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ABSTRACT

Deep neural networks are vulnerable to adversarial examples,

subtly perturbed images which can fool networks to output in-

correct classification results. To deceive deep learning mod-

els, in this paper, instead of utilizing the weakness of net-

works themselves, we present Embedding Attack, which is

to attack the common image resizing operation in the deep

learning preprocessing pipeline. By this attack, adversaries

can embed a small target image into a benign image to pro-

duce adversarial examples without querying the target net-

work. When the adversarial example is resized to the required

shape, the embedded target image will be recovered. We

design embedding attacks for three common image resizing

methods and prove that our algorithms are optimal when the

target image can be fully recovered. Furthermore, we design a

universal embedding attack that enables adversarial examples

to work under different resizing methods.

Index Terms— Adversarial examples, image resizing,

embedding attack

1. INTRODUCTION

Deep learning has led to major breakthroughs in recent years

and has become a critical part of artificial intelligence. Deep

neural networks (DNNs) are currently the most powerful tool

in deep learning. Despite this, Szegedy et al. [1] first pro-

posed the existence of subtle perturbation to an image which

can fool the classifier based on deep neural networks. Adver-

sarial examples might pose a serious threat to security-critical

systems based on deep learning, such as autonomous driving

[2], face recognition [3] and voice command recognition [4].

The existence of adversarial examples prompts people to de-

sign more robust deep learning models.

Many researchers have proposed various effective ap-

proaches capable of reliably constructing adversarial pertur-

bations. They can be divided into white-box attacks and

black-box attacks based on whether adversaries know the in-

ner information of the model. Most white-box attacks need

the gradient of the loss function of the network. Ian Goodfel-

low et al. [5] presented a fast and efficient method to generate

adversarial examples called the Fast Gradient Sign Method

(FGSM), which explores the gradient direction of the loss

function and adds a perturbation with a fixed norm. Paper-

not et al. [6] proposed an iterative algorithm called Jacobian

Saliency Map Attack (JSMA), which is based on the mapping

between inputs and outputs of DNNs by constructing adver-

sarial saliency maps. More interestingly, Moosavi-Dezfooli et

al. [7] found that there exists a universal perturbation which

can make a model misclassify all the natural images.

While in black-box attacks, adversarial examples are gen-

erated without the knowledge of the DNN, adversaries only

have access to its output. By querying the model a large num-

ber of times, adversaries can train a substitute network to at-

tack [8] or iteratively modify the input image until the model

outputs the target results [9]. They usually require a large

number of queries to the model to collect sufficient informa-

tion for generating adversarial examples.

In this paper, instead of attacking the deep neural network

itself, we concentrate on image resizing in the deep learning

processing pipeline. To be more precise, we make use of the

fact that input images need to be resized to the required shape

before being fed into the network. We do not need to know

any information about the network, except for the required in-

put image size. Better still, we do not even need to query the

target network at all. The required image sizes of the famous

pre-trained networks are usually small and fixed (224 × 224
[10, 11, 12, 13] or 299× 299 [14]) to ensure the efficiency of

both training and predicting. In practical, deep learning clas-

sifiers are however likely to receive input images with various

shapes, e.g. in the field of cloud services. Therefore, classi-

fiers need to resize the images to the required shape first.

We present an approach to crafting query-free adversarial

examples, called Embedding Attack. In our attack, all we need

to know is the input image size. Our basic idea is to embed

a target image of required size into a relatively large original

image to obtain an adversarial example, which will be recog-

nized as the original label by human eyes and will be trans-

formed into the target image once being resized by the target

DNN. Since the nearest-neighbor, bilinear and bicubic inter-

polation are the most popular resizing methods and are com-

monly used in deep learning frameworks (Tensorflow, Caffe,

Torch, etc.), we design different embedding attacks for each

of them. We further prove that our embedding algorithms are

optimal under the �1-norm measurement.

Although a similar idea Downsampling Attack was pro-
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posed in [15], it is limited to the situation that the original

image size is an integer multiple of the required input image,

and it is just for the nearest-neighbor interpolation resizing

method. While our embedding attack can be applied to any

resizing ratio and three resizing methods. In addition, to im-

prove the practicality of the embedding attacks, we design a

universal attack, the adversarial examples generated by which

can work in any of these three different resizing methods.

Our contributions can be summarized as follows:

• We present a query-free adversarial examples genera-

tion method, which utilizes the resizing operation in the

deep learning processing pipeline and needs no infor-

mation about the DNN except for the input shape.

• We propose three embedding attacks against three pop-

ular resizing methods, i.e. nearest-neighbor, bilinear

and bicubic interpolation. These methods are used in

most deep learning frameworks as default or recom-

mended resizing methods.

• Considering the situation without prior knowledge to

the resizing method the DNN uses, we further show

a universal attack method, which combines the above

three attacks so that one adversarial example can still

be successful in different resizing methods.

2. COMMON IMAGE RESIZING METHODS

Image resizing is a basic operation of image processing

and is also an essential preprocessing step in deep learning

frameworks. There exist various image resizing algorithms

[16, 17, 18], but those used in deep learning frameworks are

several traditional methods based on interpolation [15], in-

cluding nearest-neighbor, bilinear and bicubic interpolation

[19]. For every pixel point in the resized image, these inter-

polation algorithms try to find the corresponding point set in

the original image. And every pixel value in the resized image

is the weighted average of the corresponding pixel set. Dif-

ferent resizing methods have their own pixel sets and weights

calculation methods.

2.1. Nearest-neighbor Interpolation Method

Nearest-neighbor interpolation is the most basic and sim-

plest image resizing algorithm. For an original image with

shape wo × ho and target shape wt × ht, the resizing ratio

is (wo/wt, ho/ht). Assume (u0, v0) is a point in the resized

image, its corresponding point in the original image is

(u, v) = (u0 × wo/wt, v0 × ho/ht). (1)

As shown in Fig.1 (a), S = {(i, j), (i, j + 1), (i+ 1, j), (i+
1, j + 1)} are pixel values of four neighbor points of (u, v).
The pixel value pr(u0, v0) on the resized image equals to the

one of nearest point in S.

(i, j) (i, j+1)

(i+1, j) (i+1, j+1)

(u, v)

(a)

(i-1,j-1) (i-1,j+2)

(i-1,j+2) (i+2,j+2)

(u,v)

(i,j)

(b)

Fig. 1: (a) Nearest-neighbor / Bilinear Interpolation Resizing

(b) Bicucic Interpolation Method of Image Resizing

2.2. Bilinear Interpolation Method

Bilinear interpolation considers the same four neighbor points

with the nearest-neighbor, as shown in Fig 1 (a). Instead of

using the nearest point, pixel values pr(u0, v0) in the resized

image are calculated by the weighted average of all four pixel

values po on original image:

pr(u0, v0) =(i+ 1− u)(j + 1− v) · po(i, j)
+ (u− i)(j + 1− v) · po(i+ 1, j)

+ (i+ 1− u)(v − j) · po(i, j + 1)

+ (u− i)(v − j) · po(i+ 1, j + 1),

(2)

Bilinear interpolation is more complex than the nearest-

neighbor method, but it does not have the shortcoming of

pixel discontinuity in the resized image. It is the default image

resizing method in some popular deep learning frameworks,

such as Tensorflow, Caffe, and Torch.

2.3. Bicubic Interpolation Method

Bicubic interpolation method has relatively large computation

overhead, but the visual effect is the best of the three. It uses

sixteen neighbor points of (u, v), as shown in Fig. 1 (b). Sim-

ilar to the bilinear, it calculates the weighted average of these

sixteen pixels.

pr(u0, v0) =
i+2∑

m=i−1

j+2∑
n=j−1

W (u−m)W (v − n)po(m,n)

(3)

where,

W (x) =

⎧⎨
⎩

(a+ 2) |x|3 − (a+ 3) |x|2 + 1 |x| ≤ 1

a |x|3 − 5a |x|2 + 8a |x| − 4a 1 < |x| < 2
0 otherwise

and a is usually set to −0.5.

3. OUR EMBEDDING ATTACK ALGORITHMS

Normally, to deceive a deep network, one needs to feed a

well-crafted input (known as an adversarial example), which

misleads the DNN model to give a wrong answer. However,

DNN is not the only element in the deep learning pipeline,
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Fig. 2: Overview of the Embedding Attack

resizing operation is also a necessary preprocessing in it. As

shown in Fig. 2, an adversary can apply our embedding attack

to embed a target image (target label: “Dog”) with the same

size as the DNN input into a large-size original image (origi-

nal label: “Car”). When the deep learning model receives the

generated image, i.e. the adversarial example, it will resize it

and feed the resized image into the DNN classifier. Because

the resized image is our target image, the DNN classifier will

output the result “Dog”.

In this section, we present our algorithms in details. We

design different attack algorithms aimed at different image

resizing methods in deep learning frameworks.

3.1. Attack on Nearest-neighbor Interpolation

The nearest-neighbor interpolation method takes only one

point in a four-point neighborhood for image resizing, regard-

less of the pixel values of the other three points. Therefore,

we only need to replace the pixel of each chosen point in the

original image with the corresponding pixel value in the target

image, as shown in Fig. 3(a). In this way, we are able to em-

bed the target image into the original image, which will turn

into the target image once being resized to the target shape.

3.2. Attack on Bilinear Interpolation Method

Bilinear interpolation is the most commonly used method in

image resizing, and is the default method in popular deep

learning frameworks (e.g. Tensorflow and Torch). In Fig.

3(b), the new pixel value calculated by the bilinear interpo-

lation method is a weighted average of all four points in the

neighborhood. Therefore, different from the nearest-neighbor

interpolation, when embedding the target image into the orig-

inal, we need to modify four pixels.

Our main idea is to replace the pixels of every four-point

neighborhood with carefully calculated values, which can

guarantee that the resized image will turn into the target, and

the total perturbations are the smallest. To find the optimal

replacement, for each four-point neighborhood, we perform

the following operations:

Step 1. Compute the resizing ratio and find the mapped point

for each pixel in the target image by Eq. (1).

Step 2. Compute weights w of four pixels in the neighbor-

hood of the mapped point by Eq. (2) and sort them.

Step 3. Compute the resized pixel pr from the four neighbor

pixels in original image, and calculate the required modifica-

tion δ = (pt − pr)/w for four pixels in descending order by

weights, where pt is pixel in target image.

These three steps will be repeated until all the four points

in the neighborhood are updated. In each iteration, the pixel

with the heaviest weight will be modified first, which ensures

the modification is the smallest. To be noted, this pseudo-

code is shared by the attacks on bilinear and bicubic interpo-

lation methods, as we will state in the next subsection, these

two algorithms have the same processing flows, and the differ-

ences between them are the mapped points and the calculation

method of corresponding weights.

3.3. Attack on Bicubic Interpolation Method

Bicubic interpolation is also provided by most image process-

ing libraries. It has the best visual effect among these three

methods. Every pixel value in the resized image depends on

sixteen points (in a 4 × 4 neighborhood) in the original im-

age. Similar to the bilinear interpolation, this pixel value is

the weighted average of sixteen pixels. Therefore, our at-

tack on the bicubic interpolation follows the same processing

flows, so we omit the detailed steps here.

3.4. Proof of the Optimality

Our attack on the nearest-neighbor interpolation is obviously

the only attack solution, so this does not need any proof. Here,

we provide the proofs of the other two attacks. Because the

bilinear and bicubic interpolation follow the same process-

ing flows, we prove the optimality of them simultaneously.

Due to the independence of each four(sixteen)-point neigh-

borhood, we only need to prove the optimality of one neigh-

borhood.

Theorem 1. Our attacks on the bilinear and bicubic inter-
polation are the optimal solutions under the measurement of
�1-norm.

Proof. Assume that the neighborhood contains k pixels (k =
4 for bilinear interpolation and k = 16 for bicubic interpo-

lation), their values are p0, p1, ..., pk, and the corresponding

weights are w0 ≥ w1 ≥ ... ≥ wk. The weighted average of

these k points is pr, i.e.
w0 · p0 + w1 · p1 + · · ·+ wk · pk = pr.

Assume that there exists a group of δ (δ0, , · · · , δk), satisfying

w0 · (p0 + δ0) +w1 · (p1 + δ1) + · · ·+wk · (pk + δk) = pt.

Considering pt > pr, we have δi > 0(i = 0, 1, · · · , k). As-

sume that (p0 + δ0) < 255 and δj > 0(i = 0, 1, · · · , k),
which means that δ0 is not set to its upper bound.

Let ε satisfy 0 < ε ≤ min{255 − δ0, (wj/w0) · δj}, and

δ
′
0 = δ0 + ε and δ

′
j = δj − (w0/wi) · ε, we have
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Fig. 3: Attacks on (a) Nearest Interpolation (b) Bilinear Interpolation (c) Bicubic Interpolation

w0(p0 + δ
′
0) + wj(pj + δ

′
j) +

∑
i�=0,j

wi(pi + δi)

= w0(p0 + δ0 + ε) + wj(pj + δj − w0

wj
· ε) +

∑
i �=0,j

wi(pi + δi)

= w0(p0 + δ0) + wj(pj + δj) +
∑
i�=0,j

wi(pi + δi) = pt

We can find that δ
′
0+δ

′
j = δ0+δj+

wj−w0

wj
·ε < δ0+δj , which

means that through the above transformation, we can always

find a better solution when wi > wj , and (pi+ δi) < 255 and

δj > 0. Keep repeating the above processes, we will obtain

the same solution as presented in this work.

Fig. 4: Three embedding attacks on different image resizing

methods. The actual sizes of the original image and the target

image are 1300× 1300 and 299× 299 respectively. The

three kinds of adversarial examples can all completely turn

into the target image after being resized.

3.5. Universal Embedding Attack

In some situations, we do not know which resizing method

that the deep learning classifier uses. So we design a universal

attack that enables the adversarial examples to work in any of

these three resizing methods. The idea is embedding the tar-

get image to the original with the above three algorithms one

by one. The nearest-neighbor, bilinear, and bicubic attack re-

quire respectively one, four, and sixteen points for each neigh-

borhood. And the point required by the nearest-neighbor at-

tack is included by the bilinear, and the points required by the

bilinear are included by the bicubic. According to this fea-

ture, we design this universal attack, the embedding steps are

as follows:

Step 1. Compute the resizing ratio and find the mapped point

for each pixel in the target image by Eq. (1).

Step 2. Compute weights w of sixteen pixels in the neigh-

borhood of the mapped point by Eq. (2) and sort them in

descending order. Then, replace the biggest weight with 1.0.

Step 3. Run bicubic embedding attack with current weights.

In Step 2, the point with the biggest weight is the mapped

point in nearest-neighbor interpolation, and because we re-

place its weight by 1.0, the pixel value of this point will

be substituted by the target in Step 3, and this is actu-

ally the nearest-neighbor embedding attack. Note that only

the nearest-neighbor and bicubic embedding attacks are per-

formed in Step 3, the reason why the bilinear embedding at-

tack is not included is that it has similar weights distribution

with the bicubic attack.

The adversarial examples generated by the universal at-

tack can fool the DNN model with any of the three resizing

methods. Except for the nearest-neighbor resizing method,

the adversarial examples cannot be recovered to the target im-

age totally, but they are enough to fool the DNN model.

4. EXPERIMENTS

In this section, we illustrate the effectiveness of the embed-

ding attacks on nearest-neighbor, bilinear, bicubic interpo-

lation, as well as the universal embedding attack on them

all. The deep neural network we use in our experiments is

Inception-v3 [14] with the required input size 299× 299 and

all the implementation is based on Tensorflow.

4.1. Effectiveness of the Embedding Attack

First, we show the effectiveness of the three embedding at-

tacks through several samples in Fig. 4. For a given origi-

nal image, we construct three adversarial examples with a re-

quired resizing ratio respectively by carrying out the nearest-

neighbor, bilinear, and bicubic embedding attacks. And we

resize them with the image resizing method which is consis-

tent with the attack. All of the three adversarial examples can
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Fig. 5: Universal embedding attack and the resized results

with different resizing methods: (a) original image (b) target

image (c) adversarial example (d) nearest resized (e) bilinear

resized (f) bicubic resized.

be resized into the target image. In general, before attack-

ing the target model, we only need to know its required input

size. Then we carry out the corresponding embedding attack,

and the adversarial example can successfully fool the classi-

fier after the necessary resizing operation in the deep learning

model. In the embedding attack, as long as the target image

itself can be classified correctly as the given target class by

the classifier, the success rate will be 100%.

Then we illustrate the effect of the universal embedding

attack, as shown in Fig. 5. We construct a universal adversar-

ial example based on a large-size original image, and we can

see that its visual quality is no worse than the non-universal

adversarial examples in Fig. 4. We next resize it with the three

image resizing methods. Although the target image cannot be

fully recovered, the test result shows that the resized images

are enough to fool the model to classify them into the target

class. The visual effect is not important as long as it can reach

the adversarial purpose.

4.2. Visual Quality

The visual quality of the adversarial examples generated by

embedding attacks is greatly affected by the resizing ratio of

the original image and the target image, as shown in Fig. 6.

We use structural similarity index (SSIM) [20] to evaluate the

visual quality of the processed images. We can see that, in

all the four attacks, the SSIM increase with the resizing scale.

This can be explained by the principle of interpolation-based

resizing methods. In all of these methods, every point in the

resized image requires to modify up to sixteen pixels in the

original image, and has nothing to do with other pixels. Sim-

ilarly, in our embedding attack, for each point of the target

image, we only modify at most sixteen points in the origi-

nal image. In other words, the number of modified points will

not exceed sixteen times the number of points in the target im-

age. Therefore, when the specified size of the model is fixed,

the larger the size of the original image, the smaller the pro-

portion of modification points, which results in better visual

quality. An example is shown in Fig. 7.

Fig. 6: SSIM of different attacks with different resizing ratios.

5. DISCUSSIONS

In general, a targeted attack means generating an adversarial

example belonging to a given class while similar to the origi-

nal image. But in our embedding attacks, the target image is

independent of the original image. So we are free to choose

the target image, as long as it belongs to the target class.

In order to ensure the visual quality of the generated ad-

versarial examples, we should select the target image as sim-

ilar as possible to the original image, especially in the aspect

of the global tune and the location of areas with the complex

texture. From the experiment figures, we can still see some

modified traces in the result when the size of the original im-

age is not very large. So one of our further researches will be

how to improve the visual quality of the adversarial examples.

In addition, there might be some possible defense meth-

ods against our embedding attacks. First, before an image is

resized to the required input shape of a deep learning model,

we can preprocess it with some methods like Gaussian filter,

which will reduce the impact of our modifications on the im-

age resizing results. Another possible defense is deploying

other image resizing methods that are not based on interpola-

tion in deep learning frameworks. Besides, we can also design

deep neural networks that can handle images with any shape.

6. CONCLUSIONS

The existence of adversarial examples proves that deep neural

network itself is not robust to the input. Before an input is

fed into a network, image resizing is a necessary operation

in the deep learning pipeline. So not only the DNN itself

can be deceived, but the preprocessing operations can also be

attacked.

In this paper, we propose the embedding attacks on

three common image resizing methods in most deep learn-

ing frameworks. By these attacks, for any large-size origi-

nal image, we can construct high visual quality adversarial

examples without querying the target model or knowing its

inner information. When the adversarial example is resized
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Fig. 7: Visual quality in case of different original image sizes. The embedded target image size is fixed 299× 299. and the

original image sizes vary from 400× 400 to 1200× 1200. In order to facilitate the observation and comparison, we process

them into the same size to show the visual effects.

to the required size before entering the classifier, it will be

transformed into the target image which belongs to the tar-

get class. Besides, we theoretically prove that our embedding

method is optimal when the target image can be fully recov-

ered. Furthermore, in order to improve the practicality of our

attack, we design a universal embedding algorithm, which is

able to attack all the three common image resizing methods.
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