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Paillier Cryptosystem based Mean Value Computation

for Encrypted Domain Image Processing Operations
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Science and Technology of China, China

Due to its large storage facility and high-end computing capability, cloud computing has received great atten-

tion as a huge amount of personal multimedia data and computationally expensive tasks can be outsourced

to the cloud. However, the cloud being third-party semi-trusted, is prone to information leakage, raising pri-

vacy risks. Signal processing in the encrypted domain has emerged as a new research paradigm on privacy-

preserving processing over outsourced data by semi-trusted cloud. In this article, we propose a solution for

non-integer mean value computation in the homomorphic encrypted domain without any interactive pro-

tocol between the client and the service provider. Using the proposed solution, various image processing

operations, such as local smoothing filter, un-sharp masking, and histogram equalization, can be performed

in the encrypted domain at the cloud server without any privacy concerns. Our experimental results from

standard test images reveal that these image processing operations can be performed without pre-processing,

without client-server interactive protocol, and without any error between the encrypted domain and the plain

domain.
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1 INTRODUCTION

Cloud computing is an advanced information technology (IT) infrastructure that provides on-

demand ubiquitous access to a pool of configurable computing resources—from high-end pro-

cessing power, storage, networking, and artificial intelligence to natural language processing. In

recent years, cloud computing has gained tremendous popularity and growth in business as well

as in academia. Reliability, economy, scalability, productivity, speed, and performance are some of
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the advantages that motivated individuals and organizations to outsource their huge amount of

sensitive private data and computationally expensive tasks onto cloud servers. Another benefit of

using cloud computing is that organizations can avoid the cost of installation of IT infrastructure,

updating operating systems, decommissioning, and disposing of software and hardware when it

is out of date (Alhamazani et al. 2015).

Software-as-a-Service (SaaS) is an important service model among the three cloud computing

models defined by the National Institute of Standards and Technology (NIST) (Mell et al. 2011).

SaaS allows clients to use cloud’s applications on demand. Clients can access these applications

using thin client interfaces such as web-based email or mobile terminals without knowing or man-

aging the underlying infrastructure such as servers, storage, operating systems or network. In re-

cent years, various photo editing and image enhancement applications, such as Pixlr photo editor

(PIXLR n.d.) and Adobe Creative Cloud (AdobeCreativeCloud n.d.), have been using the SaaS ser-

vices (Ziad et al. 2016). Clients can upload private photographs from their personal devices and

can apply different image enhancement tools online. However, while enjoying the online image

processing services, outsourcing of private photographs raises serious privacy risks as the cloud

server can leak personal information of clients (Lathey and Atrey 2015; Ziad et al. 2016). Most re-

cently, the leakage of private photographs of several Hollywood actresses from the iCloud (Shah

et al. 2018) is an example of the privacy breach at the cloud. A straightforward solution to this

problem is to encrypt private photographs at the client end with conventional encryption algo-

rithm, such as Advance Encryption Standard (AES) (Pub 2001), before outsourcing it to the cloud.

However, the encrypted photographs are first decrypted before any processing and then again

encrypted after processing. This solution is applicable when encryption protects private content

against attackers while the client and the cloud sever trust each other. Consequently, conventional

encryption algorithms are not suited to privacy-preserving cloud-based paradigm as they present

challenges for secure signal processing (SSP).

With the increasing demand for protecting outsourced content, SSP has emerged as privacy-

preserving signal processing field. SSP allows cloud severs to perform signal processing operations

directly on encrypted content without decrypting it (Lagendijk et al. 2013; Troncoso-Pastoriza and

Perez-Gonzalez 2013). Recently, various image transforms in the homomorphic encrypted domain

have been proposed (Bianchi et al. 2009a, 2009b; Zheng and Huang 2012, 2013). Bianchi et al. pro-

posed the implementation of discrete cosine transform (DCT) in Bianchi et al. (2009a) and the

implementation of disctete Fourier transform (DFT) in Bianchi et al. (2009b) in the encrypted do-

main with Pailler cryptosystem (Paillier 1999). Zheng and Huang implemented discrete wavelet

transform (DWT) in Zheng and Huang (2013) and Walsh Hadamard transform (WHT) in Zheng

and Huang (2012) with Paillier cryptosystem. Most recently, privacy preserving image processing

operations in the encrypted domain with homomorphic public key cryptosystem have emerged

(Chen et al. 2018; Mohanty et al. 2016; Rajput and Raman 2018; Ziad et al. 2016). In Mohanty

et al. (2016), a method of image scaling and cropping is proposed in the encrypted domain with

modified Paillier cryptosystem. This method used bilinear interpolation for scaling. First, bilin-

ear interpolation is computed in the plain domain, then image is divided into tiles and image

tiles are encrypted. Encrypted domain image scaling is performed at the cloud server using the

multiplication and addition homomorphic properties. Floating point numbers involved in bilinear

interpolation are multiplied by a large scaling factor and then rounded to integers to be used with

Paillier cryptosystem. This scaling and rounding introduced errors between the plain domain and

encrypted domain scaling operations. Later on, various image processing operations such as spa-

tial filtering, edge sharpening and histogram equalization were proposed by Ziad et al. (2016) in

the homomorphic encrypted domain with Paillier cryptosystem. Ziad et al. represented floating

point numbers in the encrypted domain by encrypted mantissa and un-encrypted exponent. The
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division operation in smoothing filter and histogram equalization is realized by a quantization

encoding function. Because of the use of quantization encoding function, the method introduced

errors between the encrypted domain operations and plain domain operations for local smooth-

ing filtering and edge sharpening. Privacy preserving color transfer in the encrypted domain with

Paillier cryptosystem is proposed in Rajput and Raman (2018). The client encrypts the individual

channels of the reference image and color transformation values of the target image and send them

to cloud server where color transformation is achieved using the homomorphic properties. In Chen

et al. (2018), edge detection and image segmentation is proposed in the encrypted domain using

Paillier cryptosystem and garbled circuit. The client sends the encrypted image to cloud server

where encrypted domain Gaussian filter is applied to the encrypted image to get a smoothed im-

age in the encrypted domain and then encrypted domain Sobel filter is used to detect the edges in

the encrypted domain. Gaussian and Sobel filters are approximated to their discrete versions to be

implemented with Paillier cryptosystem. Garbled circuit is used for threshold comparison in the

encrypted domain for obtaining edges without decrypting the image.

Recently, some privacy preserving image processing methods based on Shamir’s Secret Sharing

(SSS) scheme have been proposed (Lathey and Atrey 2015; Mohanty et al. 2013; Singh et al. 2018).

Mohanty et al. (2013) proposed image scaling and cropping using secret image sharing. Bilinear

interpolation is used for scaling images in encrypted domain. The same method as used in Mohanty

et al. (2016) for converting floating point numbers to integers is adopted in Mohanty et al. (2013)

to implement bilinear interpolation in the encrypted domain. Lathey and Atrey (2015) proposed a

method to perform several image processing operations such as spatial filtering, anti-aliasing, edge

detection, contrast enhancement, and de-hazing. The original image is encrypted using SSS and

the secret shares are distributed among multiple servers in the cloud. Lathey and Atrey’s method

requires pre-processing of original image at the client side necessary to perform division operation

involved in different processing operations at the cloud side. The method is theoretically secure

only if the encrypted domain processing operations are performed using n servers with no more

than k are colluding. The requirement of non-colluding servers makes this method impractical.

Also, the results of the encrypted domain operations performed by this method differs from the

results of the plain domain operations. Another privacy preserving method for image processing

operations based on SSS and permutation ordered binary (POB) numbers is proposed by Singh

et al. (2018). The client creates different shares of the original image using SSS and then further

creates two shares for every shares using the POB. The resultant shares are then transformed into

frequency domain using the Fourier transform and different low pass and high pass filters are

applied in the frequency domain. The integration of POB numbers with SSS enhanced the security

of the method and also allowed the method to perform processing directly on the encrypted shares.

However, the enhanced security is achieved at the expense of increased complexity and overhead.

Furthermore, the method is not error free and introduces errors for some processing operations

between the encrypted domain and plain domain.

In this article, a method to perform privacy preserving image processing operations in the homo-

morphic encrypted domain with Paillier cryptosystem is proposed. All the previously mentioned

methods involve pre-processing or encoding function to perform processing on encrypted images.

Furthermore, their encrypted domain processing operations differ from the plain domain process-

ing operations with some errors. We propose a method for non-integer mean value computation

in the encrypted domain with Paillier cryptosystem without any pre-processing or interactive

protocol between the client and the cloud server. Mean value computation involves division oper-

ation, which may result in a non-integer value. In this article, a solution to compute the division

operation in the homomorphic encrypted domain is proposed. Furthermore, we perform certain

image processing operations such as local smoothing filtering, un-sharp masking and histogram
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equalization in the encrypted domain, which involve the division operation. Our experimental

results from standard test images reveal that these operations can be performed without errors

between the encrypted and plain domain, which demonstrates the effectiveness of our method.

The rest of the article is organized as follows. Section 2 briefly describes preliminaries, including

homomorphic Paillier cryptosystem, its properties, lattice theory, and basis reduction. Mean value

computation in the encrypted domain is elaborated in Section 3. Section 4 is dedicated to the

applications of encrypted domain mean in image processing. Experimental results, computational

complexity, security analysis, and comparisons are presented in Section 5. Finally, the conclusion

is drawn in Section 6.

2 PRELIMINARIES

2.1 Homomorphic Paillier Cryptosystem

The Paillier cryptosystem, which holds both homomorphic and probabilistic properties

(Goldwasser and Micali 1984), is based on the computational hardness of N th residue modulo N 2

of a number. In this article, we adopt Paillier cryptosystem for image encryption and decryption.

We direct the readers to Paillier (1999) for a complete mathematical description of the Paillier

cryptosystem. Here, we discuss only key setup, encryption and decryption.

Key setup: Select two large prime integers p and q and N = p · q, where N is the modulus of

the cryptosystem. Let ZN be the set of integers modulo N , Z ∗N is a subset of ZN such that the

elements of Z ∗N are relatively prime to N , ZN 2 be the set of integers modulo N 2 and Z ∗
N 2 is a subset

of ZN 2 relatively prime to N 2. Randomly select an integer д from Z ∗
N 2 . д and N together makes the

public key. At the receiver side, given p and q, the receiver first computes λ = lcm(p − 1,q − 1),

where lcm stands for least common multiple, and then computes k =
(дλ mod N 2−1)

N
. The modular

multiplicative inverse of k denoted by μ is computed by Equation (1):

μ = k−1 mod N . (1)

λ is the private key.

Encryption: Let m ∈ ZN is the plaintext, c ∈ ZN 2 is the corresponding ciphertext. Randomly

select r from Z ∗N , then encryption is computed as

c = E[m, r ] = дm · rN mod N 2. (2)

Decryption: Given the private key and ciphertext, decryption is computed as

D[E[m, r ]] =m =
(cλ mod N 2 − 1)

N
· μ mod N . (3)

2.2 Homomorphic Properties of the Paillier Cryptosystem

The Paillier cryptosystem makes use of Carmichael’s Theorem (Carmichael 1913) and has several

interesting homomorphic properties, which are given as follows:

D[E[m1, r1] · E[m2, r2]] mod N 2] =m1 +m2 mod N , (4)

D[E[m1, r1] · E[m2, r2]−1] mod N 2] =m1 −m2 mod N , (5)

D[E[m, r ]]k mod N 2] = k · m mod N , (6)

D[E[m, r ]k−1

mod N 2] =
m

k
mod N , (7)

D[[E[m] · PN ] mod N 2] =m mod N , (8)
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where k−1 is the modular multiplicative inverse of k and P is an integer relatively prime to N . The

property given in Equation (8) is termed as self-blinding property. Although the homomorphic

Paillier cryptosystem does not allow division operation on encrypted data, because division can

lead to float results, we are still able to perform division on encrypted data when the divisor k is a

plain value. The property in Equation (7) holds if

(1) The modular multiplicative inverse of k exists, i.e., gcd(k,N ) = 1;

(2) m is perfectly divisible by k, i.e., the quotient after division is an integer.

Previous methods cannot perform non-integer mean value computation in encrypted domain

because of the limitations of cryptosystems. In this article, we propose a method to perform non-

integer mean computation using Equations (4) and (7). We can still obtain the correct result from

Equation (7) even ifm is not perfectly divisible by k , which will be discussed in Section 3.

2.3 Lattice and Basis Reduction

A lattice is a discrete set of regular arrangement of points in Rm , where R is the set of real numbers

and m represents dimension. A vector space is generated by vectors such that the vectors can be

added together and multiplied by real numbers. However, lattice is a discrete subgroup of Rm

generated by a linear combination of its vectors in integer coefficients.

Lattices are used in numerous applications. Due to the hard computational problems associated

with lattices, the most prominent application of lattices is in modern cryptosystems. Some of these

cryptosystems include the LWE cryptosystems (Regev 2009), Gentry’s fully homomorphic cryp-

tosystem (Gentry and Halevi 2011), and the NTRU cryptosystem (Hoffstein et al. 1998). Lattices are

used to break public key cryptosystems such as the cryptanalysis of RSA and Knapsack cryptosys-

tem using lattice attacks. The bit security of some cryptosystems can be analyzed using lattices,

for example, using the hidden number problem to analyze the bit security of Diffie-Hellman key

exchange.

Let {b1,b2, . . . ,bn } ∈ Rm be a set of n linearly independent vectors, the linear combination of

{b1,b2, . . . ,bn } generates the lattice L as

L (b1,b2, . . . ,bn ) = {a1b1 + a2b2 + · · · + anbb } =
n∑

i=1

aibi , (9)

where ai ∈ Z. The vectors {b1,b2, . . . ,bn } that generates L are called a lattice basis.

Basis reduction is the problem of finding a basis with short and almost orthogonal vectors.

Basis reduction is proved invaluable in the fields of cryptology (Nguyen and Stern 2001) and many

other fields of mathematics and computer science. Lenstra et al. (1982) used lattice reduction to

decompose a polynomial with rational coefficients to irreducible factors. Ritter and Rössner (1997)

used lattice reduction for factoring large composite numbers. Poupard and Stern (2000) proposed

a recovery system for RSA keys using lattice reduction and rationals. The idea of lattice reduction

in R2 was first presented by Lagrange (1775) and later by Gauss (1966), but combined it is called

Lagrange-Gauss basis reduction algorithm. Algorithm 1 illustrates the basis reduction process of

Lagrange-Gauss algorithm. In Algorithm 1, ‖ · ‖ is the Euclidean norm (�2 norm), 〈b,b〉 is the inner

product, and �·� is a function that rounds toward the nearest integer. We propose a more efficient

basis reduction algorithm using the extended Euclidean algorithm, which will be described in

Section 3.

3 MEAN VALUE COMPUTATION BASED ON PAILLIER CRYPTOSYSTEM

The mean of a discrete set of numbers is the central value. The mean of a set of numbers

v1,v2, . . . ,vk , denoted by m̄, is the sum of the values divided by the total number of elements
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ALGORITHM 1: Lagrange-Gauss lattice reduction algorithm

Input: Basis b1,b2 ∈ Z 2 of lattice L
Output: Reduced basis b1,b2 ∈ Z 2 of lattice L

1: B1 = ‖b1‖2
2: μ = � 〈b1,b2〉

B1
�

3: b2 = b2 − μ · b1

4: B2 = ‖b2‖2
5: while B2 < B1 do

6: Swap b1 and b2

7: B1 = B2

8: μ = � 〈b1,b2〉
B1
�

9: b2 = b2 − μ · b1

10: B2 = ‖b2‖2
11: end while

12: return (b1,b2)

in the set:

m̄ =
1

k
·

k∑

i=1

vi =
v1 +v2 + · · · +vk

k
. (10)

The mean m̄ may result in integer or float value. Using the homomorphic properties of Paillier

cryptosystem given in Equations (4) and (7), the mean can be computed in the encrypted domain

as

E[m̄] = ��
k∏

i=1

E[vi ] mod N 2��
k−1 mod N

mod N 2. (11)

It is worth mentioning to establish the fact that the modular multiplicative inverse of k and the

associated multiples always exist given the modulus of the Paillier cryptosystem N . The modular

multiplicative inverse of a numberx exists if the number is relatively prime toN , i.e., gcd(x ,N ) = 1.

According to the Euler’s totient functionϕ, the set of integers that are relatively prime toN is given

as

ϕ (N ) = ϕ (p) · ϕ (q) = S, 1 ≤ S ≤ N − 1 (12)

and

S ∈ Z+ − {p,q,pq,ap,aq,apq},

where Z+ is the set of positive integers and a ∈ Z+. From Equation (12), it is concluded that if p
or q is not equal to k then the relative prime set will contain k and its multiples. Usually, p and

q are selected large enough to make N 1,024-bits long, which is a necessary security requirement

for the protection of the cryptosystem against attacks. Hence, the modular multiplicative inverse

of k and its multiples will always exist.

The encrypted domain mean, computed using Equation (11), when decrypted may result in ei-

ther the correct mean or large integer depending on whether the plain domain mean is an integer

or a float. Let us use Equation (11) to compute the mean of two sets of numbers s1 = {2, 3, 5, 6}
and s2 = {2, 4, 5, 6} in the encrypted domain as illustrated in Figures 1(a) and 1(b). For brevity,

we use small integers for computing the public key (N = 117852727) and fixed random number r
for encryption. Figure 1(a) illustrates encrypted domain mean value computation when the corre-

sponding plain domain mean is an integer while Figure 1(b) demonstrates mean value computation
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Fig. 1. Encrypted domain mean value calculation. (a) When plain domain mean is an integer. (b) When plain

domain mean is a float.

when the corresponding plain domain mean is a float. Note that in Figure 1(b) the decrypted mean

value is a large integer, which does not make sense. From mean value computation using Equa-

tion (11), it is concluded that non-integer mean value calculation in the encrypted domain will

lead to large integer upon decryption. The main contribution of this work is to reduce the large

integer value to the correct float mean value.

ALGORITHM 2: Pixel value reduction based on modified extended Euclidean algorithm

INPUT: N , U
OUTPUT: Reduced U

1: [u1,u2] = [0,N ]

2: [v1,v2] = [1,U ]

3: q = �u2/v2�
4: [t1, t2] = [u1,u2] − q · [v1,v2]

5: [u1,u2] = [v1,v2]

6: [v1,v2] = [t1, t2]

7: while u2 >
√
N do

8: q = �u2/v2�
9: [t1, t2] = [u1,u2] − q · [v1,v2]

10: [u1,u2] = [v1,v2]

11: [v1,v2] = [t1, t2]

12: end while

13: return U = �u2/u1�

The large integer value in Figure 1(b) does represent the mean value. The large integer value

can be reduced to the correct mean value using the two-dimensional lattice theory as mentioned

in Section 2.3. Reducing large integer value to the correct mean value in the range [0, 255] (in

the case of images) is a two-dimensional lattice reduction problem and Lagrange-Gauss lattice

reduction algorithm can be used for reducing large pixel values to optimal values. Here, we propose

a more efficient algorithm using extended Euclidean algorithm. We modify the extended Euclidean

algorithm to take vector inputs and reduce these vectors to short orthogonal vectors. We refer

the readers to Galbraith (2012) for a detailed understanding of the extended Euclidean algorithm.

We consider the modulus of Paillier cryptosystem N and large integer value U as independent
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Table 1. Step-by-step Results of the Modified

Extended Euclidean Algorithm

Step (u1,u2) (v1,v2) q
1 (1, 29,463,186) (−3, 29,463,169) 3

2 (−3, 29,463,169) (4, 17) 1

3 (4, 17) (−6, 932, 511, 10) 1,733,127

points in a two-dimensional lattice space L. Given N and U , it can be deduced that the vectors

(0,N ) and (1,U ) form a basis for the lattice L. These two basis vectors can be reduced for optimal

values. Algorithm 2 adapts the extended Euclidean algorithm for computing the reduced value of

U . Algorithm 2 starts with first taking the basis vectors (0,N ) and (1,U ) and computes the integer

quotient q. In the first round, the algorithm computes the reduced vector (t1, t2), and then updates

u1 by v1, u2 by v2, v1 by t1 and v2 by t2. The algorithm goes further if u2 >
√
N until we get the

reduced basis vectors (u1,u2) and (v1,v2) in which case u2 <
√
N . Finally the correct integer mean

value is computed using step 13 of the algorithm.

Example: To facilitate understanding of the reduction process, we elaborate it with an

example and consider reducing the large integer value illustrated in Figure 1(b). For the

brevity of demonstration, we use small prime numbers p = 10,853,q = 10,859 and N = p · q =
117,852,727. According to Algorithm 2, we let u1 = 0,u2 = 117,852,727 and v1 = 1,v2 = 29,463,186

and
√
N =
√

117,852,727 ≈ 10,856. Compute q = �u2/v2� = 3 and t1 = u1 − q · v1 = −3, t2 = u2 −
q · v2 = 29,463,169, then update u1 = v1 = 1, u2 = v2 = 29,463,186 and v1 = t1 = −3, v2 = t2 =

29,463,169. Since u2 >
√
N , we compute q = �u2/v2� = 1 and t1 = u1 − q · v1 = 4, t2 = u2 − q · v2 =

17, then updateu1 = v1 = −3,u2 = v2 = 29,463,169 andv1 = t1 = 4,v2 = t2 = 17. Again, sinceu2 >√
N , we repeat the process and compute q = �u2/v2� = 1,733,127 and t1 = u1 − q · v1 = −6,932,511,

t2 = u2 − q · v2 = 10, then update u1 = v1 = 4, u2 = v2 = 17 andv1 = t1 = −6,932,511,v2 = t2 = 10.

Since nowu2 <
√
N , the algorithm halts and returns the reduced valueu2/u1 = 17/4 = 4.25. The in-

teger mean value can be obtained by taking f loor of the reduced float value. Table 1 shows the steps

of the modified extended Euclidean algorithm and corresponding values of u1, u2, v1, v2, and q.

The non-integer mean value can also be computed with a straightforward method by perform-

ing the addition in the encrypted domain at the cloud side and performing the division after de-

cryption at the client side. This method avoids costly computations in the encrypted domain but

this is unrealistic in some applications. First, in this method the client and the cloud server will

require multiple rounds of interaction for exchanging the denominator information. Second, in

some applications the cloud server may not disclose its processing algorithm to the client. In such

applications the client may not know the denominator to perform division after decryption.

4 APPLICATIONS IN IMAGE PROCESSING IN ENCRYPTED DOMAIN

In this section, we present various low-level image processing operations performed in the en-

crypted domain. These secure image processing operations are described in the following subsec-

tions. Figure 2 illustrates a general architecture of the secure image processing operations in the

cloud.

4.1 Local Smoothing Filter

Smoothing is essential in many image processing applications. As smoothing minimizes the effect

of sharp changes in color levels, it is mainly used for noise reduction, removal of false contour, and
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Fig. 2. General architecture of the secure image processing operations in the cloud.

removal of irrelevant details from images, especially when the object to be removed is smaller in

size than the filter size.

Local smoothing filter (also called averaging filter) replaces every pixel in an image by the inte-

ger average of the pixel values in the neighborhood defined by the filter mask. Let f (x ,y) of size

H ×W be the input image containing sharp pixel transitions and w (s, t ) of size h ×w be the filter

mask, where h = 2a + 1 and w = 2b + 1 and a and b are positive integers. The resultant smoothed

image f̄ (x ,y) is obtained by Equation (13):

f̄ (x ,y) =
1

h ×w ·
a∑

s=−a

b∑

t=−b

w (s, t ) f (x + s,y + t ), (13)

where a = (h − 1)/ and b = (w − 1)/2.

Smoothing filter can be performed in the encrypted domain using the homomorphic properties

of Paillier cryptosystem. Equation (13) can be implemented in the encrypted domain using Equa-

tions (4) and (7). For brevity, we express smoothing filter operation for the smallest filter size of

3 × 3. For a mask of size 3 × 3, Equation (13) reduces to an average of 9 pixels in the neighborhood

that is expressed in the encrypted domain as

E[ f̄ (x ,y)] =

⎡⎢⎢⎢⎢⎢⎣
3∏

x=1

3∏

y=1

E[f (x ,y)] mod N 2

⎤⎥⎥⎥⎥⎥⎦
9−1 mod N

mod N 2, (14)

where 9−1 mod N is the modular multiplicative inverse of 9. The filter mask moves from pixel to

pixel and computes the average of the neighborhood and replaces the center pixel value by the

average value. When all the pixels in the image are processed, the resultant processed encrypted

image is sent back to the client.

After receiving the processed encrypted image, the client decrypts the image with his private

key. However, the directly decrypted image contains large pixel values outside the intensity range

[0, 255]. This is because smoothing filter involve division operation that may result in float value

as mentioned in Section 3. Figure 3 illustrates 7 × 7 pixels of directly decrypted smoothed Lena
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Fig. 3. 7 × 7 pixels of directly decrypted Lena image. Pixels values in the range [0, 255] are highlighted by

white color and large pixels values outside the range [0, 255] are highlighted by gray color.

Fig. 4. 7 × 7 reduced pixels values using modified extended Euclidean algorithm.

image. Algorithm 2 is used to reduce the large integer values of Figure 3 to the correct integer

mean values. Figure 4 demonstrates the reduced 7 × 7 pixels values.

4.2 Sharpening Using Un-sharp Masking

Un-sharp masking is the process of subtracting a smoothed version of an image from the image

itself. This method has long been used in the publishing industry for obtaining sharp images. Un-

sharp masking in the plain domain can be expressed as

fus (x ,y) = f (x ,y) − f̄ (x ,y), (15)

where fus (x ,y) is the unsharp masked image. Using Equation (14) and modular multiplicative

inverse property, Equation (15) can be implemented in the encrypted domain as

E[fus (x ,y)] = E[f (x ,y)] ∗ E[ f̄ (x ,y)]−1 mod N 2. (16)

The directly decrypted image obtained after the application of Equation (16) is darker than de-

sired. This is because the areas with slow varying gray levels in the original and smoothed image

are identical and the subtraction operation will tend to produce dark areas with low gray levels

while edge lines and other discontinuities are significantly sharpened. However, we can obtain a

sharpened image with preserved features by adding the original image with the un-sharp masked

image as

E[fs (x ,y)] = E[f (x ,y)] ∗ E[fus (x ,y)] mod N 2, (17)

where fs (x ,y) is the resultant sharp image. The encrypted sharp imageE[fs (x ,y)] when decrypted

by the client may give rise to large pixel values due to the non-integer mean value involved in the

smoothing process. The decrypted large pixel values and modulus N can be considered as lattice

points and Algorithm 2 can be used to reduce large pixel values to optimal pixel values.

4.3 Histogram Equalization

Histogram of an image is the representation of the number of pixels as a function of their intensity

levels. Histogram equalization is a common image processing operation used to adjust the contrast

of an image. The aim is to use a transformation function to uniformly distribute the intensity levels

over the whole intensity level range. Let f (x ,y) be an image of size H ×W and [0,L − 1] be the

intensity range of the image, then histogram of f (x ,y) is defined as

h(rk ) = nk ,k = 0, 1, . . . ,L − 1, (18)
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Fig. 5. Test images. (a) Lena, (b) Airplane, (c) Pirate, (d) Lake.

where rk is the kth intensity level and nk is the number of pixels at the kth intensity level. Let

r be the intensity level of the image to be transformed and s be the intensity level of the trans-

formed image, then histogram equalization is expressed as a transformation function as given in

Equation (19):

sk = T (rk ) =
(L − 1)

∑k
i=0 (ni )

HW
. (19)

Histogram equalization given in Equation (19) can be implemented in the encrypted domain.

The client computes the histogram of the original image using Equation (18), then encrypts the

computed histogram and sends it to the cloud server. The cloud server, without knowing anything

about the encrypted histogram statistics, implements Equation (19) in the encrypted domain using

the properties of the Paillier cryptosystem as

E[sk ] =

⎡⎢⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

k∏

i=0

ni

⎤⎥⎥⎥⎥⎦
(L−1)

mod N 2

⎤⎥⎥⎥⎥⎥⎦
(HW )−1 mod N

mod N 2. (20)

The plain domain transformation function given in Equation (19) involves division by HW . This

division operation may result in float values. Because of the division operation, the encrypted

domain transformation function may give rise to large values when it is decrypted by the client.

Thanks to the lattice theory and basis reduction algorithm, modulus N and decrypted equalized

histogram values can be considered as lattice points. Algorithm 2 can be used to reduce decrypted

equalized histogram values to optimal values. After obtaining the optimal equalized histogram,

the client can apply it to the input image to obtain a contrast adjusted image.

5 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, experiments results are demonstrated to evaluate the performance and effectiveness

of the proposed processing operations. Fifty gray-scale images sized 512 × 512 are selected from

the public CVG-UGR database1 for experiments. We show experimental results for only four images

Lena, Airplane, Pirate, and Lake. These images are illustrated in Figure 5. All the implementation

programs are developed in the experimental environment of MATLAB2016a under 64-bit desktop

with Intel(R) Core i7 CPU @3.60 and 8GB of RAM. The modulus of the Paillier cryptosystem is

selected 1,024 bits long to ensure minimum security requirement of Paillier cryptosystem.

Figure 6 illustrates experimental results for 3 × 3 smoothing filter in the encrypted domain and

plain domain for Lena image. Figure 6(a) is the original Lena image, Figure 6(b) is the encrypted

image, Figure 6(c) is the encrypted domain smoothed image, Figure 6(d) is the directly decrypted

restored image, and Figure 6(e) is the plain domain smoothed image. It can be observed that Fig-

ures 6(d) and 6(e) are visually exactly the same images. Experimental results for various sizes

1http://decsai.ugr.es/cvg/dbimagenes/.
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Fig. 6. Experimental results of smoothing filter of size 3 × 3 for Lena image. (a) Original Lena image,

(b) encrypted image, (c) encrypted domain smoothed image, (d) directly decrypted restored image, (e) plain

domain smoothed image.

Fig. 7. Results of encrypted domain smoothing filter of various sizes. (a, e, i) original images, (b, f, j) results

of 3 × 3 filter, (c, g, k) results of 5 × 5 filter, and (d, h, l) results of 9 × 9 filter.

smoothing filters in the encrypted domain for other test images are demonstrated in Figure 7. A

comparison between the PSNR of the images smoothed in the encrypted domain and the plain

domain is illustrated in Table 2. Clearly, the PSNR for the processed images in the encrypted and

plain domain is the same with no error.

Experimental results for un-sharp masking in the encrypted and plain domain for Lena image are

shown in Figure 8. From left to right is the original image, encrypted image, encrypted domain un-

sharp maked image (refer to Equation (16)), encrypted domain sharp image (refer to Equation (17)),

directly decrypted sharp image and plain domain sharp image. Visual results of encrypted domain
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Table 2. Comparison of PSNR of Images Smoothed in the Encrypted Domain

and Plain Domain for Various Filter Sizes

Test images
Encrypted domain Plain domain

(3 × 3) (5 × 5) (9 × 9) (3 × 3) (5 × 5) (9 × 9)
Lena 31.879 28.253 24.997 31.879 28.253 24.997

Airplane 30.954 26.653 23.002 30.954 26.653 23.002

Pirate 28.020 24.975 22.390 28.020 24.975 22.390

Lake 29.622 25.938 22.622 29.622 25.938 22.622

Fig. 8. Experimental results of un-sharp masking using 3 × 3 smoothing filter size in the encrypted domain

for Lena image. (a) Original Lena image, (b) encrypted image, (c) encrypted domain un-sharp masked image,

(d) encrypted domain sharp image, (e) directly decrypted restored sharped image, (f) plain domain sharp

image.

Table 3. Comparison of PSNR for Un-sharp Masking

in the Encrypted and Plain Domain

Test images Encrypted domain Plain domain

Lena 31.879 31.879

Airplane 30.954 30.954

Pirate 28.020 28.020

Lake 29.622 29.622

un-sharp masking for other test images are illustrated in Figure 9. Table 3 illustrates a comparison

between the PSNR of encrypted domain sharpened images and plain domain sharpened images.

Finally, visual results for encrypted domain histogram equalization and the plain domain his-

togram equalization are shown in Figure 10. Table 4 presents PSNR values for encrypted domain

histogram equalized images and plain domain histogram equalized images.

5.1 Complexity Analysis

In this section, we analyze the complexity of the proposed method. In Figure 2, there are two enti-

ties: client and cloud server. The client performs Paillier encryption, decryption, and lattice basis

reduction, whereas the cloud performs different image processing operations in the encrypted

domain. We analyze the complexities at the client side and at the cloud side, respectively.

5.1.1 Client Side Complexity. Paillier encryption as given in Equation (2) involves modular

exponentiations. The complexity of дm mod N 2 term is O (loд(N )2 · loд(m)) and the complexity

of rN mod N 2 term is O (loд(N )2 · loд(N )) = O (loд(N )3). The total complexity of encryption

is O (loд(N )2 · loд(m)) +O (loд(N )3). The complexity of Paillier encryption can be significantly
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Fig. 9. Image sharpening using un-sharp masking in the encrypted domain. (a, d, g) original images, (b, e,

h) un-sharp masked images, (c, f, i) sharp images.

reduced if we take д = 1 + N . In this case, the encryption given in Equation (2) modifies to

c = E[m, r ] = (1 +mN ) · rN mod N 2. (21)

We can pre-compute the rN mod N 2 term, since the plaintext m is not required. The real

encryption is now computing the (1 +mN ) term, since mod N 2 has no effect if m < N . The

(1 +mN ) term costs O (loд(N ) · loд(m)). Hence, the computational complexity of encryption is

the complexity of (1 +mN ) term multiplied by the complexity of the rN mod N 2 term, which

ends up to O (loд(N ) · loд(m)).
According to Paillier (1999), the most expensive operation in the decryption is cλ , because μ

contains constant terms and can be pre-computed. Therefore, the computational complexity of

decryption is O (loд(N )3) (Paillier 1999).

The computational complexity of encryption can be lowered down to five modular multiplica-

tions by adopting the fast variant of the Paillier encryption proposed in Jost et al. (2015). The fast

variant of Paillier encryption can be used to replace Equation (2) as

c = E[m, r ] = дm · (дN )r mod N 2. (22)

To efficiently compute the encryption using the above equation, the idea is to pre-compute дm

separately and save it in a table. For an 8-bit image and N = 1,024-bit security requires 28 × 2 ×
1,024 = 219 bits that is 64 kilobytes. The noise part (дN )r can also be pre-computed. According to

the method in Jost et al. (2015), 216 random (дN )r are pre-computed and saved in another table,

which requires 216 × 2 × 1,024 = 227 that is 16 megabytes. The ciphertext c can be computed by
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Fig. 10. Histogram equalization in the encrypted and plain domain. (a–d) original images, (e–h) encrypted

domain histogram equalized images, (i–l) plain domain histogram equalized images.

Table 4. Comparison of PSNR for Histogram Equalization

in the Encrypted and Plain Domain

Test images Encrypted domain Plain domain

Lena 19.469 19.469

Airplane 11.864 11.864

Pirate 13.671 13.671

Lake 24.406 24.406

selecting дm from the first table and selecting five random values of (дN )r from the second table

and multiply these values. Hence, encryption can be performed with five modular multiplications.

Now let us compute the complexity of lattice basis reduction of Algorithm 2. The computational

complexity of lattice basis reduction is equal to the total number of iterations used to reduce the

basis vectors multiplied by the cost of iterations. According to the Lame’s theorem (Knuth 1981)

and experimental analysis, the number of iterations areO (loд(v )) bounded by
√
N , where v is the

second basis vector. Each iteration of Algorithm 2 computes the quotient q. The computational

complexity of dividing a number is O (loд(l + 1)), where l is the bit length of the quotient (Knuth

1981). Hence, the complexity of Algorithm 2 is O (loд(v )) ·O (loд(l + 1)). The total complexity at

the client side including the complexities of encryption, decryption and lattice reduction is the

summation of their complexities O (loд(N ) · loд(m)) +O (loд(N )3) +O (loд(v )) ·O (loд(l + 1)).
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Table 5. Computational Complexity at Client Side

Operation Computational complexity

Paillier encryption O (loд(N ) · loд(m))
Paillier decryption O (loд(N )3)
Lattice reduction O (loд(v )) ·O (loд(l + 1))

Data expansion with Paillier cryptosystem is inevitable. Paillier cryptosystem maps the size of

plaintext to the range [0,N ] where N is the modulus of the cryptosystem. The size of ciphertext

space is square of the size of the plaintext space, i.e., the ciphertext is bounded by N 2. The data

transmission from the client to the cloud is 2|N |, where |N | is the bit-length of N . One solution for

reducing the expansion factor of 2|N | is by adopting the Damgard-Jurik cryptosystem (Damgård

et al. 2010), which is a generalization of the Paillier cryptosystem. In the case of an image consisting

of n pixels, the data transmission from the client to the cloud is 2|N | × n. When 1,024-bit security

level is adopted (N = 1,024 bits) then the ciphertext is represented by 2048 bits. In the case of 8-bit

image the expansion ratio is 2,048/8 = 256. This expansion ratio can be significantly reduced using

composite signal representation proposed by Bianchi et al. (2010). Composite signal representation

divides the message sequence into R l-bit messages, packs them together into M messages and

encrypt them as unique messages. For mathematical details of composite signal representation

refer to Bianchi et al. (2010).

5.1.2 Cloud Side Complexity. The cloud server performs image processing operations in the

encrypted domain. We estimate the complexities of encrypted domain smoothing filter, un-sharp

masking and histogram equalization.

The smoothing filter is realized in the encrypted domain using Equation (14), which consists

of modular multiplications and exponentiation. For an image with n pixels and filter mask of size

s × s , the total number of multiplications required to perform smoothing in the encrypted domain

are n × s2, that is complexity ofO (loд(n)). The exponentiation is a fixed value in each computation

and hence its complexity is constant. Consequently, the smoothing filter in the encrypted domain

requires O (loд(n)) operations.

Un-sharp masking in the encrypted domain give in Equation (16) involves three operations: en-

crypted domain smoothing filter, modular multiplicative inverse and multiplication with the origi-

nal image. As computed earlier, the complexity of encrypted domain smoothing filter isO (loд(n)).
The modular multiplicative inverse is computed using the extended Euclidean algorithm. The com-

plexity of extended Euclidean algorithm is O (loд(N )2), where N is the modulus of the cryptosys-

tem. For an image consisting of n pixels, the complexity of finding the modular multiplicative

inverse of all pixels is, therefore, n ·O (loд(N )2). Finally, the complexity of multiplying the inverse

image and the original image is O (loд(n)). The total complexity of un-sharp masking in the en-

crypted domain is O (loд(n)) + n ·O (loд(N )2) +O (loд(n)) = n ·O (loд(N )2) +O (loд(n)).
In the case of histogram equalization in the encrypted domain, for k intensity levels there are k

multiplications and two exponentiations as given in Equation (20). The two exponentials are com-

puted once and hence their complexity can be considered constant. The complexity of histogram

equalization in the encrypted domain is O (loд(k )2). The computational complexities at the client

and cloud are listed in Tables 5 and 6.

5.2 Security Analysis

Concerning the security of the proposed method, as we use semantically secure cryptosystem, the

proposed method does not reveal anything about the content of the original image. The security
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Table 6. Computational Complexity at Cloud Side

Operation Computational complexity

Smoothing filter O (loд(n))
Un-sharp masking n ·O (loд(N )2) +O (loд(n))
Histogram equalization O (loд(k )2)

of Paillier cryptosystem is based on the composite residuosity problem (Paillier 1999). A number

z ∈ Z ∗
N 2 is said to be N th residue modulo N 2 if there exists a number y such that

z = yN mod N 2. (23)

According to the composite residuosity problem, it is hard for a polynomial time algorithm to

decide whether z is an N th residue or not. We refer the reader to Paillier (1999) for a complete

security analysis of the Paillier cryptosystem.

The proposed method provides a solution to the case when condition 2 given in Section 2.2

does not hold. In that specific case, lattice theory and basis reduction is used to obtain the correct

results in the plain domain for the computation performed in the encrypted domain. The division

property given in Equation (7) is realized using the multiplication property given in Equation (6).

The only difference is that the exponentiation in Equation (7) is a modular multiplicative inverse

of the divisor k . As a matter of fact, this is similar to the multiplication property. The application

of these properties does not leak any information of the original content or statistical profile of the

image as the Paillier cryptosystem ensures semantic security. At the client side, the lattice basis

reduction is applied after decryption. Only a legitimate client can have the decryption key, so this

process is fully secure. In a nutshell, the proposed scheme does not modify any equation in the

underlying Paillier cryptosystem so it is not compromising the security of the system.

5.3 Performance Comparison

In this section, we present comparison between the proposed method and four state-of-the-art

methods in Ziad et al. (2016), Mohanty et al. (2016), Lathey and Atrey (2015), and Singh et al.

(2018). The method in Ziad et al. (2016) used Paillier cryptosystem for encryption and decryption

and utilized homomorphic properties of the cryptosystem for processing in the encrypted domain.

In Mohanty et al. (2016), modified Paillier cryptosystem and its homomorphic properties are used

for encrypted domain processing. The other two methods proposed in Lathey and Atrey (2015) and

Singh et al. (2018) utilized Shamir Secret Sharing (SSS) for creating secrete shares and processing on

them. A comprehensive comparison between the proposed method and other methods is described

as follows.

(1) In Ziad et al. (2016), encrypted domain smoothing filter is performed using quantization

encoding function. The division operation involved in the smoothing filter is carried out

by multiplying the floating point term by the filter size. The proposed method avoids the

use of quantization encoding function and performs the smoothing filter directly in the

encrypted domain without using interactive protocol between the client and the cloud

server. Furthermore, the method in Ziad et al. (2016) introduced errors between the en-

crypted domain operations and plain domain operations due to the quantization encoding

function. The proposed method, however, does not introduce any errors. This manifests

that processing operation performed in the encrypted domain fetch the same operations

in the plain domain.
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(2) In Mohanty et al. (2016), the floating point numbers involved in bilinear interpolation are

mapped to integers using a large scale factor and rounding function. Due to the rounding

function, the plain domain result and encrypted domain result is never equal. Furthermore,

bilinear interpolation factor, which is computed using the mean value of neighboring pix-

els, is computed in the plain domain and then used as as exponentiation to encrypted

pixels to perform scaling in the encrypted domain at the cloud. In this way, the interpola-

tion factor is exposed to the semi-trusted curious cloud server. The cloud server can use

interpolation factors to obtain statistical information about the original encrypted image.

Similarly, to achieve reduced size and low complexity, tiles in a super-tile are encrypted

with same random number r . With the optimized encryption, images with similar tiles

will produce similar ciphertexts. Henceforth, the method in Mohanty et al. (2016) is not

semantically secure. In contrast, the proposed method does not leak any information about

the original content of the encrypted image as mentioned in Section 5.2. The method in

Mohanty et al. (2016) adopts tiles level encryption to recduce the computational complex-

ity and data overhead. However, as described earlier, the benefits of tiles level encryption

are achieved at the cost of loss of semantic security. In Mohanty et al. (2016), the authors

provided simulation times of encryption, encrypted domain processing operations and

decryption, which are code and hardware specific but does not account for theoretical

computational complexities. We provide theoretical complexities of Paillier encryption,

encrypted domain processing operations and decryption. These complexities are listed in

Tables 5 and 6. We also provided solutions to reduce the complexity of Paillier encryption

and data expansion as mentioned in Section 5.1.1.

(3) The methods proposed in Lathey and Atrey (2015) pre-processed the original image before

making secret shares. Two pre-processing schemes are proposed to modify image pixels

to make them completely divisible by the filter size. In this way, the division operation of

smoothing filter is performed in the encrypted domain. Moreover, the pre-processing step

increases the overhead size of the secret shares. The processing operations performed in

the encrypted domain and in the plain domain presented in Lathey and Atrey (2015) are

not exactly the same and they differ by some errors. The proposed method performs all

the processing operations directly in the encrypted domain without pre-processing the

images. Furthermore, the method in Lathey and Atrey (2015) is theoretically secure only

if the encrypted domain processing operations are performed using n servers with no

more than k are colluding. The requirement of non-colluding servers makes this method

impractical. The proposed method works with only one server and uses Paillier cryptosys-

tem with 1,024-bit key length, which is secure against modern factoring attacks.

(4) In Singh et al. (2018), Shamir Secret Sharing (SSS) and POB number system is utilized for

creating secret shares and processing in the encrypted domain. The use of POB number

system with SSS enhances the security and allows processing operations in the encrypted

domain. However, the processing operations performed in the encrypted and plain domain

are not exactly the same as the PSNR values are different for results in both domains.

Compared to Singh et al. (2018), the PSNR values for plain domain and encrypted domain

results are the same for the proposed method.

The method in Singh et al. (2018) has not mentioned the introduced error analytically or quan-

titatively, we present a comparison of introduced error between the encrypted and plain domain

operations for the proposed method against three methods in Ziad et al. (2016), Mohanty et al.

(2016), and Lathey and Atrey (2015) in Table 7. The error in Ziad et al. (2016) depends on the pre-

cision level of the exponent. A precision level of 10−8 introduces error of 0.145 as given in Table 7.
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Table 7. Error Comparison between Encrypted and Plain Domain

Operations of the Proposed Method Against State-of-the-art Methods

Method Error between ED and PD

(Ziad et al. 2016) 0.145

(Mohanty et al. 2016) −51 × 101−d ≤ ε ≤ +51 × 101−d

(Lathey and Atrey 2015) 0 ≤ ε ≤
⌈
h ×w

2

⌉
Proposed 0

Table 8. Feature Comparison of the Proposed Method Against State-of-the-art Methods

Method Encryption scheme Pre-proc. Errors btw ED and PD Parties

(Ziad et al. 2016) Paillier cryptosystem Yes Yes Single-party

(Mohanty et al. 2016) Modified Paillier cryptosystem Yes Yes Single-party

(Lathey and Atrey 2015) SSS Yes Yes Multi-party

(Singh et al. 2018) SSS + POB No Yes Multi-party

Proposed Paillier cryptosystem No No Single-party

The error in Mohanty et al. (2016) is a function of the scale factor d , whereas, the error in Lathey

and Atrey (2015) is bounded by the filter size h ×w . Compared to all the methods, the proposed

method does not introduce any error, which shows the effectiveness of our method. A comprehen-

sive feature comparison between the proposed method against the four state-of-the-art methods

is listed in Table 8.

6 CONCLUSION

In this article, we proposed a method for performing image processing operations involving divi-

sion in the homomorphic encrypted domain. Because of the limitation of the cryptosystems, pre-

vious methods either could not performed such operations in the encrypted domain or performed

them with the help of quantization encoding function or pre-processing. We presented a method

to perform non-integer mean value computation directly in the homomorphic encrypted domain

without any pre-processing or encoding function and without interactive sessions between the

client and the cloud sever, based on which, we performed some image processing operations in the

encrypted domain, such as local smoothing filtering, un-sharp masking, and histogram equaliza-

tion. While the previous methods introduced errors between the processing operations performed

in the encrypted and plain domain, our experimental results revealed that the processing opera-

tions performed in both domains are exactly the same, which shows the feasibility of our method.

Future work is twofold. First, we will extend the proposed work to more complex operations

in image, audio, video, and 3D meshes. Second, we will apply the proposed method in the field of

reversible data hiding. Many existing plain domain state-of-the-art reversible data hiding meth-

ods are not realizable in the homomorphic encrypted domain because of the limitations of the

homomorphic cryptosystem to process real numbers, as most of these methods involve division

operation.
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