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Feature-Preserving Tensor Voting Model
for Mesh Steganalysis

Hang Zhou, Kejiang Chen, Weiming Zhang, Chuan Qin and Nenghai Yu

Abstract—The standard tensor voting technique shows its versatility in tasks such as object recognition and semantic segmentation by
recognizing feature points and sharp edges that can segment a model into several patches. We propose a neighborhood-level
representation-guided tensor voting model for 3D mesh steganalysis. Because existing steganalytic methods do not analyze
correlations among neighborhood faces, they are not very effective at discriminating stego meshes from cover meshes. In this paper,
we propose to utilize a tensor voting model to reveal the artifacts caused by embedding data. In the proposed steganalytic scheme, the
normal voting tensor (NVT) operation is performed on original mesh faces and smoothed mesh faces separately. Then, the absolute
values of the differences between the eigenvalues of the two tensors (from the original face and the smoothed face) are regarded as
features that capture intricate relationships among the vertices. Subsequently, the extracted features are processed with a nonlinear
mapping to boost the feature effectiveness. The experimental results show that the proposed feature sets prevail over state-of-the-art
feature sets including LFS64 and ELFS124 under various steganographic schemes.

Index Terms—mesh steganography, mesh steganalysis, normal voting tensor, feature extraction, ensemble classifier
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1 INTRODUCTION

THREE-DIMENSIONAL (3D) technology is already main-
stream for consumers, from virtual reality (VR), visual

effects (VFX), 3D printing, animated movies, and video
games to web integration, Facebook support and much
more [1]. The growing number of 3D techniques facilitates
the rapid progression of 3D-related applications, includ-
ing 3D mesh watermarking and 3D mesh steganography.
Whereas 3D watermarking focuses on protecting copyright
ownership and reducing the counterfeiting of digital multi-
media, 3D mesh steganography focuses on covert commu-
nication against steganalysis. The procedure of steganogra-
phy targets the communications between two parties over
covert channels, where the sender hides the message inside
an innocuous-looking cover object using a steganographic
method driven by a secret shared with the recipient such
that a potential eavesdropper cannot detect its existence; 3D
meshes are appropriate carriers for steganography.

Recently, 3D mesh steganography technologies have
been actively investigated due to the rapid expansion of
3D techniques, and they can be mainly classified into two
categories: low-capacity [2, 3, 4, 5, 6] and high-capacity
steganography [7, 7, 8, 9, 10, 11, 12]. Correspondingly, to
detect whether a mesh contains hidden data, 3D mesh ste-
ganalysis algorithms [13, 14, 15, 16, 17] are being developed.

In this paper, we propose a new set of steganalytic
features based on an adapted version of the normal tensor

• This work was supported in part by the Natural Science Foundation of
China under Grant U1636201 and 61572452, by Anhui Initiative in
Quantum Information Technologies under Grant AHY150400, and by the
Fundamental Research Funds for the Central Universities under Grant
WK6030000135 and WK6030000136.

• H. Zhou, K. Chen, W. Zhang and N. Yu are with CAS Key Laboratory
of Electromagnetic Space Information, University of Science and Technol-
ogy of China, Hefei, 230026, China. (E-mail: zh2991@mail.ustc.edu.cn,
chenkj@mail.ustc.edu.cn, zhangwm@ustc.edu.cn, qc94@mail.ustc.edu.cn,
ynh@ustc.edu.cn).

• Corresponding author: Weiming Zhang.

voting model that can measure the smoothness of the local
region and the correlations of adjacent vertices. In contrast
to previous feature sets such as LFS64 [16] and ELFS124 [17],
the new feature extraction method contains three phases.
First, to capture the local shape characteristics, normal vot-
ing tensors (NVTs) of each face are proposed with three
diverse neighbor definitions. The process of extracting the
normal voting tensor is similar to the process of calculating
the side length or the vertex curvature, and it represents
the essential attribute of a mesh. Second, three eigenvalues
of each tensor are calculated, and they mirror the innate
structural characteristics such as edges, flat faces or corners.
Third, nonlinear mappings and several statistical moments
are executed successively.

Whereas normal meshes have a strong neighboring cor-
relation, stego meshes have an inferior neighboring correla-
tion because steganographic modifications partially destroy
neighboring correlations. Moreover, our NVT features can
measure the neighboring correlation more effectively than
the existing methods. Therefore, we can effectively distin-
guish cover and stego meshes. Additionally, NVT features
are extracted from adjacent faces, while existing features
are extracted from single vertices, single edges or single
faces. Therefore, the features are designed from a different
perspective. When the NVT features are combined with
other features such as LFS64, better performance can be
obtained.

The rest of this paper is organized as follows. After
introducing the basic notation and terminology in Section II,
we review the mesh steganalysis framework and prior mesh
steganalytic features. In Section III, we propose several new
mesh features based on the normal voting tensor. The results
of our experiments are detailed in Section IV to demonstrate
the effectiveness of the proposed schemes. The conclusion
and future work are given in Section V.
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Fig. 1: The 3D mesh steganalysis framework based on learning from the statistics of residual features and classification via ensemble classifiers.

2 RELATED WORK

In this paper, capital and lowercase boldface symbols stand
for matrices and vectors, respectively. We work with meshes
M = {V, E ,F}. Let vertex set V = {vi}Ni=1 represent
the sequence of vertices encountered as a mesh is being
traversed, where vi = [vi,x, vi,y, vi,z]

T in the Cartesian
coordinate system. Let E be the edge set and F be the face
set.

2.1 3D Mesh Steganography

Cayre and Marcq [2] embed data by modulating the position
of the orthogonal projection of a triangle summit on the
opposite side. Wang and Cheng [3] improve the modulation
by sliding, extending and rotating levels to embed data; they
also combine both the spatial domain and the representa-
tion domain [4] to increase the embedding capacity. Other
follow-ups with small embedding capacities mainly focus
on perfecting visual distortions caused by modifications
[5, 6].

High-capacity based 3D mesh steganography can be
classified into two categories: distortionless steganography
based on order permutation [18, 19, 20], and distorted
steganography based on vertex shifting [7, 8, 9, 10, 11, 12].
For distortionless steganography, Bogomjakov et al. [18]
propose to hide messages in the indexed representation of
a mesh by permuting the order in which faces and vertices
are stored. Tan et al. [19] consider the vertex index as a mes-
sage block, and propose three embedding strategies: vertex
index embedding, dynamic-length bit-string mapping, and
repeated bits embedding to enlarge embedding capacity. Tu
and Tai [20] propose to use maximum expected level tree
based on a message probability model to embed data, which
owns larger capacity than previous methods. For distorted
steganography, Chao et al. [7] provide multilayered high-
capacity reversible steganography with space modulation
and demodulation techniques on the principal axes by ver-
tex projection. Yang et al. [8] embed data by modifying the
LSBs of selected vertex coordinates, where the embedding
capacity depends on the shape of the mesh and cannot be
known in advance. Itier and Puech [9] propose a stegano-
graphic method that hides data by the displacement of a
vertex relative to its new position in the Hamiltonian path
using static arithmetic coding. Li et al. [10] propose a key-
modulation-based steganography with confined distortion.
Li et al. [11] increase the resistance to steganalysis by means
of the mesh steganography of [9]. Zhou et al. [12] put
forward adaptive steganography together with coding tech-
niques to enhance the security performance. The work also
points out the defects of [7] and comes up with a targeted
attack.

2.2 3D Mesh Steganalysis

To date, modern feature-based steganalysis [14, 21] on
meshes has started by adopting a mesh model within which
steganalyzers are built using machine learning classifiers
[22, 23] operating on high-dimensional features. Figure 1
shows the pipeline of the 3D mesh steganalysis framework
based on learning from the statistics of residual features and
classifications via ensemble classifiers, which includes cali-
bration, smoothing, feature extraction and feature mapping.

2.2.1 Calibration and Smoothing
Before feature extraction, it is necessary to preprocess ver-
tices into the canonical version: the mesh object is rotated
and aligned according to its first and second principal axes,
which are given by the principal component analysis (PCA)
algorithm. The guidance from image steganalysis indicates
that the distinction between a stego image and its smoothed
image is more significant than the distinction between a
cover image and its smoothed image [24, 25]; Analogically,
it is expected that the differences follow the same rule. The
smoothed reference mesh M′ is produced by applying the
umbrella operator or one iteration of Laplacian smoothing
on the original meshM, which changes the vertex vi to v′i
for i = 1, . . . , N , as follows [26]:

v′i = vi +
τ∑

vj∈N (vi)
wij

∑
vj∈N (vi)

wij(vj − vi), (1)

where τ is a scalar factor and wij is the weight defined by

wij =

{
1 if vj ∈ N (vi)
0 otherwise.

(2)

2.2.2 Existing Features
Artifacts generated by steganography could be identified
by the effective features. Moreover, these features are desig-
nated by the differences between the mesh object and its
smoothed version. Detectors of such features range from
simple vertex displacement measurements to algorithms
that consider the local neighborhoods and the specific shape
characteristics [15]. All of the syntaxes of the features in
this paper follow the convention name = {φ}{#}, where φ
represents the feature and # is the sequence number; these
features jointly constitute the multidimensional feature vec-
tor Φ.

YANG208 features [21]. Yang and Ivrissimtzis propose
the first steganalytic algorithm for triangle meshes. For the
vertex vectors, the absolute values of the differences of the
xyz coordinates of M and M′ as well as the lengths of the
vector of the Cartesian coordinate differences are computed.
Next, four more vectors are obtained by computing the
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same absolute differences but on the Laplacian rather than
the Cartesian coordinates ofM andM′. The computations
are made separately on vertices with valences less than,
equal to, or greater than 6; all of the boundary vertices are
excluded. The total number of vectors obtained from the
mesh vertices is 24. For the edges of the mesh, one computes
the vector of the absolute values of the differences of the
dihedral angles between M and M′. Finally, for the mesh
faces, the vector of the angles between the normals of M
and M′ are computed. The result is a total of 26 vectors
from the vertices, edges, and faces. From each of the 26
vectors calculated in the previous section, 8 components
of the feature vector are computed to create a vector of
dimension 208 denoted by Φ208.

YANG40 features [14]. Li and Bors propose the 40D
feature vector YANG40, and it contains the most effective
features from YANG208. The first 6 components φ1 − φ6
represent the absolute distance, which is measured along
each coordinate axis of xyz between the locations of the
vertices of the meshes M and M′ after being normalized
and aligned in both the Cartesian and Laplacian coordi-
nate systems. Next, the changes produced in the Euclidean
distance between the vertex location and the center of the
object, which represent the vertex norms, are denoted by
φ7 and φ8. φ9 evaluates the local mesh surface variation by
calculating the changes in the orientations of faces adjacent
to the same edge, which is measured by the absolute differ-
ences between the dihedral angles of the neighboring faces
and is calculated on the plane perpendicular to the common
edge.

Similarly, the available features are extracted from faces.
Changes in the local surface orientation are measured by
calculating the angle between the surface normals nfi of the
faces from the object fi ∈ F and their correspondents n′fi
from the smoothed object f ′i ∈ F ′. The absolute value of
the angles between the two face normals is computed as
follows:

φ10(i) = arccos
nfi · nf ′

i

‖nfi‖ · ‖nf ′
i
‖
, i = 1, . . . , |F|. (3)

Note that F = F ′, as the smoothing operation does not
change the topologies among the vertices. The total feature
vector of LFS40 is Φ40 = {φ1, φ2, . . . , φ10}.

LFS52 Features [14]. Li and Bors propose the local
feature set (LFS) based on the LFS52 features, which include
the YANG40 features (φ1 ∼ φ10) and several local shape
features (φ11 ∼ φ13). φ11 is the angle between the vertex
normals of each of the two corresponding vertices, where
vertex normal is defined by the weighted sum of the nor-
mals of the faces that contain that vertex:

nvi
=

∑
fj∈F(v?

i )

A(fj) · nfj
‖e(vi,v′

fj
)‖ · ‖e(vi,v

′′
fj

)‖
, (4)

where F(v?i ) is the set of faces that contain the vertex vi; v′fj
and v′′fj are the two vertices adjacent to vertex vi on face fj ;
e(v1,v2) represents the edge that connects vertices v1 and v2;
and A(fj) represents the area of triangle fj .

Thus, the absolute value of the angles between the two
vertex normals is computed by

φ11(i) = arccos
nvi · nv′i
‖nvi‖ · ‖nv′i‖

, i = 1, . . . , N. (5)

The local shape curvature is employed to measure the
smoothness of the mesh surface. The Gaussian curvature
κG and the curvature ratio κr used in [27] are considered.
In differential geometry, the two principal curvatures κ1, κ2
of a surface are provided by the eigenvalues of the shape op-
erator, which are calculated at the location of a vertex using
the vertices from its first neighborhood. These curvatures
measure how the local surface bends by different amounts
in the orthogonal directions at that point.

The Gaussian curvature is defined by the product of the
minimum principal curvature and the maximum principal
curvature: κG = κ1 ·κ2, and φ12 is evaluated by the absolute
difference of the two Gaussian curvatures:

φ12(i) = |κG(vi)− κG(v′i)| , i = 1, . . . , N. (6)

κr is acquired by two curvature ratios:

κr =
min |κ1| , |κ2|
max |κ1| , |κ2|

. (7)

Moreover, φ13 is determined by the absolute difference
between the two curvature ratios:

φ13(i) = |κr(vi)− κr(v′i)| , i = 1, . . . , N. (8)

The total feature vector of LFS52 is Φ52 =
{φ1, φ2, . . . , φ13}.

LFS64 Features [16]. Kim et al. extend LFS52 and con-
sider the edge normal, mean curvature and total curvature
to enhance the discrimination between the cover and stego
meshes with φ14− φ16. An edge normal nei is the weighted
sum of the normals of the faces nfj that have the edge and
is defined as follows:

nei =
∑

fj∈F(e?i )

A(fj) · nfj , (9)

where F(e?i ) represents the neighboring faces that contain
edge ei. Thus, the absolute value of the angles between the
two edge normals is computed by

φ14(i) = arccos
nei · ne′i
‖nei‖ · ‖ne′i‖

, i = 1, . . . , |E| . (10)

The mean curvature κm = (κ1 + κ2)/2 and total curva-
ture κt = |κ1|+ |κ2| contribute to two additional features:

φ15(i) = |κm(vi)− κm(v′i)|
φ16(i) = |κt(vi)− κt(v′i)|

, i = 1, . . . , N. (11)

The total feature vector of LFS64 is Φ64 =
{φ1, φ2, . . . , φ16}.

LFS76 Features [15]. Li and Bors extend LFS52 and
put forward features extracted from spherical coordinates.
Spherical coordinates provide a straightforward representa-
tion of most graphical objects to characterize the distance
from the center and the location of each vertex on a sphere.

Similarly, the absolute difference between each coordi-
nate and its corresponding smoothed version is regarded
as features that totally form φ17 − φ19. Similarly, the edges
in the spherical coordinates compose another three features
φ20−φ22 [15]. Additionally, the total feature vector of LFS76
is Φ76 = {φ1, φ2, . . . , φ13, φ17, . . . , φ22}.

ELFS124 Features [17]. Li et al. extend LFS52 and
propose an extended local feature set with edge vectors
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for steganalysis. The edge vectors between the cover and
smoothed meshes are denoted by e(vi,vj) and e′(vi,vj)

. The
absolute differences of the xyz-components, norm, abso-
lute norm difference, and angle of the edge vector are
calculated to form 6 features. Similarly, the features in
the Laplacian coordinate system are counted. In total, we
have 12 features together with those from the Cartesian
coordinate system. The total feature vector of ELFS124 is
Φ124 = {φ1, φ2, . . . , φ13, φ17, . . . , φ34}.

2.2.3 Nonlinear Mapping

To better extract the available features, the feature mapping
is executed after feature extraction [21]. The dynamic range
of the nonzero elements of the aggregated features is large.
For instance, the range is from 10−5 to 10−2. Since large
feature values dominate the classification performance, the
logarithms of the features are computed to increase the
efficiency of the small features and enforce the evenness of
the feature distribution:

x = log (c+ ε), (12)

where c is the feature value and ε is a small constant to
maintain a consistent logarithmic transformation for all of
the values.

Then, quantitative analysis of the statistical distribution
and the robustness of the different features are undertaken.
Four statistical moments that represent the mean, variance,
skewness and kurtosis of the nonlinear mapping of the
obtained features are considered. Skewness and kurtosis are
measures of the peakedness of the distribution. For a normal
distribution, both of these measures are zero.

3 NORMAL VOTING TENSOR BASED FEATURES

In this section, we propose a neighborhood-level
representation-guided tensor voting model for 3D mesh ste-
ganalysis. Conventional steganalytic features consist of low-
level mesh features (points, edges, triangle faces, etc.), and it
is difficult to extract the available features from the intrinsic
shapes collected from the original meshes. Compared with
the features extracted from the stego versions of the meshes,
the differences are not significant. The normal voting tensor
represents the local shape [28] and therefore can measure
the local smoothness and neighborhood correlation. Because
steganographic modification breaks the neighborhood cor-
relations of vertices, the normal voting tensor can be used
to extract steganalytic features. Motivated by this fact, we
first introduce the definition of the second-order symmetric
tensor; then, we present several neighborhood descriptions
of meshes, propose a few normal voting tensors that reflect
the local surface shapes and finally design new steganalytic
features.

3.1 Second-Order Symmetric Tensor

A first-order local description of a surface patch is given
by the point coordinates and its associated normal. A
second-order description would also include the principal
curvatures and their directions. To capture the first-order
differential geometry information and its singularities, a

(a) (b)

(c)
(d)

Fig. 2: Illustration of diverse neighbors. (a) Vertex neighborhood v?
i ;

(b) Triangles of ring v?
i denoted by F(v?

i ); (c) Triangle neighborhood
f?i is the set of all triangles sharing an edge with a triangle fi ∈ F ;
(d) Triangle neighborhood f?i is the set of all triangles sharing a vertex
with a triangle fi ∈ F .

second-order symmetric tensor is used. This tensor captures
both the orientation information and its confidence [29].

Intuitively, the shape of the tensor defines the type of
information captured (points, curves, or surface elements).
To express a second-order symmetric tensor T, which is
graphically depicted by an ellipsoid in 3D, we take the
associated quadratic form and diagonalize it. This process
leads to a representation based on the eigenvalues λ1, λ2, λ3
and the eigenvectors e1, e2, e3. In a more compact form,

T =
3∑
k=1

λkekeTk = λ1e1eT1 + λ2e2eT2 + λ3e3eT3 , (13)

where λ1 ≥ λ2 ≥ λ3 ≥ 0. Note that because T is a
second-order symmetric tensor, the eigenvalues are real
and nonnegative and the eigenvectors form an orthonormal
basis. The above formula can be decomposed into

T =(λ1 − λ2)e1eT1 + (λ2 − λ3)(e1eT1 + e2eT2 )

+ λ3(e1eT1 + e2eT2 + e3eT3 ),
(14)

where e1eT1 describes a stick, e1eT1 + e2eT2 describes a plate
and e1eT1 + e2eT2 + e3eT3 describes a ball [29].

3.2 Neighborhood Description
Steganographic modification breaks the neighborhood cor-
relation of vertices; hence, by analyzing the local smooth-
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ness and neighborhood correlations, we can better discrimi-
nate stego meshes from cover meshes. Let us consider com-
binatorial neighborhoods of vertices and faces. There are
four possible neighbors: neighborhood vertices of a vertex;
neighborhood faces of a vertex; neighborhood faces of a face
connected by mutual edges; and neighborhood faces of a
face connected by mutual vertices. These neighborhoods are
defined from different perspectives (vertex, edge and face),
which can diversely describe local smoothness.
(a) The neighborhood (also referred to as a ring) of a vertex

vi is the set v?i = {vj ∈ V : vi ∼ vj}, as shown in
Figure 2a. The degree of a vertex vi is defined as the
cardinality of v?i , which is denoted by |v?i |.

(b) We denote by F(v?i ) the set of triangles of the ring v?i ,
as shown in Figure 2b.

(c) We denote by f?i the set of all triangles that share an
edge with triangle fi ∈ F of a mesh; see Figure 2c. For
a closed mesh, the number of adjacent triangles of any
triangle in the set f?i is 3, while for a nonclosed mesh,
the triangles on the boundaries are partially defective.
Thus, the number of adjacent triangles of each triangle
is 1 or 2.

(d) We denote by f?i the set of all triangles that share a
vertex with a triangle f i ∈ F of a mesh, as shown in
Figure 2d.

3.3 Normal Voting Tensor
Based on the above definition of a tensor and the neigh-
borhood description, we propose three normal-voting-based
tensors with different neighbors.

Face Normal of a Vertex Neighbor. Sun et al. [30] define
the normal voting tensor of a vertex on a triangular mesh
by using the unit normal vectors of the neighbor triangles.
If we consider the covariance matrix Cfj of each triangle
fj ∈ F(v?i ) in Figure 2b, Cfj can be written by the unit
normal of the triangle as

Cfj = nfj · nTfj . (15)

Then, the normal voting tensor Ti of a vertex vi ∈ V
can be generated by accumulating the weighted covariance
matrices of its neighbor triangles:

Ti =
∑

fj∈F(v?
i )

µijnfj · nTfj =
∑

fj∈F(v?
i )

µijCfj , i = 1, . . . , N,

(16)
where the weight µij is a vote decided by the area ratio
among neighbor triangles and the distance between the
vertex and barycenter cfj of each triangle following [30]:

µij =
A(fj)

max (A(F(v?i ))
exp

(
−
‖cfj − vi‖

1/3

)
. (17)

In a word, we denote by ξ1 the first tensor model, and
the eigenvalues are computed from it. The eigenvalues are
taken as the first part of the proposed features.

Face Normals of a Face Neighbor. The normal voting
tensor for a mesh face fi is formulated as the sum of
the weighted covariance matrices from its 1-ring or 2-ring
neighboring faces [31]. One case is the neighborhood faces
of one face conjoined by the shared edges, as shown in
Figure 2c:

vertex on a face

vertex at a corner

vertex on an edge

Fig. 3: Eigenvalues of the normal voting tensor for different features (a
corner, an edge and a face).

Ti =
1∑

fj∈f?
i
wijA(fj)

∑
fj∈f?

i

wijA(fj)nj · nTj . (18)

where wij is the weighting function. Here, we simply set all
wij equal to 1. Furthermore, we denote the second tensor
model by ξ2.

Another case is based on the neighborhood faces of one
face conjoined by shared vertices, as shown in Figure 2d:

Ti =
1∑

fj∈f
?
i
wijA(fj)

∑
fj∈f

?
i

wijA(fj)nj · nTj . (19)

Similarly, we denote the third tensor model by ξ3.
Because the obtained tensor is a symmetric and positive

semidefinite matrix, we can represent Ti using an orthonor-
mal basis of the eigenvectors ek and real eigenvalues λk by
Equation (13).

Our geometrical interpretations are given below. By a 3D
decomposition of the tensor Ti with Equation (14), we can
classify a vertex on the mesh as a corner, a sharp edge or a
face by the eigenvalues of the tensor Ti. In Figure 3, the char-
acteristics of the eigenvalues of the normal voting tensor are
depicted. On a noise-free triangulated mesh, a planar area
has only one dominant eigenvalue in the surface normal
direction. Two dominant eigenvalues indicate edge features
where the weakest eigenvector will be in the edge direction.
At a corner, all three of the eigenvalues are dominant. For
example, consider a cube model where the eigenvalues of
the tensor are sorted in decreasing order λ1 ≥ λ2 ≥ λ3 ≥ 0
and normalized. Then, for the orthogonal features, we can
write {λ1 = 1, λ2 = λ3 = 0} (face), {λ1 = λ2 =

√
2
2 , λ3 = 0}

(edge) and {λ1 = λ2 = λ3 =
√
3
3 } (corner) [31].

3.4 Feature Design

As explained above, the eigenvalues can reflect the shape of
the normal voting tensor. Thus, the eigenvalues are effective
features for representing the shape of a local surface patch,
as shown in Figure 3. Formally, the absolute values of the
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differences between the eigenvalues of the two tensors (from
the original face and the smoothed face) are regarded as
features. The well-designed three-tensor models (ξ1, ξ2, ξ3)
are such that each extracts three eigenvalue differences to
form a total of 9 features, which are denoted by φ23 − φ31.

Following the former convention, for each eigenvalue λk
from each tensor voting model ξj ,

φk(i) = |λk(fi)− λk(f ′i)| , i = 1, . . . , |F| , k = 1, 2, 3,
(20)

where f ′ is the triangle face from the smoothed mesh M′.
After the extraction of the statistical moments, the proposed
features form 9×4 = 36 features. We combine the proposed
NVT features and LFS64 to form a new feature set NVT+,
and the dimension of NVT+ reaches 100.

4 EVALUATION AND RESULTS

4.1 Setups
In this paper, two disjoint mesh datasets are adopted:

The Princeton Segmentation Benchmark1 (PSB) dataset
is a mesh segmentation dataset with 354 objects [32]. Over-
all, 260 pairs of cover-objects are used for training, and 94
pairs of stego-objects are used for testing, which was also
the configuration in the previous article [14].

The Princeton ModelNet2 (PMN) dataset contains
12,311 mesh data for computer vision, computer graphics,
robotics and cognitive science [33]. We take ModelNet40
with 40 categories for training and testing. A preprocessing
with only 4,000 meshes is selected with median-volume
meshes in favor of time savings. We use 50% for training
and 50% for testing.

We investigate the effectiveness of the proposed method
by using three state-of-the-art steganographic schemes by
Chao [7], Li [10] and VND [12]; we employ a varying relative
payload rate η ∈ {1, 2, ..., 14}, which is defined by the
ratio of the total length of a message and the number of
vertices as η = m/N bpv (bit per vertices). The detectors
are trained as binary classifiers and implemented using the
Fisher linear discriminant (FLD) ensemble [23] with the
default settings. A separate classifier is trained for each
embedding algorithm and relative payload. By default, the
ensemble classifier minimizes the total classification error
probability under equal priors:

PE = min
PFA

1

2
(PFA + PMD), (21)

where PFA and PMD are the false-alarm probability and
the missed-detection probability, respectively. The ultimate
security P E is qualified by the average of all of the error rates
over all 30 trials, and a larger P E implies stronger security.

4.2 Feature Validation
To justify our claim that tensor features are effective at
detecting modifications caused by steganography, we im-
plement a simulation with the following steps:
(a) Modify vertices of the mesh by the Chao stegano-

graphic method [7] under the relative payload η =

1. http://segeval.cs.princeton.edu/
2. http://modelnet.cs.princeton.edu/

TABLE 1:
Results of the MMD between cover meshes and stego meshes at 2 bpv,
5 bpv and 10 bpv against LFS64, ELFS124 and NVT+ under the Chao
steganographic scheme using the PSB dataset.

Relative payload Steganalytic method MMD

2
LFS64 .0396

ELFS124 .0305
NVT+ .0816

5
LFS64 .0503

ELFS124 .0361
NVT+ .1008

10
LFS64 .1026

ELFS124 .0603
NVT+ .1706

2, 5, 10. The meshes that we use are from the PSB
dataset.

(b) Calculate LFS64 [16], ELFS124 [17] and the proposed
NVT+ steganalytic feature vector for each 3D mesh. The
obtained feature sets are denoted by {featC(LFS64)}
and {featS(LFS64)}, {featC(ELFS124)} and
{featS(ELFS124)}, and {featC(NVT+)} and
{featS(NVT+)} for each cover-stego pair.

(c) Calculate the MMD (maximum mean discrepancy
[34]), which measures the distance between the
feature set of the cover objects and the stego-objects)
between {featC(LFS64)} and {featS(LFS64)},
{featC(ELFS124)} and {featS(ELFS124)}, and
{featC(NVT+)} and {featS(NVT+)}. Obtain
the average value of the MMD over 30 distinct,
independent tests on the dataset. Then, make a
comparison.

The statistical results of the MMD are given in Table 1.
In general, because the MMD represents the distance in the
steganalytic feature space between the cover set and stego
set, the larger the MMD is, the better the discriminant ability
will be. From the statistical results, the MMD of NVT+ is
larger than the MMDs of the other two methods, which
demonstrates that NVT+ has better discriminant features.

4.3 Visualization of Steganalytic Features

We have compared the performance of our proposed nor-
mal voting tensor-based features with existing features by
presenting the sample distributions after the features are
projected onto the selected 2D subspace, as shown in Fig-
ure 4. The stego meshes are generated by the Chao method
in the PSB dataset.

In detail, first, we extract eigenvalue λ1 of the normal
voting tensor feature from the neighbor of ξ1 by Equa-
tion (13), and we calculate the face normal features (which
are demonstrated to be the most effective features in [12])
by Equation (3). After log-mapping is performed, skewness
and kurtosis are measured for both steganalytic methods.
In the two figures of Figure 4, we can see the cover sample
depicted with blue asterisks and the stego sample with red
circles. Figure 4a describes the sample distribution through
the face normal features, and Figure 4b describes the normal
voting tensor features. It is harder for a linear classifier to
partition the cover samples and stego samples in Figure 4a
than the samples in Figure 4b, which implies that the normal
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voting tensor has better discriminative power with respect
to cover meshes and stego meshes.

4.4 Submodel Selection
We utilize the steganographic methods proposed by Chao et
al. [7] and Zhou et al. [12] to validate our proposed stegana-
lytic methods. Afterwards, we evaluate the performance of
the individual submodel of the steganalytic feature vector
independently.

Our approach works as follows. First, we create a set
of stego meshes embedded with Chao and VND under
a certain payload rate. Then, we use the FLDs criteria to
evaluate the accuracy of the individual features for detec-
tion. Specifically, we use FLDs as base learners due to their
simple and fast training. Denote the cover and stego features
from the training set as x(m) and x(m) for m = 1, ..., N trn,
respectively. The training makes use of the so-called “out-
of-bag” (OOB) error estimate [35]:

E
(L)
OOB =

1

2N trn

Ntrn∑
m=1

(
B(L)(x(m)) + 1−B(L)(x(m))

)
, (22)

which is an unbiased estimate of the testing error [36].
We compute the OOB estimates for each submodel under

different embedding payload rates: 5 bpv for Chao [7] and
10 bpv for VND [12]. We investigate the classification per-
formances of the submodels; in Figure 5, for each submodel,
we plot its OOB error estimate. We denote this estimate by
ξ0 = LFS64 for readability.

The proposed NVT features are designed differently
from the former features such as LFS64, as NVT features
are extracted from adjacent faces, while the former features
are extracted from a single vertex, single edge or single
face. Specifically, the tensor voting operation is introduced
before the eigenvalue extraction to characterize the vertex
relationship. ξ1 is the normal voting tensor constructed from
the vertex neighbor, ξ2 is the tensor constructed from the
triangle neighbor connected by the edges and ξ3 is the tensor
constructed from the triangle neighbor connected by the
vertices. As shown in Figure 5, all three models ξ1, ξ2, ξ3
individually provide lower OOBs than the state-of-the-art
LFS64 model (ξ0). When cascading the proposed features
ξ1, ξ2, ξ3 with the LFS64 feature ξ0 to form a 100D feature
vector, better performance can be expected. Experimentally,
we achieve the lowest OOB error when all of the models are
combined together.

4.5 Comparison with the State-of-the-art Steganalytic
Methods
We use five related steganalytic feature sets, namely,
YANG208 [21], LFS52 [14], LFS64 [16], LFS76 [15]
and ELFS124 [17], for comparison. Three steganographic
schemes, namely, Chao [7], VND [12], and Li [10], are
employed for evaluation. Note that we do not consider
distortionless schemes [18, 19, 20], though these steganalytic
features cannot discriminate these stegos generated by order
permutation based steganography from covers, they can be
easily detected by specifically designed detector. Because
the orders of faces are generally highly relevant for normal
meshes, when the stego meshes are created by distortionless

methods, the orders of faces are uncorrelated. As an exam-
ple, we give some parts of the mesh structure in Figure 9.
It is shown that line 2397 and line 2398 have two common
vertices, and line 2398 and line 2399 have two common ver-
tices. Similarly, adjacent lines share some common vertices.
But for stego meshes created by distortionless methods, the
adjacent lines share no same vertices.

The detection error P E as a function of the embedded
payload size for the PSB dataset is shown in Figure 6.
The gain of NVT+ w.r.t. both LFS64 and ELFS124 reaches
a maximum of 5%. When the relative payload increases,
the improvement decreases. When the payload rate is high
for all of the steganographic schemes, the advantage of the
NVT+ features is not prominent. For VND steganographic
schemes with γ = 1, 2, the detection errors are nearly 50%
because the modification of the vertices are too minor to be
detected by any steganalytic methods.

To investigate the performance of NVT+ on a larger
dataset, we have experimented on the PMN dataset. We
show the results of the performance test in Figure 7. We
observe that except for the case of VND with a small relative
payload, where none of the features can distinguish the
difference between the cover mesh and stego mesh, the pro-
posed NVT+ scheme always achieves lower detection error
than the former steganalytic features. When the payload
rate is low, NVT+ has more advantage in detection and its
improvement can be as strong as 22%.

The boost of the detection rate in the PMN dataset is
more significant than in the PSB dataset, which we attribute
to the data sources, as shown in Figure 8. Whereas the
shapes of the mesh objects from the PSB database are mostly
acquired by reconstruction from natural 3D objects, the
mesh objects from the PMN database are crafted by CAD
techniques. The objects from PSB have more diverse local
texture structures than objects from the PMN dataset. By
extracting the neighborhood-level features such as NVTs,
one is more likely to detect fixed modes in CAD-crafted
objects than natural objects, which accounts for the different
increases in the detection rates.

4.6 Statistical Significance of the Improved Accuracy
To confirm the statistical significance of the improved accu-
racy, a z-test is realized between the error rates of the origi-
nal and the improved NVT+ algorithms. The hypotheses are
denoted as follows:

H0 : µ1 = µ2; H1 : µ1 6= µ2,

where µ1 and µ2 are the mean values of the testing errors
of the original and NVT+ features, respectively, and µ1 =
µ2 indicates that there is no significant difference between
them.

The z-score z is computed by

z =
|µ1 − µ2|√
σ1

n1
+ σ2

n2

,

where n1 and n2 are the numbers of the testing samples
and σ1 and σ2 are the standard deviations of the original
and NVT+ features, respectively. By computing the z-score
from statistical libraries or packages, the corresponding p-
value can be obtained. A lower p-value indicates a lower
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Fig. 4: Mesh object distributions in the selected 2D manifolds with different feature extraction algorithms on Chao steganographic method under
10 bpv relative payloads with PSB dataset. We take skewness and kurtosis as measurements for both steganalytic methods. (a) face normal features
φ10 are by far the strongest features, refer to [12]. Angles between cover meshes and stego meshes are taken as evaluation indicator. (b) tensor
voting features. Variation of λ1 is evaluated.

TABLE 2:
Computational Complexity of the Proposed NVT+ and Existing Methods on the PSB dataset under an Embedding Payload Rate Size of 8 Bits per
Vertex (bpv).

Time (s) YANG208 LFS52 LFS64 LFS76 ELFS124 NVT+
Training 1.99 1.27 2.19 1.94 2.07 2.22

Feature extraction 17.13 82.13 84.33 106.72 107.04 1689.84
Classification 17.76 7.20 9.70 7.13 16.78 9.45
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Fig. 5: OOB error estimates averaged over Chao under 5 bpv and VND
under 10 bpv using the PSB dataset.

probability that the null hypothesis H0 holds. If the p-value
is less than a threshold, the null hypothesis H0 is rejected,
and the improvement is deemed statistically significant and
reliable. We set the level of significance z at 5%. Since we
do multiple, independent, and post hoc statistical tests, we
use the Bonferroni correction to adjust the threshold to
account for spurious cases of high statistical significance.
Since 30 hypotheses are being tested, the new critical p-
value is 0.05/30 = 0.0017, and the corresponding quantile

z0.0017 = 2.93.
Under different payloads and steganographic schemes,

in most cases, the test statistic z values are larger than the
corresponding quantile z0.0017, which implies the detection
improvements have statistical significance.

4.7 Comparison of the Computational Complexity
We evaluate the computational complexity of the PSB
dataset under a relative payload of 8 bpv. We observe
that the proposed NVT+ has much higher computational
complexity than the existing methods for feature extraction,
as the search for adjacent triangles is time-consuming.

5 CONCLUSION

A 3D mesh steganalysis scheme based on the normal vot-
ing tensor (NVT) is proposed in this paper. We analyze
the distortion caused by steganographic modifications and
discover that the normal voting tensor could measure the
smoothness of the local region. Here, three tensors with
different neighbor patterns are used to extract the stegan-
alytic features. Eigenvalues are obtained from each tensor,
and nonlinear mappings and several statistical moments
are subsequently calculated. The proposed NVT+ features
achieve good detection performance against several state-of-
the-art steganographic methods under various conditions. It
is worth mentioning that the proposed scheme NVT+ has a
maximum 22% improvement of the detection rate on the
Princeton ModelNet dataset. In the future, we would like to
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Fig. 6: Detection performance of YANG208, LFS52, LFS64, LFS76,
ELFS124 and our proposed NVT+ on detecting each steganography
under varying relative payload on the PSB dataset. (a) Chao method.
(b) VND method. (c) Li method.
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Fig. 7: Detection performance of YANG208, LFS52, LFS64, LFS76,
ELFS124 and our proposed NVT+ on detecting each steganography
under varying relative payload on the PMN dataset. (a) Chao method.
(b) VND method. (c) Li method.
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(a) (b)

Fig. 8: 3D mesh objects used in the steganalytic training and testing phases. (a) The PSB dataset. (b) The PMN dataset.

Fig. 9: Structure of meshes.

investigate the mesh smoothing operation to extract more
discriminant features. In addition, designing a better normal
voting tensor is another part of our future work.
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