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Nowadays, privacy in trajectory is an important issue in the coming big data era. In order to provide better protection for trajectory
privacy, a number of solutions have been proposed in the literature, and the dummy trajectorymethodhas attracted great interests in
both academia and industry recently due to the following advantages: (1) neither a third-party server nor other parties’ cooperation
is necessary; (2) location-based services are not influenced; and (3) its algorithm is relatively simple and efficient. However, most of
trajectory privacy generations usually consider the geometric shape of the trajectory; meanwhile the real humanmobility feature is
usually neglected. In fact, the real trajectory is not the product of random probability. In this paper, convolutional neural network
(CNN) is used as the learning machine to train with lots of the real trajectory and the generated dummy trajectory sets. Then, the
trained classifier is used to distinguish the dummy from the real trajectory. Experiments demonstrate that the method using CNN
is very efficient, and more than 90% of dummy trajectories can be detected. Moreover, the real trajectory erroneous judgment rate
is below 10% for most of real trajectories.

1. Introduction

Nowadays, location-based services (LBS) [1–7] are widely
used in smart mobile terminals, which makes the peoples’
daily life more convenient. In the process of interaction
between mobile terminal and LBS, there are many schemes
to protect users’ personal privacy data [8–10]. In addition, the
large amount of trajectory data generated in the interaction
process consists of the abundant space-time information
such as users’ personal interests, economic status, and living
habits. In fact, this information is sensitive, and it should
not be directly released to the public. On the other hand,
the trajectory data is useful for the municipal transportation
service, decision-making of government, and other business
applications. Therefore, how to protect the data privacy [11,
12], especially to balance single trajectory privacy and the
trajectory data publishing, is an interesting research topic,
and it has attracted attentions all over the world.

The existing trajectory privacy protectionmethods include
dummy trajectory method [13–16], trajectory suppression
method [17], generalization method [6, 18], and differential
method [19, 20].

For dummy trajectory method, several dummy trajec-
tories are generated for each real trajectory; then the real
trajectory and 𝑘−1dummy trajectories are published together
to reduce the probability of true trajectory exposure.

For trajectory suppressionmethod, the sensitive informa-
tion in the real trajectory is not released in order to protect
the user’s personal information contained in the trajectory,
which needs to set or process the sensitive information in
advance. Therefore, how to find the sensitive information
becomes the key issue of the suppression method. Intu-
itively speaking, when there is a clear need to suppress
the information, suppression method is simple and effective
and can achieve the purpose of user privacy protection by
simple data processing [17]. However, this method relies on
the determination of sensitive information, that is, how to
suppress the sensitive needs to know what resource is owned
by the opponent. Obviously, it is not easy. In addition, the
simple and crude direct deletion of sensitive information will
reduce the usability of trajectory data.

For generalization method, its basic idea is to generalize
the QI (Quasi identifier) attributes that can uniquely identify
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the user, which guarantees that the real trajectory cannot
be distinguished from other trajectories. The k-anonymity
model is commonly used in trajectory privacy, which con-
verts the D (trajectory data) in the database into D∗, so that
any trajectory T in D∗ belongs to a trajectory k-anonymity
set, and the information distortion betweenD∗ andD ismin-
imized. In LBS, how to choose the scope of anonymous boxes
is not easy, since the real trajectory is not known in advance.

For the differentialmethod, it is used in trajectory privacy
protection in recent years. It does not need to consider the
background knowledge of the opponent and it is based on
strict mathematical knowledge. It provides a quantifiable,
assessable, and provable method for privacy protection. By
adding random noise perturbation sensitive data, it can
distort some data while maintaining its statistical properties.

In recent years, the dummy trajectory method is widely
researched due to the following reasons:

(1) No third-party server is required, which makes it
more robust.

(2) The algorithm of dummy trajectories generation is
relatively simple and efficient.

(3) The service based on the precise location is not
influenced since the real trajectory is kept.

There are many algorithms for generating dummy tra-
jectory, such as rotation method, intraregion random point
method, translation method, and the combination of these
methods.The background factors are also taken into account
in the generation of dummy trajectories. The basic idea
of dummy trajectory was first proposed by Kido et al.
[18, 21], in which there are two dummy trajectory design
rules and the generation method. Lei et al. [14] proposed a
method to increase the number of dummy trajectories by
adding intersections to the trajectories obtained after rota-
tion, therefore improving the privacy protection level of the
real trajectory. InWu et al.’s scheme [15], not only the distance
between the real trajectory and the dummy trajectory is
involved in the dummy trajectory generation, but also the
distance between the dummy trajectories is also considered.
By disturbing the generated dummy trajectories, the final
set of trajectories can satisfy the privacy requirements. Kato
R et al. [16] assumed that the user’s movements are known
in advance and proposed a dummy-based anonymization
method based on the predicted movement, where dummies
move naturally while stopping at several locations. Niu et
al. proposed a dummy location generation algorithm based
on background information, especially the probability of
sending requests in each location being considered, and
ensure that the generated (k − 1) dummy locations can more
easily confuse the opponent by formalizing the background
information [22]. Hara et al. have further studied the problem
of trajectory privacy protection in mobile vehicle network
and designed a dummy trajectory generation algorithmbased
on vehicle trajectory [23]. Since the algorithm takes into
account the trajectory characteristics of vehicle movement,
the probability of dummy trajectory being guessed is reduced.
Lu et al. [24] pointed out that although the generated
dummy has a high density distribution, it can reduce the

protection degree of users’ location privacy. They divide the
circle/grid region into subregions of equal size and distribute
all positions over different radii/vertices. In literatures [25,
26], the authors focus on the real environment requirements
considering physical constraints and propose a new virtual
generation algorithm DumGrid and Dum-P [25]. Dum-P
generates dummies around the user in grid mode; it ensures
that the more realistic movement model generates dummies
with the user’smovement. To solve the problemof insufficient
location privacy requirements, an improved version Dum-P-
Cycle is proposed in [26]. In addition, perhaps chaotic system
is a feasible tool to protect the trajectory information [27].

However, the human mobility model is not involved in
most of the current dummy trajectory generation algorithms.
In reality, the trajectory is not a set of random points but
a set of points satisfying some known or unknown fea-
tures, which is constrained by various conditions, especially
people’s behavior factors. For example, the deviation angle
between the trajectory segment and the segment is usually
very small (people tend to go straight); when the deviation
angle suddenly increases (such as car turning), it means
that the length of the following segments begins to decrease
(such as the speed of driving turns decreased) and so on.
In short, the trajectory points are arranged according to
some certain rules, and these rules are often restrictive.
Specifically, the real trajectory is usually purposeful. For the
sake of efficiency, the trajectory segment consisting of the
set of trajectory points generally has a small deflection angle
and few frequent oscillations. People usually move with a
uniform speed, so the length of trajectory segment should be
gentle. However, most of the dummy trajectories generation
relies on the use of a random method, the dummy trajectory
deviation is frequent, and the length of the trajectory segment
is oscillatory; therefore the trajectory points often fall in
the nonreachable place. In conclusion, the current dummy
trajectories generation algorithms do not take into account
the behavioral characteristics contained in real trajectories;
therefore there is a considerable probability of identifying
dummy trajectories by analyzing the distribution character-
istics of real trajectories.

In addition, there are complex laws between the points
of real trajectories and dummy trajectories. The difference
between real trajectory and dummy trajectory is difficult to
be represented by simple function. Artificial neural network
is a feasible tool, since it can be used as classifier in large-scale
data training. Moreover, this process does not require much
people interaction, and the parameters are automatically
generated through a lot of iterative learning. As long as
hyperparameters and network models are set reasonably,
good classification results can be achieved.

In this paper, CNN model is used to generate the classi-
fication function, and the overall framework of our dummy
trajectory detection method is shown in Figure 1.

We define a series of trajectory points to form a trajectory
section, and two adjacent points form a trajectory segment.
When a trajectory is detected, it is divided into sections of
equal trajectory points at first. If the last section is short of
the point number of trajectory section, the rounding method
is adopted. In other words, less than half of the point number
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𝑠𝑒𝑔𝑖 =< 𝑝𝑖, 𝑝𝑖+1 > (𝑖 = 1, 2...𝑘 − 1)
𝑠𝑒𝑐𝑖 = {𝑠𝑒𝑔𝑗, 𝑠𝑒𝑔𝑗+1, ...𝑠𝑒𝑔𝑗+𝑚−1} (𝑗 = (𝑖 − 1)𝑚 + 1) (𝑖 = 1, 2, ... ⌊ 𝑘𝑚⌋)
If (𝑘%𝑚)/𝑚 >= 0.5:𝑠𝑒𝑐⌊𝑘/𝑚⌋+1 = {𝑠𝑒𝑔𝑘−𝑚+1, 𝑠𝑒𝑔𝑘−𝑚+2, ...𝑠𝑒𝑔𝑘}
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Figure 1: Dummy trajectory detection model framework based on CNN.

of trajectory section is rounded. Otherwise, the point is taken
from the back to the front to reach the point number of
trajectory section. For simplicity, in this paper, we suppose
that a trajectory consists of𝑚 segments, and each𝑚 segment
forms a section. The above concepts are defined as shown in
Algorithm 1.

As shown (in which figure or algorithm), we obtain 𝑛
trajectory sections; then we put 𝑛 trajectory sections into the
trained CNN, respectively, and obtain the judgment result
of 𝑛 trajectory sections. Suppose that 𝑘 sections are judged as
dummy; the trajectory is judged as the dummy when 𝑘/𝑛 is
more than the predefined threshold. The lower the threshold
is, the stricter the dummy trajectory detection is and the
higher the dummy trajectory detection rate is but the higher
the real trajectory erroneous judgment rate is.

The main contributions of our work are summarized as
follows:

(1) Unlike previous works that set privacy standards and
trajectory parameters to generate dummy trajectories, we try
to find the differences between real trajectories and dummy
trajectories from the attacker’s point of view, which is useful
for improving the dummy trajectory generation.

(2)The deep learning is used to train the behavior feature
classifier of the human’s movement; then the classifier is
used to distinguish the dummy trajectories that are generated
according to the current main algorithms.

2. Preliminaries

2.1. Trajectory Representation Method

Absolute Trajectory.The absolute trajectory consists of a series
of trajectory points with latitude and longitude as the spatial

metric, with time series as the trajectory points arrangement
order, which is defined as 𝑡𝑟𝑎𝑗𝑎𝑏𝑠 = {< 𝑙𝑜𝑐1(lat1,lng1),t1 >, <𝑙𝑜𝑐2(lat2,lng2),t2 > ... < 𝑙𝑜𝑐𝑛(lat𝑛,lng𝑛),t𝑛 >}. The trajectory
data set released by major institutions is also an absolute
trajectory.

Relative Trajectory. Although the absolute trajectory can
accurately express the position of the trajectory on the earth’s
surface, it is not convenient to manipulate the trajectory such
as stretching and rotating and to calculate some trajectory
characteristics. Longitude and latitude can be regarded as
absolute coordinates. The relative coordinate system describ-
ing the relative trajectory is a Cartesian coordinate system in
which the point specified on the plane of the map where the
trajectory is located is the coordinate zero and the direction
specified is the x-axis and y-axis. In the process of trajectory
data processing, we need to transform absolute trajectory into
relative trajectory.The relative trajectory is defined as follows:

𝑡𝑟𝑎𝑗𝑟𝑒𝑙 = {< 𝑙𝑜𝑐1(𝑥1,y1),t1 >, < 𝑙𝑜𝑐2(𝑥2,y2),t2 > ... <𝑙𝑜𝑐𝑛(𝑥𝑛,y𝑛),t𝑛 >}
Feature Trajectory. Unlike the above two trajectory defini-
tions, which use trajectory points to define trajectories, the
feature trajectory is defined using trajectory shape features
including the relative offset angles (𝑟𝑜𝑎) and relative lengths
(𝑟𝑙) as follows:

𝑡𝑟𝑎𝑗𝑓𝑒𝑎 = {< 𝑟𝑜𝑎1 = 0, 𝑟𝑙1, t1 >, < 𝑟𝑜𝑎2, 𝑟𝑙2, t2 > ... <𝑟𝑜𝑎𝑛, 𝑟𝑙𝑛, t𝑛 >}
2.2. Convolutional Neural Network. CNN is a kind of multi-
layer neural network, which is good at dealing with machine
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Figure 2: Classic CNN structure diagram.

learning problems related to images, especially large images
[28]. CNN reduces the dimension of image recognition
problem by a series of methods and makes it possible to be
trained eventually. CNN consists of input layer, convolutional
layer, activation function, pooling layer, and fully connected
layer [29]. Inspired by the concept of local receptive field
(participating in a convolutional kernel operation is an area
of the input image (or feature map), the size of which is the
receptive field), the convolutional layer connects the input
small area and calculates the dot multiplication between the
convolutional core and the corresponding input small area
as the output. While the pooling layer is mainly designed
to reduce the data dimension, it performs a downsampling
operation on the spatial dimension (width, height). The
classic CNN structure diagram is shown in Figure 2.

The convolutional layers are used for feature extraction,
and we traverse the input matrix with a matrix called filter.
Thenumber of outputmatrices after each convolutional oper-
ation is the number of filters. The pooling layer compresses
the input feature map. On one hand, it reduces the feature
map and simplifies the network computing complexity; on
the other hand, it compresses the feature and extracts the
main features (we usually use maximum pooling). Fully
connected layer connects all features and sends the output
value to the classifier (such as Softmax classifier).

In summary, CNN extracts the features through convo-
lutional layer and reduces the parameters and computational
times through pooling layer. In fact, it completes classification
tasks by traditional neural network. Compared with other
classifiers, its filter used to extract data features has the char-
acteristic of weight sharing. The adjacent trajectory feature
metrics we need to extract have similar characteristics andwe
can share weights to extract. Therefore, CNN is compatible
with our classification tasks.

3. Training and Detection

3.1. Feature Trajectory Definition

3.1.1. Relative Offset Angle. As shown in Figure 3, →𝑎 , →𝑏 ,
and →𝑐 are three trajectory vectors and →𝑑 is the extension line
of vector →𝑎 . The vector angle 𝜃1 of vector →𝑏 and vector →𝑎 is

defined as relative offset angle; also, the relative offset angle of→𝑐 relative to →𝑎 is 𝜃2. If →𝑏 is over the vector
→𝑑 , the offset angle

is positive; otherwise it is negative.

3.1.2. Relative Length. We assume that the total length of the
trajectory section is 𝑠, the 𝑖𝑡ℎ trajectory segment in the section
is 𝑠𝑖, and the relative length of the 𝑖𝑡ℎ trajectory segment is
defined as 𝑠𝑖/𝑠.
3.2. Feature Trajectory Generation Algorithm. We use
Algorithm 2 to generate the feature metrics of trajectory
sections. No matter how the trajectory rotates or how the
trajectory sections are scaled equally, the trajectory feature
metric will not change. As long as the trajectory shape is
the same, we regard it as the same trajectory. Similarly, for
dummy trajectories, we also use this method to produce
feature metrics of trajectory section. After generating the
feature trajectories, we put the real and dummy trajectory set
into the detector for training to initialize the detector.

3.3. Trajectory Data Preprocessing. In trajectory data pre-
processing, the absolute trajectory is transformed to relative
trajectory and then is transformed into feature trajectory. We
take 5s as the time interval to extract a continuous series
of points (longitude and latitude representation) from the
testing trajectories. Then we use Algorithm 2 to transform
relative trajectory (RT) into feature trajectory (FT). As shown
in Table 1, we use RT and FT to represent a trajectory segment
jointly.

3.4. Detector Design and Training Process

3.4.1. Detector Model Structure. There is a strong correlation
between the trajectory segment and the trajectory segment;
we use the correlation between the trajectory segments with
CNN. Most of the other depth neural networks consider
the data characteristics from the input data as a whole
and cannot extract the trajectory characteristics very well.
Compared with other artificial neural networks, the filter
of CNN has unique weight sharing characteristics and we
also need the sharing weights to extract feature of adjacent
trajectory segments; therefore, CNN is used as classifier in
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Input: k points intercepted on the trajectory (𝑥𝑖, y𝑖), for i = 1 to k.
Output: k-2 relative offset angles (𝑟𝑜𝑎) and k-1 relative length (𝑟𝑙)
(1) 𝑑𝑖𝑠𝑠𝑢𝑚 = 0
(2) for 𝑖= 1 to k-1 do
(3) →V𝑒𝑐𝑖 = (𝑥𝑖+1 − 𝑥𝑖, 𝑦𝑖+1 − 𝑦𝑖)
(4) 𝑑𝑖𝑠𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2
(5) 𝑑𝑖𝑠𝑠𝑢𝑚+ = 𝑑𝑖𝑠𝑖
(6) end for
(7) for j = 1 to k-2 do

(8) 𝑟𝑜𝑎𝑗 = arccos( →V𝑒𝑐𝑗+1→V𝑒𝑐𝑗→V𝑒𝑐𝑗+1 →V𝑒𝑐𝑗+1)
(9) 𝑘 = 𝑦𝑗+1 − 𝑦𝑗𝑥𝑗+1 − 𝑥𝑗
(10) 𝑏 = 𝑦𝑗 − 𝑘𝑥𝑗
(11) if 𝑦𝑗+2 > 𝑘𝑥𝑗+2 + 𝑏

continue
(12) else𝑟𝑜𝑎 = −𝑟𝑜𝑎
(13) end for
(14) for t = 0 to k-1do

(15) 𝑟𝑙𝑡 = 𝑑𝑖𝑠𝑡𝑑𝑖𝑠𝑠𝑢𝑚
(16) end for
(17) Return 𝑡𝑟𝑎𝑗𝑓𝑒𝑎 = {< 0, 𝑟𝑙1 >, < 𝑟𝑜𝑎1, 𝑟𝑙2 > . . . < 𝑟𝑜𝑎𝑘−2, 𝑟𝑙𝑘−1 >}

Algorithm 2: Trajectory feature metrics generation.

→
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Figure 3: Relative offset angle.

this paper. Unlike ordinary image processing, we deal with
the featurematrix here andneed tomake some improvements
to the universal networkmodel.The networkmodel structure
and training process are shown in Figure 4. The CNN model
in this paper is the improvement of the universal model of
CNN introduced in literature [30], especially in the network
layer architecture of convolutional layer and pooling layer.
The detailed steps in the dotted box of Figure 4 are depicted
in Figure 5.

The process of doing one network training is as follows:

(1) Relative trajectory (RT) and feature trajectory (FT)
are jointly used to represent a trajectory segment; they

Table 1: Representation of trajectory segment.

Trajectory section
RT FT

𝑥1 𝑦1 𝑟𝑜𝑎1 𝑟𝑙1𝑥2 𝑦2 𝑟𝑜𝑎2 𝑟𝑙2. . . . . . . . . . . .𝑥𝑚−1 𝑦𝑚−1 𝑟𝑜𝑎𝑚−1 𝑟𝑙𝑚−1

are input into convolutional layer of CNN to extract
trajectory features.

(2) Maximum pooling operations are used to reduce
the amount of parameters after each convolutional
operation; then all outputs are connected to a matrix
for each feature metric.

(3) Fully connected layer is used to synthesize the features
extracted from the front to obtain a 1 × 2matrix.

(4) Softmax and cross entropy operations (Softmax oper-
ation calculates the probability value of classification
results; cross entropy calculates the distance between
CNN classification results and real classification,
which is called loss) are executed on the matrix
obtained by the fully connected layer to get loss. The
total Softmax is defined as Softmax = 𝛼Softmax1 +(1 − 𝛼)Softmax2, where 𝛼 is the weight.

(5) Convolutional layer and fully connected layer param-
eters𝑊 and 𝑏 (𝑊 is a weight parameter and 𝑏 is a bias
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Figure 4: Training process for CNN.

item) are updated by gradient descent method based
on loss equation.

FT and RT describe trajectories in different ways, and
their dimensions are different, so they cannot be put together.
The network structure on the left is FT feature detection net-
work and the one on the right is RT feature detection network.
For each iteration process, we send the corresponding RT
and FT to networks separately. Then we use gradient descent
method (Gradient descent is one of the iterative methods,
which can be used to solve the least squares problem.
The calculation of gradient descent method is to solve the
minimum value along the direction of gradient descent.) to
update the weight parameter 𝑊 and bias parameter 𝑏 of
convolutional layer and fully connected layer. After updating
the network model for a certain number of times, the
model can distinguish the real trajectory from the dummy
trajectories.

In these two layers, the following operations are executed:

(1) We arrange and transform feature trajectory into
matrix in time sequence. Feature trajectory is repre-
sented as a (𝑛 − 1) × 2matrix as illustrated in the right
part of Table 1.

(2) We use n-1 types of filters to extract the arrangement
characteristics of feature trajectory, and there are 128
filters in each type. For the first k type filter, we extract

characteristics of adjacent k trajectory segments in
turn by convolutional operation to obtain a (𝑛−𝑘)×1
matrix.Then 128𝑛−128matrices that are output from
convolutional operation are, respectively, executing
the maximum pooling operation.

(3) After operation of a pooling layer, we obtain 𝑛 − 1
outputs and each output has 128 matrices. Then, we
connect these 𝑛 − 1 outputs into a matrix and send
them to the fully connected layer shown in Figure 4
for the next step.

3.4.2. Trajectory Detection Schemes. The network architec-
ture of dummy trajectory detection is shown in Figure 6.
Different from the CNN training process, the forward propa-
gation process is only executed once to obtain Softmax; then
the final judgment is made according to Softmax.

We first need to express the detected trajectory sections
with FT and RT, respectively, and then put them into CNN to
run in the direction indicated by the arrow once. Finally, we
can obtain the detection result.

4. Experiments and Analysis

We use the trajectories from Microsoft research GeoLift
project as the testing data set; 182 pieces of users’ track data
were collected from April 2007 to August 2012. These data
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Figure 5: The convolutional layer and pooling layer of FT d network.

sets contain a series of time-ordered points, each containing
latitude, longitude, elevation, and other pieces of information.
In the experiments, we use 17621 tracks whose total distance
is about 1200000 kilometers, and the total time is more than
48000 hours. These data not only record the user’s location
at home and at work but also track a wide range of outdoor
activities, such as shopping, traveling, hiking, and cycling.

The experimental environment is as follows: Intel(R)
Core(TM) i7-4700MQ CPU @ 2.40GHz, with 6G memory.

Programming language was Python.
We use 5s as a time interval to extract trajectory points

and then divide these trajectories into sections and each one
has 8 points. These sections are real trajectory section set. In
addition, we extract and synthesize the algorithm fragment
of the current widely used dummy trajectory generation
algorithms to generate dummy trajectories. The main steps
are shown in Algorithm 3.

We use Algorithm 3 to generate dummy trajectory sec-
tion set and then put dummy trajectories and real trajectories
into CNN for training.

In Table 2, the confusion matrix is listed, which is also
known as error matrix. It is a standard format for accuracy
evaluation, which is expressed in the formofmatrix ofN rows

Table 2: Confusion matrix.

Predicted value True value
0 (dummy) 1 (real)

0 (dummy) TN (True Negative) FN (False Negative)
1 (real) FP (False Positive) TP (True Positive)

and N columns. In AI, confusion matrix is a visualization
tool, especially for supervised learning. Unsupervised learn-
ing is generally called matching matrix.

In our CNN-based dummy trajectory detection scheme,
the weight parameter 𝛼 of RT and FT has a great influence
on the detection results. We take seven different values for𝛼 and train seven CNN networks. Then we use six different
classifier evaluation indicators to evaluate CNN networks.
The six evaluation indicators are as follows.

Recognition rate = 𝑇𝑁𝑇𝑁 + 𝐹𝑃
Erroneous judgement rate = 𝐹𝑁𝐹𝑁 + 𝑇𝑃
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Input: real trajectory section set
Output: dummy trajectory section set
(1) Procedure
(2) for each real trajectory section in real trajectory section set do:
(3) for 𝑖=1 to k do:
(4) for j=1 to n-1do:
(5) randomly selected rotation angle in (𝜋/20, 𝜋/3) ∪ (−𝜋/3, −𝜋/20)
(6) Randomly selected expansion rates in(0.5, 1.5)
(7) rotate and expanse trajectory segment j
(8) end for
(9) end for
(10) end for

Algorithm 3: Dummy trajectory section generation.

Pooling layer

Convolutional layer

Pooling layer

Convolutional layer

ft set

Fully connected layer

Softmax1

Fully connected layer

Softmax2

Outcome

rt setTrajectory section(n points)

input or output

operation

data flow

outpuＮ1 outpuＮ2 outpuＮ1 outpuＮ2 OutpuＮn-1OutpuＮn-1

So� max = So� max1 + (1 − )So� max 2

· · · · · ·

Figure 6: The network architecture of dummy trajectory detection.

Precision rate P = 𝑇𝑃𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁
F1 −Measure = 2 × 𝑃 × 𝑅𝑃 + 𝑅

Accuracy = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Accuracy is defined as the ratio of the number of samples
correctly classified by the classifier to the total number of
samples for a given test data set. That is to say, when the loss
function is 0-1 loss, accuracy is the accuracy of the test data
set.

Precision calculates the proportion of items that “should
be retrieved” among all items retrieved.

The recall rate calculates the proportion of all items
retrieved to all items that should be retrieved.

The comprehensive evaluation index (F1-Measure) is the
weighted harmonic average of Precision and Recall. P and
R indicators are sometimes contradictory, considering both
precision and recall. It is easy to understand that F1 combines
the results of P and R. When F1 is higher, the experimental
method is more ideal.

For different 𝛼 values, the values of the six evaluation
indicators are shown in Figure 7.

FromFigure 7, it can be concluded that the FT attribute of
the trajectory section controls the recognition rate; the higher
the weight of FT attribute is, the higher the recognition rate
is. And the RT attribute of the trajectory section controls
the erroneous judgement rate; the higher the weight of
RT attribute is, the lower the erroneous judgement rate
is. F1-measure and the accuracy are comprehensive global
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Figure 7: Evaluation indicators of different 𝛼 value.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MLN MN ADTGA

pe
rc

en
ta

ge

Dummy Trajectory Generation Algorithms

Generating dummy trajectory recognition rate

Recognition rate

Erroneous judgement rate

Figure 8: Detection results of dummy trajectory generation algo-
rithms with 𝛼 = 0.5.

evaluation indicators, and the maximum value is obtained
when 𝛼 is 0.5. At the same time, when 𝛼 is 0.5, the recognition
rate is high and the erroneous judgement is low.Therefore, we
choose the weight parameter 𝛼= 0.5.

To verify the efficiency of CNN detection network, three
classical algorithms are used to generate dummy trajectories,
in which MLN and MN algorithms are proposed in [18], and
ADTGA algorithm is proposed by [15]. The detection results
are shown in Figure 8.

We use a data set named GeoLife GPS Trajectories as
our real trajectory data set and use MLN, MN, and ADTGA
to generate large number of dummy trajectories and then
randomly select 1000 dummy trajectory sections from the
dummy trajectory set and put them into the trained CNN
detection network. For MLN, the dummy trajectory recogni-
tion rate is 83.3%. ForMN, the dummy trajectory recognition
rate is 86.8%. And, for ADTGA, the dummy trajectory

recognition rate is 94.1%. But the erroneous judgement rate
of real trajectories is only 12.5%.

Many dummy trajectory algorithms are improved by the
three algorithms mentioned above, for example, literatures
[13, 24]. The most significant improvement is the selection
of dummy trajectories rather than the generation of dummy
trajectory. Therefore, the improved dummy trajectory gener-
ation algorithm cannot reduce the detection rate.The experi-
ment illustrates that our dummy trajectory detection scheme
based on CNN can detect the dummy trajectory with high
recognition rate, while keeping the low erroneous judgement
rate. Generally, a complete trajectory has multiple trajectory
sections. As shown in Figure 9, for dummy trajectories with
multiple trajectory sections, we calculate their recognition
rate and the erroneous judgement rate of real trajectories.

With the increase of the number of trajectory sections,
the trend of the recognition rate is also increasing, while the
erroneous judgement rate shows a downward trend, and the
recognition rate is above 90%, and the erroneous rate is below
10%.

5. Conclusion

We have studied many algorithms to generate the dummy
trajectories to protect privacy, most of which only take
into account the geometric meaning of trajectories without
considering the human mobility model. In order to address
this weakness, we define two trajectory representation meth-
ods and put these two trajectory representation methods of
real and dummy trajectories into the improved CNN for
training. Experiments show that the deep learning machine
CNN is universal; it can identify more than 90% of dummy
trajectories that are generated using the current mainly
algorithm; meanwhile its erroneous judgement rate is below
10%.

Indeed, our detection scheme cannot be applied to all
dummy trajectory generation algorithms.There are two kinds
of dummy trajectory generation algorithms; our detection
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Figure 9: Recognition rate and erroneous rate under the assumption that the discrimination is 0.5.

scheme is powerless. One is simple rotation algorithm and
the other is to select similar trajectories or historical trajec-
tories of other users as dummy trajectories. However, the
first dummy trajectory generation algorithm is not flexible
enough to meet the real background, and the second one
needs to collect a large amount of historical trajectory
information of the surrounding users, which is very difficult.
So these two methods of dummy trajectory generation are
difficult to be used in practice. Generally speaking, our
dummy trajectory detection scheme has a high detection rate
for the dummy trajectory generated by the deformed dummy
trajectory generation method.

Our experiments show that the common flaws of the
dummy trajectory generation algorithms up till now are that
they only consider the geometry of the trajectory points and
the trajectory segments and regard them as the products
isolated from human behavior and the products of random
probability. It is debatable whether such a convolutional

neural network learning machine can act as a filter to filter
out most of the dummy trajectories which do not conform
to reality, as well as leaving behind some dummy trajectories
which mix the spurious with the genuine. After all, in the era
of exploding CPU and GPU performance, the time cost of
generating redundant dummy trajectory sets is negligible.
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