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ABSTRACT

Due to the amazing progresses in deep learning techniques,
steganography has now been challenged to tackle not only
artificial feature-based but also effective deep-learning-based
steganalysis. Recent steganographers have tried to conduct
adversarial attacks to defend the steganalysis networks by
fine-tuning the embedding details with the help of adversarial
information, which, however, mostly are white-box attacks.
This research studies a novel method to conduct stegano-
graphic adversarial attacks in practical scenario where stegos
are sandwiched between black boxes. In our case, the tool-
boxes to generate stegos are steganographic black boxes
where embedding adjustments are prohibited, and networks
to detect stegos are semi-black boxes where most of the
steganalysis networks’ details are unavailable. By reform-
ing few-pixel-attack into the form of extraction conservation
noises and add them directly onto stegos, we ensure the mes-
sage extraction and launch the attack in practical scenario.
Experiments show that the proposed method can significantly
boost the error rate of the deep-learning-based steganalysis
and at the same time keep a comparable error rate when
facing artificial feature-based steganalysis.

Index Terms— adversarial attack, steganography, deep
learning, steganalysis

1. INTRODUCTION

Steganography is the technique to embed secret messages into
cover objects via introducing slight modifications that are in-
distinguishable from normal noises thus achieving covert
communication. The approved embedding framework is the
pipeline of distortion calculation plus STC( Syndrome-Trellis
Codes) [1]. In spatial image domain, ever since the BOSS
competition [2] in 2010, varieties of algorithms have been
proposed to interpret better acquisitions of distortion, such as
S-UNIWARD [3], HILL [4] etc. While in practice, stegano-
graphic algorithms are usually implemented as softwares or
hardwares for efficiency and property rights.
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Fig. 1. A Practical Steganographic diagram

Conversely, steganalysis mostly aims at detecting the ex-
istence of steganography which can be regarded as a binary
classification problem. Traditionally, types of artificial fea-
ture extraction methods (such as SPAM [5], versions of SRM
(Spatial Rich Models) [6,7]) and machine learning classifiers
(such as Ensemble Classifier [8]) are introduced to fulfil the
task. Meanwhile, with the development of deep learning tech-
niques, some typical types of CNNs have been introduced to
assist in steganalysis [9–13]. XuNet [11] is the first network
that achieves comparative performance as artificial feature-
based classifiers by constructing a 7-layered CNN. YeNet [12]
even outperforms via introducing the Rich Model HPFs,
Thresholded Linear Unit, and Selection-Channel-Aware mes-
sages. SRNet [13] removes the pooling layer and former
hand-designed parts and provides good detection accuracy.
State-of-the-art deep-learning based steganalysis methods in-
dicate the effectiveness of neural network classifiers and the
urgent demand for safer steganographic techniques.

However, the scheme of deep neural network is far from
perfect reliability. Adversarial example attack has nowadays
been a red-hot topic in the field of AI, as it shows the weak-
ness of deep neural network that hasn’t been conquered yet.
Szegedy et al. [14] firstly found that adding well-designed
small noises to the image context will dramatically mislead
the image classification network with high confidence. From
then on, varieties of adversarial examples have been proposed
to launch attacks under varied situations [15].

Therefore, for steganographers, it is a natural thought to
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conduct adversarial attacks to inactivate the steganalysis net-
works. Unfortunately, these attacks cannot be directly utilized
under current STC framework because it might mess up the
exact states of the stego bits which are indispensable for mes-
sage extraction. To avoid this misfortune, researchers have
tried to adjust the steganographic details to compromise. Li
et al. [16] split the cover image into two parts thus seperating
the embedding perturbations and adversarial noises. Zhang et
al. [17] proposed a method to generate enhanced covers by
iteratively adding adversarial noises to cover context so as to
enhance the attacking noises’ robustness to embedding modi-
fications. Ma et al. [18] modified the pixel bits by±1 accord-
ing to the direction of adversarial noises under the framework
of single-layered STC and introduced an unbalanced distor-
tion function for ternary embedding according to the adver-
sarial gradients. Tang et al. [19] proposed ADV-EMB which
generates adversarial stego images with minimum amount of
adjustable elements and achieved good performance.

All the prior arts need to fine-tune the details of the em-
bedding strategies to absorb in the adversarial attacking abil-
ities. However in practice, as is shown in Fig.1, some of
the embedding techniques are packaged into black-toolboxes
such as software programs or hardware chips for efficiency
and property rights, therefore, no adjustment is allowed dur-
ing the embedding procedure, and all the prior arts will fail.
Moreover, most of the prior arts require the detailed structure
and parameters of the attacked network and they are consid-
ered to be white-box attacks. However, most steganalysis net-
works are built by unexpected monitors like Eve in Fig.1 and
should be regarded as semi-black or even total-black boxes.
In this paper, we propose a novel method to deal with the
practical cases. By generating adversarial attacks directly on
stegos and reform few-pixel-attack, we achieve the adversar-
ial attack sandwiched between black boxes. We constrain the
amplitudes of adversarial noises to ensure the message extrac-
tion, and limit the number of modified elements to resist the
artificial feature-based steganalysis at the same time.

2. DIRECT ADVERSARIAL ATTACK ON STEGO

As we have mentioned above, a practical scenario is that
steganography and steganalysis are both black boxes. Firstly,
to deal with the steganographic black box, a straight-forward
way is to conduct direct adversarial attacks on stegos.

2.1. Extraction Conservation Noises

To begin with, we have an assumption that all the stegano-
graphic algorithms packaged into black toolboxes are ternary
embedding achieved by double-layered STC which modifies
the cover elements by ±1 as is described in [1]. This as-
sumption is reasonable because double-layered STC is still
the dominating framework in steganography. In this case, the
main problem for direct adversarial attack on stego is how to

ensure the message extraction because there is a special rule
for STC that the generated stego should be kept unchanged
as we need to know the exact states of the stego bits when
extracting the embedded message. Therefore, directly adding
adversarial noises on stego images might mess up the stego
bits and result in failure of message extraction. And that’s the
main reason why former researchers refuse to conduct a di-
rect attack. But we find a special kind of noises that can be
directly added onto stegos without failure of message extrac-
tion, and we call it Extraction Conservation Noises (ECN).
And here we’ll find the solution to ECN.

Actually, there’s a common but important fact that the
message extraction do not require the entire stego image but
the Least Significant Bits (LSB) string and the 2nd LSB string
of the stego image! As is explained in [1], message bits m are
split into two parts i.e. mLSB and m2ndLSB. The extractor Bob
needs to know the exact length of the split messages to gen-
erate the party-check matrixes HLSB and H2ndLSB, and extract
the messages separately from the LSB string yLSB and the 2nd
LSB string y2ndLSB of stego:

mLSB = HLSByLSB,m2ndLSB = H2ndLSBy2ndLSB,

Then we have m = cat(mLSB,m2ndLSB) where cat() is the
splicing function. Therefore, we have the conclusion that
noises can be directly added onto a stego without message ex-
traction failure only if the LSB string and the 2nd LSB string
of the stego are kept unchanged. To achieve this, we can eas-
ily get the solution to ECN as noises whose amplitudes are
integer multiples of 4. After we get the solution to ECN, we
need then to adjust the amplitudes of adversarial noises to
the form of ECN so as to achieve direct adversarial attack on
stego! No adjustment needs to be introduced into the embed-
ding procedure thus tackling the steganographic black box.
This conclusion is applicable for both spatial and JPEG im-
ages, but such significant modifications might result in com-
plicated situations in JPEG domain, for simplicity and effec-
tiveness, in this paper we only discuss about spatial cases.

2.2. ECN Few-pixel attack

Then we need candidate attacking methods and reform them
to ECN and launch the direct adversarial attack. As we want
to deal with the steganalysis black box, we prefer to select
those black-box-attacks as candidates.

However, in our case, we have a special demand for our
candidates. Although the target of our attack is deep-learning-
based classifiers, the generated adversarial stegos still have to
face the detection of artificial feature-based classifiers which
are inevitable and still working as the mainstream methods
in steganalysis. Note that according to our previous knowl-
edge, the risk of steganographic exposure arises significantly
with the relief of the limitations for perturbation levels when
facing the artificial feature-based steganalysis. And this is
an important reason why steganographic modifications have
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been constraint in range of ±1 so far. Therefore, the candi-
date attacking method should pay special attention to defend
the artificial feature-based detections as well. To deal with
this, we notice that the most effective artificial features like
SPAM or SRM are mostly based on statistical frequencies.
And we suggest a possible way to avoid their detection by
limiting the number of modified pixels which might relieve
the influence on statistical frequency changes.

Therefore, we finally select few-pixel-attack [20] as the
winner, because it is a semi-black-box attack and is able to ad-
just both amplitude and scale of the adding noises. And then
we’ll illustrate the way to reform few-pixel-attack to ECN and
launch the attack.

Few-pixel-attack is a semi-black box attack which means
it only requires the prediction probabilities of each labels, in
our case the p(I) = [pc(I), ps(I)], where pc(I) and ps(I) are
the probabilities to classify image I as ‘cover’ and ‘stego’ re-
spectively, with pc(I) + ps(I) = 1. Here we set an evaluation
function as f(I) = pc(I) − ps(I). Denote the stego image as
S, the adversarial noises as A. And the goal of our attack goes
to:

maxmize
A

f(S + A), subject to ‖A‖06 k, k ∈ N.

‖A‖0 is the number of non-zero elements in A, hence k de-
notes the number of pixels to be modified, and the attack is a
so-called k-pixel-attack.

To solve this problem, we need to apply the DE (Differ-
ential Evolution) algorithm. Similar to [20], we encode the
state of A into an array r which consists of k tuples with
each tuple containing 3 elements: x, y coordinates and am-
plitude of the noise. We set the population number to 400
which means we’ll initial 400 arrays as the first generation.
For initialization, in each tuples of the array, x, y coordinates
are randomly selected legal candidates within the image size
boundary and the amplitudes are random multiples of 4 con-
strained to the grayscale limit. Then we’ll produce the next
generations (children) by DE formula:

ri,t+1 = rn1,t + β(rn2,t + rn3,t), n1 6= n2 6= n3.

ri,t represents array of the i-th population in the t-th genera-
tion, and n1, n2, n3 are randomly selected population indexes,
β is the scale parameter set to 0.5. We set both the location
boundaries and grayscale boundaries as periodic boundaries.
And moreover, due to the scale parameter, the amplitude of
the generated children might not be an integer multiple of 4,
if that happen, we will tune it to its nearest smaller legal level.
Once the children are generated, we’ll calculate the evaluation
function of both children and parents, and compete between
each pair of the corresponding parent and child. Only the win-
ner survives for the next iteration. The maximum number of
iteration is 100. And we’ll select the population with highest
evaluation as the final A. When computed on a GTX1080, a
total 100 iterations for a single image will take 15 minutes on
average.

3. EXPERIMENTS

In this part, we’ll verify our proposed ECN few-pixel-attack
by attacking the approved deep-learning-based steganalysis
XuNet [11] and YeNet [12].

3.1. Setup and Evaluation

Experiments are carried on the imagesets of BOSS [2] and
BOWS [21], both containing 10000 spatial images. Resize
the images to the size of 256 × 256 using the MATLAB im-
resize() function, and we get the original cover imageset with
20000 images. Then we embed the cover set with HILL and
S-UNIWARD at payload ratio of 0.2bpp and 0.4bpp using the
embedding-simulator, and we get four sets of stegos.

Each turn of the experiments, we select the cover set and
one stego sets i.e. 20000 pairs of cover-stegos. We randomly
select 14000 pairs of them for training, 1000 pairs for val-
idation and the rest 5000 pairs for testing. The first layer
of XuNet is slightly adjusted as we change the stride of the
first convolution layer from 2 to 1 to deal with images of size
256× 256 rather than 512× 512 in [11]. YeNet is trained as
the SCA version. All the unmentioned hyper parameters are
set the same as the original paper.

Then we conduct the proposed ECN few-pixel-attack on
the stegos that are correctly classified as ‘stego’ by the net-
work. And then, we’ll replace the original stegos with the cor-
responding adversarial stegos to update the testing sets. And
we’ll test the performance of target networks on the updated
testing sets under the common evaluation of error rate:

PE =
PMD + PFA

2
,

where PMD denotes the miss detection rate and PFA denotes
the false alarm rate.

3.2. Experimental results

We adjust the parameter k which represents the number of
pixels to be modified i.e. k-pixel-attack. When k = 0, the
result is therefore the original performance without adversar-
ial attack. Moreover, the experiment under each conditions is
repeated three times and the average PE is calculated.

Firstly, we evaluate the performance when attacking
XuNet. As is shown in Fig. 2, the proposed few-pixel-
attack can fool XuNet successfully. The PE goes higher with
the increasement of k which indicates a growing strength of
adversarial attack. To reach the same PE, more pixels are
required to be modified when the payload ratio is 0.4bpp
than 0.2bpp. This is reasonable that more modifications are
introduced during the STC embedding when the payload ra-
tio is 0.4bpp, and therefore a stronger adversarial strength is
required to cover up. The PE is similar between the attacks
on stegos embedded with HILL and S-UNIWARD. Note that
the PE after attack is higher than 0.5 which seems weird for
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Fig. 2. PE - k when attacking XuNet trained on imagesets
embedded by S-UNIWARD and HILL at 0.2bpp and 0.4bpp
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Fig. 3. PE - k when attacking XuNet and YeNet trained on
imagesets embedded by HILL at 0.2bpp and 0.4bpp.

a binary classifier. And this is caused by the setting that the
proposed attack is targeted on the classifier trained on origi-
nal set without adversarial modifications, and no retraining is
considered.

Then we attack YeNet trained on only HILL and com-
pare the performance with that of XuNet. As is shown in Fig.
3, the proposed attack is still efficient. When k and payload
changes, we have similar trends on PE with that of XuNet.
But the final PE grows weaker than XuNet which we sus-
pect was caused by the selection-channel-aware mechanism
in YeNet that makes its prediction more sensitive to embed-
ding noises so that the influence of adversary is slighter.

To verify the extraction conservation effect, we compare
the generated adversarial stegos with their corresponding
original stegos in the above experiments. We find that the
LSB and 2ndLSB strings of each pair of them are 100% the
same. As STC extract messages purely on LSB and 2ndLSB
strings, we conclude that the message extraction is ensured.

As we have mentioned before, we need to evaluate the
adversarial stegos under the artificial feature-based steganal-
ysis as well. Therefore, we extract the SRM features of the

imagesets generated from HILL 0.2bpp and 0.4bpp and train
ensemble-classifiers to evaluate the performance on the test-
ing sets updated with adversarial stegos target at XuNet.
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Fig. 4. PE - k when attacking XuNet but tested by
SRM+Ensemble Classifiers both trained on imagesets embed-
ded by HILL at 0.2bpp and 0.4bpp

As we can see in Fig. 4, the proposed method can not only
attack the target network but also resist the detection of artifi-
cial feature-based classifier. The PE of artificial feature-based
classifier even arise slightly compared with original testing
set i.e. the case of k = 0. And combine with prior results, we
suggest to set k to 100 because when k is bigger than 100 the
PE of both kinds of classifiers tend to level off.

The proposed method is the first trial to conduct adver-
sarial attacks directly on stegos. And therefore it can deal
with practical situations when steganography and steganaly-
sis are both black boxes while previous arts cannot. Moreover
in [19], the error rates when attacking XuNet trained with S-
UNIWARD sets at 0.2bpp and 0.4bpp are 0.623 and 0.598,
which in our case are 0.621 and 0.550. This means our pro-
posed attack can achieve comparable attacking performance
as previous white-box arts.

4. CONCLUSIONS

We successfully conduct steganographic adversarial attacks in
practical scenario where steganography and steganalysis are
both black boxes. This is a real start for direct adversarial at-
tack against deep-learning based steganalysis. However there
are still some defects in our method and we’d like to improve
them in future works. This work discusses only about spatial
images, and we will extend it to JPEG domain in future. Al-
though the few-pixel-attack is a semi-black-box attack which
is much closer to practical use than white-box methods, we
will search for real black-box attacks to improve. Moreover,
defending methods like retraining are not considered due to
space limit and we’ll further study them for complementation.
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