion
metric and describe a solution to this problem. In Section
IV, two applications, RDH in color image and reversible
steganography, are presented to demonstrate the power of the
proposed framework. Finally, this paper is concluded with the
discussion in Section VI.

II. EXISTING METHODS

Throughout this paper, matrices and vectors are shown
in bold. The sender embedsL bits of a message into the
host sequenceX = (x1, · · · , xN ) by slightly modifying its
elements to produce a marked sequenceY = (y1, · · · , yN ).
We denote the embedding rateR = L/N , whereN is the
length of the host sequence. Schemes are usually constructed
to minimize the average distortion betweenX and Y for a
given embedding rateR. The cost of changingx to y is
defined asd(x, y), which could be the square error distortion
metric ds(x, y) = (x − y)2, the L1-Norm distortion metric
d1(x, y) = |x − y|, or a specific distortion metric defined by
the user. We useX and Y to denote the random variables
of the host sequence and the marked sequence, respectively;
the probability distribution of the host sequencePX(x) can be
estimated by the histogram of the host sequenceX. We denote
the entropy ofX by H(X) and the conditional entropy ofY
givenX by H(Y |X).

The optimization problem in Eq. (1) is for a distortion-
limited sender. In practice, we usually consider a payload-
limited sender, as shown in Eq. (3), that minimizes the average
distortion for a given embedding rateR.

minimize
∑m−1

x=0

∑n−1
y=0 PX(x)PY |X(y|x)d(x, y)

subject to H(Y ) = R+H(X)
(3)

As x ∈ X = {0, 1, · · · ,m−1}, y ∈ Y = {0, 1, · · · , n−1},
andX andY are both finite alphabet sets, the distortion metric
d(x, y) can be described with a distortion matrix such as

D =













d(0, 0) d(0, 1) ... d(0, n− 1)

d(1, 0) d(1, 1) ... d(1, n− 1)

...
...

...
...

d(m− 1, 0) d(m− 1, 1) ... d(m− 1, n− 1)













,

(4)
whered(x, y) in Eq. (4) has the same function form for all
x = 0, ,m− 1 andy = 0, , n− 1.

For several specific distortion metrics, such as the squared
error distortion metric and theL1-Norm distortion metric, it
has been proven in [17], [22] that the corresponding OTPM
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Fig. 1: The primary steps of designing RDH schemes approaching the rate-distortion bound.

PY |X(y|x) can be analytically expressed by the host distribu-
tion PX(x) and the marginal distributionPY (y) such that

PY |X(y|x) = max{0,min{FX(x), FY (y)}

−max{FX(x− 1), FY (y − 1)}}, (5)

where FX(x) and FY (y) are cumulative probability distri-
butions of X and Y, defined byFX(x) =

∑x

i=0 PX(i),
wherex = 0, · · · ,m − 1, andFY (y) =

∑y

i=0 PY (i), where
y = 0, · · · , n − 1. Note thatFX(−1) = FY (−1) = 0,
FX(m− 1) = FY (n− 1) = 1, the functionmin{a, b} returns
the minimum value ofa and b, and the functionmax{a, b}
returns the maximum value ofa andb.

Lin et al. [17] proposed a backward and forward iterative
algorithm for estimating the optimalPY (y), while Hu et al.
[23] proposed a fast algorithm for estimating the optimal
PY (y) based on the Lagrangian duality. The general frame-
work for estimating the OTPMPY |X(y|x) from PX(x) and
PY (y) under any consistent distortion metrics was proposed by
Zhanget al. [24]. According to the OTPM, we can reversibly
embed messages and minimize the average distortion with an
RCC scheme such as RHM (recursive histogram modification)
[20]. Fig. 1 describes the primary steps of designing an RDH
scheme approaching the rate-distortion bound.

Note that all the above-mentioned methods [17], [23], [24]
for estimating OTPM require that the distortion metric is
consistent and can be expressed as a single distortion matrix of
Eq. (4). However, as discussed in the Introduction, distortion
metrics in many applications are usually inconsistent, and
inconsistent distortion metrics can be quantified as a multi-
distortion metric. Therefore, it is important to estimate OTPM
and implement the optimal embedding for RDH under a multi-
distortion metric.

III. OTPM OF RDH UNDER A MULTI -DISTORTION METRIC

A. Rate-distortion bound under a multi-distortion metric

In most cases, the distortion caused by modifying each host
element should be associated with its position and neighboring
elements. Assuming that the distortion metric for thejth
elementxj is dj(x, y), wherexj ∈ X = (x1, x2, · · · , xN )
and1 ≤ j ≤ N , the corresponding distortion matrixDj is

Dj =













dj(0, 0) dj(0, 1) ... dj(0, n− 1)

dj(1, 0) dj(1, 1) ... dj(1, n− 1)

...
...

...
...

dj(m− 1, 0) dj(m− 1, 1) ... dj(m− 1, n− 1)













.

(6)

There will be at mostN inconsistent distortion metrics,
denoted by(d1(x, y), d2(x, y), · · · , dN (x, y)). If N distortion
metrics are identical, such a model will be one with a
consistent distortion metric.

In practical applications, as many elements of the host
sequence will share the same or similar distortion metrics,
we can cluster such distortion metrics inK (K ≤ N )
classes. Accordingly, the host sequenceX is divided intoK
subsequences denoted byxi = (xi,1, xi,2, · · · , xi,Ni

), where
Ni is the length ofxi. All elements in the subsequencexi will
share the same distortion metric defined asdi(x, y), which can
also be described with the single distortion matrixDi, where
1 ≤ i ≤ K.

Now, the host sequenceX containsK subsequences and
thus containsK histograms, withPXi

(x) representing the
probability distribution ofxi, where1 ≤ i ≤ K. However,
the shapes and distortion metrics of such histograms both vary.
For a fixed payloadR, different histograms perform differently
when chosen for embedding. As a result, a payload allocation
problem arises naturally.

For each subsequencexi, if we obtain its allocated em-
bedding rate denoted byRi (relative toxi), we can calculate
the corresponding sub-OTPM denoted asPYi|Xi

(y|x) using
the existing methods for a consistent distortion metric and
subsequently optimally modify its histogram to obtain the
corresponding marked subsequence denoted byyi. The to-
tal distortion caused by embedding the payloadRi into xi

(denoted byJi) is

Ji = Ni

∑

x,y

PXi
(x)PYi|Xi

(y|x)di(x, y). (7)

As for the entire payloadR, the corresponding payload
carried by the subsequencexi is Ni×Ri

N
. Of course, the sum

of payloads ofK subsequences equals the total payloadR,
i.e.,

R =

∑K

i=1 Ni ×Ri

N
. (8)

Based on the above discussion, given a payloadR, the
problem of reasonably distributing the total payloadR among
K subsequences to minimize the average embedding distortion
can be formulated as

Problem I

minimize
∑K

i=1
Ni

∑m−1

x=0

∑n−1

y=0
PXi

(x)PYi|Xi
(y|x)di(x,y)

N

subject to
∑K

i=1
Ni×H(Yi)

N
= R +

∑K
i=1

Ni×H(Xi)

N
.

(9)
Eq. (9) provides the rate-distortion bound of RDH under a

multi-distortion metric, matching that of Eq. (3) ifK = 1.
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To minimize the average distortion, each optimal allocated
payloadRi, i.e., the sub-OTPMPYi|Xi

(y|x), is needed for
i = 1, 2, ...,K, which can be used to optimally modifyK
subsequences and embed the corresponding messages into
each host subsequence.

B. Compound histogram and compound distortion metric

The host sequenceX is divided into K subsequences
according to their distortion metrics, while each subsequence
has its own distortion metric and probability distribution.
The difficulty lies in obtaining the optimal payload for each
subsequence, i.e., obtaining the respective sub-OTPMs. To
solve this problem, we combineK subsequences to form
a compound sequence denoted byXc and then design a
compound distortion metric denoted bydc(x, y) for Xc that
can be used to solve the optimization problem of Eq. (9) with
existing methods [17], [23], [24] for a consistent distortion
metric.
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Fig. 2: Compound histogram.

Assume that the histogram of the subsequencexi is denoted
by Hi; we assign it an offset valueoxi (i = 1, 2, · · · ,K).
By translating each sub-histogramHi by the corresponding
offset oxi along the x-axis, we combineK sub-histograms
Hi into a large compound histogramHc. As depicted in
Fig. 2, three sub-histograms, shown in red, green and blue,
are combined to form a single compound histogram. There
is no need to record the offset valueoxi, as it is uniquely
determined. Specifically,oxi is selected to guarantee that
there is neither overlap nor vacant space between any two
adjacent sub-histograms of the compound histogramHc. In
the proposed method,oxi = (i − 1)m usually. Each sub-
histogramHi, i.e., the subsequencexi, is translated by the
corresponding offsetoxi along the x-axis. The translated
xi is denoted byxt

i, with its elements being in the range
{(i − 1)m, (i − 1)m + 1, · · · , im − 1}. Subsequently,K
translated subsequences are combined to generate a compound
sequenceXc, as Eq. (10) shows.

Xc = [xt
1 xt

2 ... xt
K ] (10)

By normalizing the compound histogramHc, the compound
host probability distributionPXc

(x) is obtained. Note that after

the translation, the range ofx will be enlarged by a factor of
K, and x ∈ X c = {0, 1, 2, · · · , km − 1}. We denote the
compound host probability distributionPXc

(x) in the vector
asPXc

= [PXt
1
, · · · ,PXt

K
], where

PXt
i
= [PXc

((i−1)m), · · · , PXc
(im−1)], 1 ≤ i ≤ K. (11)

As the probability distributionPXc
results from normalizing

the compound histogramHc, we obtain

PXt
i
=

Ni

N
PXi

, 1 ≤ i ≤ K. (12)

Accordingly, the range of the marked sequencey is also
enlarged by the factor ofK, andy ∈ Yc = {0, 1, 2, · · · , kn−
1}. We define the compound probability distribution of the
marked sequence asPYc

= [PY t
1
, · · · ,PY t

K
], where

PY t
i
= [PYc

((i − 1)n), · · · , PYc
(in− 1)], 1 ≤ i ≤ K. (13)

We need to optimally modify the host subsequencesxt
i

to generate the corresponding marked subsequencesyt
i for

i = 1, 2, ...,K. Note thatyt
i must be generated only from

xt
i; otherwise, the modification will be meaningless. To avoid

modifying the elements ofxt
i to generate the elements ofyt

j

when i 6= j, we define the cost of such a modification as
infinite. The distortion matrix for the compound host sequence
under a multi-distortion metric is shown in Eq. (14), and
dc(x, y) represents the element inxth row andyth column
of Dc.

Dc =













D1 ∞ ... ∞

∞ D2 ... ∞

...
...

...
...

∞ ∞ ... DK













, (14)

whereDi is shown in Eq. (15).
By constructing the compound histogram and the compound

distortion metric, we convert the problem of RDH under a
multi-distortion metric into the problem under a consistent
distortion metric. The constructed compound distortion metric
can also be represented in a single distortion matrixDc. In
fact, we convert the optimization Problem I of Eq. (9) into
Problem II of Eq. (16).

Problem II

minimize
∑Km−1

x=0

∑Kn−1
y=0 PXc

(x)PYc|Xc
(y|x)dc(x, y)

subject to H(Yc) = R+H(Xc)
(16)

The problem in Eq. (16) has the same form as that in Eq. (3);
hence, we can estimate the optimal distributionPYC

(y) and
the OTPMPYc|Xc

(y|x) using methods of [17], [23], [24]. By
introducing the infinite distortion, in the optimal modification
that causes the minimal distortion, the elements ofxt

i will be
not modified to the elements ofyt

j for i 6= j. Therefore, the
corresponding sub-OTPM amongxt

i andyt
j is zero, and the

compound OTPMPYc|Xc
(y|x) has the following form:

PYc|Xc
=













PY t
1
|Xt

1
0 ... 0

0 PY t
2
|Xt

2
... 0

...
...

...
...

0 0 ... PY t
K
|Xt

K













, (17)
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Di =















di((i − 1)m, (i− 1)n) di((i− 1)m, (i− 1)n + 1) ... di((i − 1)m, in− 1)

di((i − 1)m+ 1, (i− 1)n) di((i − 1)m + 1, (i− 1)n+ 1) ... di((i − 1)m +m− 1, in− 1)

...
...

...
...

di(im− 1, (i− 1)n) di(im − 1, (i− 1)n+ 1) ... di(im− 1, in− 1)















(15)

P
Y

t
i
|Xt

i
=















PYc|Xc
((i− 1)n|(i− 1)m) PYc|Xc

((i − 1)n+ 1|(i− 1)m) ... PYc|Xc
(in− 1|(i− 1)m)

PYc|Xc
((i − 1)n|(i− 1)m + 1) PYc|Xc

((i − 1)n + 1|(i− 1)m + 1) ... PYc|Xc
((in− 1|(i− 1)m + 1)

...
...

...
...

PYc|Xc
((i − 1)n|im − 1) PYc|Xc

((i − 1)n+ 1|im− 1) ... PYc|Xc
(in− 1|im− 1)















(18)

where PY t
i
|Xt

i
is shown in Eq. (18), andPYc|Xc

(y|x)
represents the element in thexth row and yth column of
PYc|Xc

.
After obtaining the optimal distributionPYC

and the OTPM
PYc|Xc

, the allocated payload for each subsequence is de-
termined, according to which we can optimally modify the
respectiveK subsequences using RCC schemes. To this end,
RCC needs to be performedK times. Indeed, we can also
directly apply RCC to the compound host sequenceXc to
embed messages and generate the marked sequenceYc ac-
cording toPYc|Xc

. After obtainingYc, we need to retranslate
each translated marked subsequenceyt

i for i = 1, 2, ...,K by
its corresponding offsetoyi (similarly, oyi = (i−1)n usually)
along the x-axis to create the ultimate marked sequenceY.

The above analyses show that we can obtain the optimal
solution of Problem II using the existing methods [17], [23],
[24]; the theoretical and experimental proofs that the optimal
solution of Problem II can yield the optimal solution of
Problem I are provided in the Appendix.

C. Embedding and extraction

Thus far, we have proposed a general framework for cal-
culating the OTPM of RDH under a multi-distortion metric,
enabling us to embed messages using the optimal coding
methods such as RHM [20]. The proposed framework can be
implemented in various forms; a typical implementation of a
design of an RDH algorithm approaching the rate-distortion
bound of RDH under a multi-distortion metric proceeds as
follows.

Embedding
1) Reserve several elements of the host signal to embed the

auxiliary information, and generate the host sequenceX

from the remaining elements. The auxiliary information
will be embedded into the LSBs (least significant bits)
of the reserved elements, with the LSBs of such reserved
elements embedded intoX as part of the payload.

2) Divide the host sequenceX into K classes according to
their distortion metrics, and obtain the subsequencexi

for i = 1, 2, ...,K.
3) Translate each subsequencexi by the corresponding

offset oxi to obtain xt
i, and normalize the combined

compound host histogramHc to generate the compound
host probability distributionPXc

.
4) Construct the compound distortion matrixDc as Eq.

(14).

5) With PXc
, Dc and the embedding rateR as parame-

ters, calculate the optimal compound distribution of the
marked sequencePYc

and the OTPMPYc|Xc
.

6) According toPYc|Xc
, embed messages intoXc with

RHM [20] to generate the compound marked sequence
Yc.

7) Retranslate each marked subsequenceyt
i for i =

1, 2, ...,K by the corresponding offsetoyi to create the
ultimate marked sequenceY.

8) Embed the auxiliary information into the LSBs of re-
served elements, primarily the location map of over-
flow/underflow pixels, the host histogramPXc

, the
embedding rateR, and the number of classesK.

Extraction

1) Extract auxiliary information from the reserved ele-
ments, including the location map of overflow/underflow
pixels, the host histogramPXc

, the embedding rateR,
and the number of classesK.

2) Divide the marked sequenceY into K classes according
to the distortion metrics, and obtain the marked subse-
quenceyi for i = 1, 2, ...,K.

3) Translate each marked subsequenceyi for i =
1, 2, ...,K by the corresponding offsetoyi, and combine
the results to generate the compound marked sequence
Yc.

4) UsingPXc
, embedding rateR and the constructedDc

as parameters, calculate OTPMPYc|Xc
. UsingPYc|Xc

,
decode the compound marked sequenceYc to extract
the embedded messages and restore the compound host
sequenceXc.

5) Retranslate each host subsequencext
i for i = 1, 2, ...,K

by the corresponding offsetoxi to reconstruct the host
sequenceX. Finally, reconstruct the reserved elements
using the extracted LSBs.

IV. A PPLICATIONS TO INCONSISTENT DISTORTION

METRICS

At the beginning of this section, we first declared certain
settings for RHM [20] that can approach the rate-distortion
bound of RDH according to OTPM. As certain auxiliary
information guaranteeing reversibility, such as the host his-
togram and the location map of overflow/underflow pixels, is
needed for RHM (see [20]), we should omit extra payload to
carry such auxiliary information. Usually, the host histogram
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accounts for most of the auxiliary information. In [24], the
differential pulse-code modulation encoder is used to compress
the host histogram; however, we think that the host histogram
can be compressed more efficiently with the help of the
histogram of the marked sequence. Indeed, after modifying the
host sequence to generate the marked sequence, the marked
histogram will be very similar to the host histogram, especially
when the payload is low. The marked histogram can be re-
constructed from the marked sequence; we can further restore
the host histogram from the marked histogram by calculating
and recording the difference between each bin of the former
and the corresponding bin of the latter. Thus, to record the
host histogram, we only need to compress and record such
bin differences, allowing efficient compression of the host
histogram.

In the experiments, assuming the length of raw messages
to be L bits, we allocate0.03L bits for auxiliary messages
to record the location map of overflow/underflow pixels.
Then, the embedding rate for calculatingPYC

andPYc|Xc
is

R =
1.03L+Lpara

Nh
, whereNh is the length of the host sequence,

and Lpara denotes the amount of information for recording
parameters, including the host histogram, the embedding rate
and the number of classes. Therefore, the number of reserved
elements is usually initialized at0.03L + Lpara. If it is
insufficient, we can further increase the number of reserved
elements.

Using the embedding rateR and the compound distortion
matrix Dc, we apply the fast algorithm by Huet al. [23] to
calculate the optimal probability distribution of the compound
marked sequence, i.e.,PYC

. The real embedding rate corre-
sponding toPYC

is (H(Yc)−H(Xc)) and may be close toR,
but not exactly equal toR because of the numerical precision.
To solve this problem in RCC schemes, a series of embedding
rates denoted byRtests are tested until

0 ≤ H(Yc)−H(Xc)−R ≤ 0.005. (19)

The details of the process used to calculatePYc
and guarantee

the raw payload are shown in Algorithm 1.

A. Reversible data hiding in color image

RDH algorithms in grayscale image have been well-
established, in contrast to those in color image, despite the
greater popularity of the latter. Among color RDH algorithms
[36]–[38], the method of Yaoet al. [38] is state of the art.
In the scheme of Yaoet al., pixels of each color channel are
divided into two sets labeled dark and white, as shown in Fig.
3. Therefore, red, green and blue channels are divided into
6 sets, denoted byRd, Rw, Gd, Gw, Bd, andBw, where
Cd and Cw represent the sets of scales in channel C from
the dark region and the white region, with C representing the
red, green or blue channel. Before embedding, the payload
is allocated adaptively to the 6 divided sets to reduce the
embedding distortion; subsequently, messages are embedded
into the 6 sets one by one. When a given set is selected for
modification, the other 5 sets are used as references to generate
a sharp PE histogram through the guided filtering predictor

Algorithm 1 Guaranteeing the Raw Payload
Input: The compound host probability distribution PXc

and the length of raw messagesL.
Output: The compound marked probability distributions,

i.e., PYc
.

1: R =
1.03L+Lpara

Nh
;

2: tag = true, iteration = 0, Rtest = R;
3: while tag do
4: iteration = iteration+ 1;
5: if iteration > 6 then
6: tag = false;

7: end
8: CalculatePYC

using the fast algorithm by Huet al.
[23] with PXc

, Dc andRtest as parameters;
9: if 0 ≤ H(Yc)−H(Xc)−R ≤ 0.005 then

10: tag = false;
11: else
12: Rtest = Rtest R

H(Yc)−H(Xc)
;

13: end
14: end
15: return PYC

;

 !"#$%

 !$%"#  !"#  !$%&#

 !&#$%

Fig. 3: A checkerboard pattern.

(a) (b) (c) (d)

Fig. 4: Tested color images of size 510×510: (a) Lena, (b) Baboon,
(c) Barbara and (d) Airplane.

[39]. Studies by [39] and [38] provide the details of the guided
filtering predictor.

The existing color RDH methods [36]–[38] embed messages
in a color image primarily by exploring the correlations among
the three color channels to achieve a high peak signal-to-noise-
ratio (PSNR) for the color marked image, implying that for
these methods, modifications of the three channels have the
same impact on image quality. However, the sensitivity of
human eye to colors varies with color. The formula in Eq. (20)
from Rec. 601 [33] is widely used for converting a color image
to grayscale, with the weights in Eq. (20) representing the
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Fig. 5: Comparisons of C-PSNR: (a) Lena, (b) Baboon, (c) Barbara and(d) Airplane.

relative luminance perceptions of typical trichromat humans
to light of the precise additive primary colors.

f = 0.299r+ 0.587g + 0.114b, (20)

where r, g and b are the levels of the red, green and blue
channel, respectively, andf is the generated grayscale level.
Eq. (20) shows that human eye is more sensitive to green and
less so to blue. According to Eq. (20), a reasonable quality
assessment of color marked image, denoted by C-PSNR, is
computed as

C − PSNR = 10log10(
2552

MSEC

), (21)

where

MSEC = 0.299MSER + 0.587MSEG + 0.114MSEB,
(22)

andMSER, MSEG andMSEB are the mean square errors
from the red, green and blue channels, respectively.

Based on the above quality assessment, a reasonable multi-
distortion metric for three host subsequences for the red, green

and blue channels can be defined as










dR(x, y) = 0.299(x− y)2, for red channel

dG(x, y) = 0.587(x− y)2, for green channel

dB(x, y) = 0.114(x− y)2, for blue channel

.

(23)
As in most RDH methods, PEs of pixels are generated as

a host sequence to carry messages. To use the correlations
among the three color channels, we also adopt the guided filter
[39] used in the method of Yaoet al. to generate host PEs.
Similar to the method of Yaoet al., the color host image is
divided into 6 sets. Considering embedding in dark regions as
an example, the PEs of setsRd, Gd andBd are first calculated
by a guided filter with the original host image as a reference
using the formulas











PER0
d = GuideF ilter(Rd, {Rw,Gd,Gw,Bd,Bw})

PEG0
d = GuideF ilter(Gd, {Rd,Rw,Gw,Bd,Bw})

PEB0
d = GuideF ilter(Bd, {Rd,Rw,Gd,Gw,Bw})

.

(24)
For the three sets of PEs,PER0

d, PEG0
d andPEB0

d from



8

4 6 8 10 12 14

x 10
4

52

54

56

58

60

62

G
−

P
S

N
R

(d
B

)

Payload (bits)

 

 
Framework under multi−distortion metric
Yao et al.’s method [38]
Ou et al.’s method [37]
Framework under consistent metric
RHM [20]

(a)

3 4 5 6 7

x 10
4

48

50

52

54

56

58

60

G
−

P
S

N
R

(d
B

)

Payload (bits)

 

 
Framework under multi−distortion metric
Yao et al.’s method [38]
Ou et al.’s method [37]
Framework under consistent metric
RHM [20]

(b)

3 4 5 6 7 8 9 10 11

x 10
4

52

54

56

58

60

62

64

66

G
−

P
S

N
R

(d
B

)

Payload (bits)

 

 
Framework under multi−distortion metric
Yao et al.’s method [38]
Ou et al.’s method [37]
Framework under consistent metric
RHM [20]

(c)

0.5 1 1.5 2

x 10
5

52

54

56

58

60

62

64

66
G

−
P

S
N

R
(d

B
)

Payload (bits)

 

 
Framework under multi−distortion metric
Yao et al.’s method [38]
Ou et al.’s method [37]
Framework under consistent metric
RHM [20]

(d)

Fig. 6: Comparisons of G-PSNR: (a) Lena, (b) Baboon, (c) Barbara and(d) Airplane.

the red, green and blue channels, we define the multi-distortion
metric following Eq. (23). After the payload is given, we apply
our framework to estimate the optional allocated payloads for
Rd, Gd andBd.

After obtaining the allocated messages for pixel setsRd, Gd

andBd, we use RHM [20] to embed the allocated messages
into PER0

d first and correspondingly modifyRd to R′
d.

Subsequently, we calculate the PEs ofGd, denoted byPEGd:

PEGd = GuideF ilter(Gd, {R
′
d,Rw,Gw,Bd,Bw}). (25)

After finishing embedding forPEGd according to its allocat-
ed messages,Gd is modified toG′

d. Finally, the PEs ofBd,
denoted byPEBd, are generated as follows:

PEBd = GuideF ilter(Bd, {R
′
d,Rw,G

′
d,Gw,Bw}), (26)

andBd is changed toB′
d by modifying its PEs according to

its allocated messages. Of course, messages can be decoded
in the inverse order at the receiver’s side. AfterRd, Gd and
Bd finish embedding, we will modify white regionsRw, Gw

andBw to embed messages the same way. Note that for each
set, onlyNh PEs with the highest smoothness are selected as

host PEs, whereNh is usually six times the length of allocated
messages, and the smoothness of a pixel is the variance of its
four neighboring pixels (see Fig. 3).

Next, we compare the color RDH method under the
proposed framework with two state-of-the-art color RDH
schemes, the methods of Ouet al. [37] and Yaoet al. [38].
As the proposed method is an extension of RCC from a
consistent to inconsistent distortion metrics, we also compare
the proposed method to RHM [20]. Note that the random
scrambling PEs from the three color channels compose the
single host sequence when performing RHM [20] on a color
image. To show that the strength of the proposed method
resulted from defining a multi-distortion metric, experiments
on the proposed framework under a consistent distortion
metric, i.e.,dR(x, y) = dG(x, y) = dB(x, y) = (x − y)2,
are also carried out for comparison.

As shown in Fig. 5, defining a multi-distortion metric for
RCC is particularly meaningful, as it can greatly outperform
the proposed framework under a consistent distortion metric
and RHM [20] according to C-PSNR (Eq. (21). Furthermore,
the proposed method outperforms those of Ouet al. [37] and
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Yao et al. [38], implying that the proposed method is more
suitable for color images due to inconsistent distortion metrics
being reasonably defined by considering the characteristics of
the human eye.

In addition to C-PSNR (Eq. (21)), as the grayscale version
of a color image is rather valuable for many applications,
to fully assess the performance of RDH in color image, we
also convert both the host color image and the marked color
image into grayscale images and calculate the PSNR between
such two grayscale images, denoted by G-PSNR. Fig. 6 shows
that the corresponding grayscale versions of marked images
produced by the presented method are also of better visual
quality than those produced by the existing methods [20], [37],
[38].

Taking as examples the embedding of 50000 bits into typical
510 × 510 × 3 color images, we also compare the speed of
our algorithm to those of the existing color RDH methods;
the embedding times (measured in seconds) are shown in
Table I. Table I shows that our algorithm is even faster than
the methods of Yaoet al. and Ouet al. Note that in this
paper, all test algorithms are implemented in MATLAB; speed
comparison tests were run on a Lenovo personal computer with
an i3-4130 CPU@ 3.40 GHz and 4.00 GB of RAM.

TABLE I: Speed comparisons of the proposed method and the
existing color RDH algorithms.

Image Lena Baboon Barbara Airplane
Ou et al.’s method [37] 153 s 239 s 116 s 139 s
Yao et al.’s method [38] 97 s 96 s 95 s 94 s

Proposed method 91 s 91 s 86 s 85 s

B. Reversible steganography

Reversible steganography [31], [32] is a special kind of
data hiding that has the reversibility of traditional RDH
and the undetectability of traditional steganography. Such a
technique is desired in covert storage [32] applications. To
guarantee reversibility, reversible steganography cannot be as
undetectable as traditional steganography. In this paper,we use
the typical steganalyzer SPAM [40] to test undetectability, as
done in [31] and [32]. All experiments are performed on the
BOSSbase ver.1.01 [41] image database, which contains 10000
grayscale images of size512× 512. In the experiments, 5000
images are randomly selected for training, with the remaining
5000 images used for testing with ensemble classifiers [42].
We report the testing error, computed as the average of the
false positive rate and false negative rate, randomly splitting
the training and the testing images a total of 10 times. As for
steganography, a higher detecting error rate implies a stronger
undetectability.

Currently, the most successful steganographic approaches
[25]–[28] are devoted to embedding messages while mini-
mizing the total distortion, which is the sum of costs of all
modified elements. In this paper, we define the cost for each
element by HILL [27] as

C =
1

|X
⊗

H(1)|
⊗

L1

⊗

L2, (27)

where X = (x1, x2, · · · , xN ) is the input image,C =
(c1, c2, · · · , cN ) are the corresponding output cost values,L1

andL2 are two low-pass filters, andH(1) is a high-pass filter
(please refer to [27] for the details of HILL).

We also divide pixels of the host image into two parts, as
shown in Fig. 3, and obtain the PE of a pixel by subtracting its
prediction value, defined as the mean of its four neighboring
pixels (see Fig. 3). If the PEs of dark pixels are used to carry
messages, we will replace dark pixels with their corresponding
prediction values to generate an interpolated image. Subse-
quently, we input such an interpolated image to calculate the
cost value of each dark pixel using Eq. (27). White pixels will
not be modified while performing RDH; thus, the recipient
can recalculate the interpolated image and these cost values
of dark pixels.

After obtaining the cost of each dark pixel, we select host
PEs adaptively from dark regions according to the given
payload. Specifically, for payloadL, we selectNh PEs with
the minimum cost values as host PEs, where

Nh = min{6L, ⌊0.4V ⌋}, (28)

andV is the number of dark pixels. We can still enlargeNh

if the selected PEs are insufficient for accommodating the
given payload. The theoretical motivation for this novel PE
selection strategy is twofold: first, preferentially embedding
messages into pixels with higher complexities, i.e., pixels with
the smaller cost values, will increase the security of data
hiding. Second, by scaling down the range of cost values, we
can reduce the quantified loss when quantifying inconsistent
distortion metrics as a multi-distortion metric.

As for the selected host PEs with the cost values
(c1, c2, · · · , cNh

), we cluster the cost values intoK classes
by cluster algorithms such asK-means and denote the center
of the ith class asCi. Accordingly, the host PEs are divided
intoK subsequences, with the elements in theith subsequence
sharing the same distortion metricdi(x, y) = Ci|x − y|,
where i = 1, 2, ...,K. After the multi-distortion metric is
defined, the presented framework is applied to minimize the
total distortion.

As mentioned above, we divide the host sequence intoK
classes by cost values. It seems that with a largerK we can
obtain a compound distortion metric that better fits the model
of adaptive steganography. However, if the number of sub-
histograms is large, the compound histogram will contain too
many bins; hence, the entropy of the compound host sequence
will decline with increasingK. As shown in Eq. (1), for RDH,
the smaller the entropy of the host sequence is, the better the
achievable performance of RDH. We can apply the following
method to determine the suitableK for each host sequence.
After the total distortion between the host sequence and the
marked sequence denoted byJK has been calculated for each
class numberK, the optimalK is determined by

Kop = argmin
K

JK ,K = 1, 2, 3, ... . (29)

A clear disadvantage of the above method is high computation-
al complexity. The problem of obtaining the optimal number of
classes not only adaptively but also effectively will be studied
thoroughly in the future.



10

We provide examples using payloads ofL = 6000 bits,
L = 8000 bits andL = 10000 bits to show the influence
of K on performance, using 1000 randomly selected images
from BOSSbase ver.1.01 [41] as test images. It can be shown
from Fig. 7, under the adopted HILL distortion metrics, that
the total distortion by the presented framework reaches the
minimum atK = 3. Therefore,K = 3 is adopted empirically
for the steganalysis experiments in this subsection.
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Fig. 7: The influence of K on the total distortion under different
payloads.
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Fig. 8: Comparisons among the previous methods and the proposed
method for resisting SPAM [40].

We compare the proposed method with two advanced
reversible steganographic algorithms, the methods of Hong
et al. [31] and Zhanget al. [32], under the detection by
SPAM [40]. Zhanget al.’s RHM [20] is also added in the
comparison experiments for contrast. As shown in Fig. 8,
with the consistent distortion, it is difficult for RHM [20] to
resist detection by SPAM. However, by extending RHM with
the distortion metrics of adaptive steganography, the proposed
method significantly outperforms the previous methods [20],
[31], [32]. The power of our algorithm arises from defining
the distortion metrics with the advanced HILL and minimizing
the total distortion by the presented framework.

Taking as examples embedding 14000 bits into typical
510×510 grayscale images, the embedding times (measured in
seconds) of our method and the previous reversible stegano-
graphic methods are listed in Table II. Table II shows that
our algorithm is faster than that of Honget al. [31] and
slightly slower than those of Zhanget al. [32] and RHM
[20]. Compared to the existing RCC schemes for a consistent
distortion metric such as RHM [20], the additional operations
by our method involve calculating the cost of each pixel and
constructing the compound histogram and distortion metric,
which usually have low computational complexity, as shown
by Table II. Therefore, as an extended RCC framework, it does
not introduce too much computational complexity in terms of
the existing RCC schemes.

TABLE II: Comparison of the running times of our algorithm
and the earlier reversible steganographic algorithms.

image Lena Baboon Barbara Airplane
Hong et al.’s method [31] 7 s 7 s 8 s 7 s
Zhanget al.’s method [32] 2 s 2 s 2 s 2 s

RHM [20] 1 s 1 s 1 s 4 s
Proposed method 2 s 3 s 2 s 7 s

V. CONCLUSIONS ANDDISCUSSION

In this paper, we present the rate-distortion bound of
RDH under a multi-distortion metric and develop a unified
framework for estimating the optimal transition probability
matrix under a multi-distortion metric that enables us to extend
recursive code construction schemes to applications of incon-
sistent distortion metrics. The experiments demonstrate that
the proposed method significantly outperforms the previous
methods.

Inconsistent distortion metrics are quantified into a multi-
distortion metric when performing reversible steganography.
As discussed above, increasing the number of sub-histograms
is not necessarily beneficial. Obtaining the optimal numberof
classes not only adaptively but also effectively is a difficult
theoretical problem to be solved in the future. On the other
hand, we apply HILL to define the cost of modification for
each pixel; however, it is clear that such distortion metrics used
in steganography should not be applied directly to reversible
steganography. In the future, we will design special distortion
metrics for reversible steganography and then design more
secure RDH algorithms.
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APPENDIX

We prove that the optimal solution to Problem II can
provide the optimal solution to Problem I both theoretically
and experimentally as follows.
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AssumePYc|Xc
in the form of Eq. (17) to be the optimal

solution of Problem II, andPYc
given by Eq. (13) is the cor-

responding optimal distribution of the marked sequence. This
solution reaches capacityR such thatH(YC)−H(XC) = R.
We denote the average distortion achieved by this solution as

Jcomp =
Km−1
∑

x=0

Kn−1
∑

y=0

PXc
(x)PYc |Xc

(y|x)dc(x, y). (30)

With the optimal solutionPYc|Xc
, we can construct a

solution of Problem I such that

PYi|Xi
= PY t

i
|Xt

i
, 1 ≤ i ≤ K. (31)

From Eq. (12),PXi
= N

Ni
PXt

i
; hence, Eq. (31) implies that

the corresponding optimal marginal distribution of the marked
sequence satisfies

PYi
=

N

Ni

PY t
i
. (32)

The solution Eq. (31) can reach capacityR because
∑K

i=1 Ni ×H(Yi)

N
−

∑K

i=1 Ni ×H(Xi)

N
= H(YC)−H(XC)

= R . (33)

Additionally, the corresponding average distortionJmult sat-
isfies

Jmult =

∑K

i=1 Ni

∑m−1
x=0

∑n−1
y=0 PXi

(x)PYi|Xi
(y|x)di(x, y)

N

=

Km−1
∑

x=0

Kn−1
∑

y=0

PXc
(x)PYc|Xc

(y|x)dc(x, y)

= Jcomp . (34)

Next, we prove that the solution in Eq. (31) is the optimal
solution of Problem I. If it is not, there exists another solution
of Problem I that can reach capacityR and achieve a smaller
average distortion. We denote such a solution as

P∗
Yi|Xi

, 1 ≤ i ≤ K (35)

and the corresponding marginal distribution of the marked
sequence asP∗

Yi
for 1 ≤ i ≤ K. The average distortion

achieved by the solution in Eq. (35) is

J∗
mult =

∑K

i=1 Ni

∑m−1
x=0

∑n−1
y=0 PXi

(x)P ∗
Yi|Xi

(y|x)di(x, y)

N
,

(36)
satisfyingJ∗

mult < Jmult.
Using the solution in Eq. (35), we can construct a solution

for Problem II. DefineXt
i andY t

i by adding offsetsoxi and
oyi to the ranges ofXi andYi, respectively, and define

P∗
Y t
i
|Xt

i
= P∗

Yi|Xi
, 1 ≤ i ≤ K. (37)

Furthermore, define

P∗
Yc|Xc

=















P∗
Y t
1
|Xt

1

0 ... 0

0 P∗
Y t
2
|Xt

2

... 0

...
...

...
...

0 0 ... P∗
Y t
K
|Xt

K















. (38)

With Eq. (12) and Eq. (37), the corresponding marginal
distribution is given byP∗

Y t
i

= Ni

N
P∗

Yi
, and

P∗
YC

= [P∗
Y t
1

, · · · ,P∗
Y t
K
]. (39)
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Fig. 10: Searching for the optimal strategy of payload alloca-
tion causing the minimum distortion.

Clearly, the solution in Eq. (38) to Problem II can reach the
same capacityR because

H(Y ∗
C)−H(XC)

=

∑K

i=1 Ni ×H(Y ∗
i )

N
−

∑K

i=1 Ni ×H(Xi)

N
= R . (40)

However, the average distortionJ∗
comp achieved by the solu-

tion in Eq. (38) satisfies

J∗
comp =

Km−1
∑

x=0

Kn−1
∑

y=0

PXc
(x)P ∗

Yc |Xc
(y|x)dc(x, y)

=

∑K

i=1 Ni

∑m−1
x=0

∑n−1
y=0 PXi

(x)P ∗
Yi|Xi

(y|x)di(x, y)

N
= J∗

mult < Jmult = Jcomp . (41)
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This is contrary to the assumption thatPYC |XC
is the optimal

solution of Problem II. Thus, we have proven that the solution
Eq. (31) is the optimal solution of Problem I.

In fact, following a similar method, we can also prove
that the optimal solution of Problem I can yield the optimal
solution of Problem II.

The optimality of the proposed method can be illustrated
with a simple example. Two subsequences following different
Laplace distributions are generated with the range [0, 49] and
the same length of100000, and the corresponding histograms
are depicted in red and green in Fig. 9. The correspond-
ing distortion metrics are defined asdR = (x − y)2 and
dG = 22(x − y)2, respectively. Assume that the length of
the message to be embedded isL = 20000 bits. We can
estimate the optimal strategy of payload allocation between
the two subsequences by an exhaustive search. Assume that
the payload for the red subsequence isLR bits; hence, the
remaining payload for the green subsequence isL − LR

bits. We try a series ofLR with the step length of 2000
bits to estimate the optimal solution that can minimize the
total distortion. As shown in Fig. 10, the total distortion
reaches the minimal value atLR close to12000 bits. Clearly,
the computational complexity of finding the optimal solution
by an exhaustive search will be too high if the number of
subsequences increases. However, using the proposed method,
the optimal point, represented by the red point in Fig. 10, can
be solved for easily.
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