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Non-Additive Cost Functions for Color Image
Steganography Based on Inter-Channel
Correlations and Differences

Yaofei Wang, Weiming Zhang ', Weixiang Li

Abstract—Despite the strong presence of color images for
communication, scholars have mainly devoted their attention
to research on steganography for grayscale images. In contrast
to grayscale images, color images have three interrelated color
channels, and the relationships among the three channels have
a strong impact on the steganography security. In this paper,
we present a steganographic scheme for spatial color images
by exploiting the correlations and differences between the color
channels. We find that the G channel has a stronger correlation
with R and B than the one between R and B, and thus,
synchronizing the modification directions of the R and B channels
with those from the G channel will have better resistance to
detection. In addition, the payload capacity and the distribution
of complex regions between channels are different. Based on
these findings, we design a new strategy for defining non-additive
costs for color image steganography, called G-channel-related
Inter-channel Non-Additive (GINA) strategy. The GINA strategy
can make the modification directions of the R and B channels
consistent with those of the G channel and can adaptively
distribute the embedding capacity between the three channels.
Specifically, this strategy will not violate the Complexity Prior
rule. The experimental results show that the proposed GINA
strategy can significantly improve the performance in terms
of resisting color image steganalysis compared with previous
methods.

Index Terms— Color image steganography,
inter-channel correlation, non-additive cost.

steganalysis,

I. INTRODUCTION

TEGANOGRAPHY is the art and science of hiding infor-

mation in objects to keep information confidential and pre-
vent the detection of hidden messages [1], [2]. In recent years,
the most successful scheme is content-adaptive steganogra-
phy based on the minimum distortion embedding framework,
which tends to embed secret messages into textured and
noisy regions, making them difficult to detect by steganalysis.
The distortion is obtained by assigning a cost to each cover
element. A distortion function is considered additive when it
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is expressed as a sum of costs, which element-wisely evaluate
the effect of respective embedding modification.

Since the Syndrome-Trellis Code (STC) [3] performs well
in minimizing the additive distortion, general steganographic
schemes mainly focus on the design of the additive cost func-
tion. Various popular additive cost functions, such as HUGO
(highly undetectable stego) [4], WOW (wavelet obtained
weights) [5], S-UNIWARD (spatial-universal wavelet relative
distortion) [6], HILL (high-pass, low-pass, and low-pass) [7],
MG (Multivariate Gaussian), and MiPOD (Minimizing the
Power of Optimal Detector) [8] exist for grayscale image
steganography.

Intuitively, the non-additive distortion model is more suit-
able for natural images because the changes on adjacent pixels
will interact. The first important rule in how to exploit the
mutual impact of adjacent modifications was proposed by
Li et al. [9] and Denemark and Fridrich [10] independently.
This rule is called Synchronizing Modification Directions
(SMD) or Clustering Modification Directions (CMD). The
rule implies that synchronizing the modification directions of
adjacent pixels can significantly improve the anti-detection
performance. In [9] and [10], the &1 modifications are used
for embedding messages, and the adjacent pixels are sepa-
rated into sub-images. The initial costs are obtained with an
additive cost function and then updated according to the direc-
tions of the modified adjacent pixels in the other embedded
sub-images. We call the strategy used in [9] and [10] the
“Updating Cost” (abbreviated to UpCost) method. Because
designing efficient coding scheme for non-additive cost func-
tions is an important open problem in steganography [11],
Zhang et al. [12] proposed a novel framework called DeJoin
by defining a joint distortion on pixel blocks and then decom-
posing this distortion into additive distortion on individual
pixels. It has been proven that DeJoin can approach the lower
bound of average joint distortion for a given payload.

In recent research on steganography, grayscale images have
received substantial attention as mentioned above. Most stud-
ies have focused on grayscale images with the unspoken
assumption that the findings can be applied directly to color
images. However, this view ignores the crucial fact that there is
a strong correlation between the color channels that should be
of interest in color image steganography. As early as 2013,
some important open problems for moving steganography
and steganalysis into the real world were proposed, and the
authors called for more attention to the color images [11].
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Image communication between people on social networks
is generally with color images and several rich models
for color image steganalysis have been proposed [13]-[21];
nevertheless, there has been minimal work on color image
steganography. To develop color image steganography, we can
learn and use the knowledge of grayscale images steganogra-
phy. There are two directions on extending grayscale images
content-adaptive steganography.

The first direction is to design a suitable additive cost
function for color images considering the inter-channel cor-
relations. To the best of our knowledge, the only additive
cost function for color images was proposed in [22] by
Liao et al. The authors exploited inter-channel correlations
to allocate payload for the three channels and proposed a
novel channel-dependent payload partition strategy based on
amplifying channel modification probabilities (ACMP). The
ACMP strategy could cluster the embedding impacts of RGB
channels and make the modifications concentrate in textured
regions, thereby achieving better statistical undetectability
against the color rich-model steganalytic feature.

The second direction is to define the non-additive cost
functions for color images. In grayscale image steganography,
SMD is a very effective rule. The natural idea is to extend
SMD to color images. Inspired by the outstanding performance
of the CMD strategy, Tang et al. proposed a strategy to cluster
modification directions for color images by using the method
of UpCost, named CMD-C [23]. This method can synchronize
the directions of modifications between different channels in
the same location and maintain the color channel correlations.
In [24], Qin et al. proposed another steganographic scheme
for color images by considering color pixel vectors (CPVs),
where three color components from the same pixel location
form a vector. The embedding costs are defined directly on the
color pixel vectors rather than on a single color component,
therefore, the correlations between channels can be explicitly
considered. With the help of DelJoin, the vector-based costs
can be transformed into component-based costs.

Although CMD-C and CPVs have considered the correla-
tions between color channels, they did not discover the differ-
ences in these correlations. In this paper, we further exploit
the inter-channel correlations and the differences between
channels. Our findings are as follows. First, the G channel
has a stronger correlation with the R and B channels than
that between the R and B channels, and thus, synchronizing
the modification directions of the R and B channels with those
from the G channel will achieve greater resistance to detection.
Second, the G channel is usually a smooth channel that should
have a lower payload capacity, and synchronizations with the
G channel will have a relatively low change rate (defined
as the ratio of the modified pixels over the total number of
pixels). Third, although the contents of the three channels are
similar, the distribution of complex regions is different. When
updating the costs according to the modifications of the G
channel, it should under the Complexity Prior rule. Based on
these findings, we extend the SMD rule of grayscale images
to Intra-channel-SMD and Inter-channel-SMD rules for color
images and design a new strategy based on the two rules for
defining a non-additive cost for color image steganography,
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called G-channel-related Inter-channel Non-Additive (GINA).
We present a novel steganographic algorithm that updates the
costs according to the GINA. Specifically, we decompose a
color image into three channel images, and then, each channel
is decomposed into several non-overlapping sub-images. The
costs of the pixels are first initialized by an additive cost
function. The G channel image is embedded first using the
CMD strategy. Then, the costs in the sub-images of the
R and B channels are updated according to the modification
directions of the same position of the G channel and the
adjacent pixels in the same channel. Because the costs are
dynamically updated, non-additivity is implicitly introduced
into the overall distortion. Considering the different payload
capacity of each channel, we adopt the simple color concate-
nation (SCC) strategy to automatically distribute the payload
across color channels. Considering that the distribution of
complex regions between three channels varies, we propose
a method to select the complex regions to update the costs in
the R and B channels according to the modifications of the
G channel, which can satisfy the Complexity Prior rule. The
proposed GINA strategy can be combined with state-of-the-
art steganographic schemes, such as HILL and S-UNIWARD.
The experimental results show that the proposed non-additive
steganographic strategy can achieve better undetectability than
CMD [9], CMD-C [23], CPVs [24] and ACMP [22] against
the color image steganalysis.

The main contributions of this paper are summarized as
follows:

1) We extend the SMD rule for grayscale images to the
Intra-channel-SMD rule and Inter-channel-SMD rule for
color images. The Inter-channel-SMD rule is only applied
to strongly correlated channels on the premise that the
Complexity Prior rule is satisfied.

2) In RGB color images, we found that the G channel
has a higher correlation with the other two channels
and a lower payload capacity. Based on these findings,
we proposed a novel strategy called GINA for color
image steganography. To the best of our knowledge,
this is the first non-additive strategy for color images
that considers both the correlations and the differences
between channels.

3) We compared the GINA-based method with different
color images steganographic methods and conducted
extensive experiments on image datasets with different
demosaicking, colorspace and resizing methods. The
experimental results proved the superiority of the GINA
strategy.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the model of minimizing additive distor-
tion and then review the previous rules in grayscale image
steganography. In Section III, we first explore the correla-
tions between channels and extend the SMD rule, and then
propose the GINA strategy. In Section IV, we show the
differences in the payload capacity and distribution of complex
regions between channels and then propose a method to
select complex regions to apply the Inter-channel-SMD rule.
We give an embedding algorithm that can implement the
GINA strategy in Section V. In Section VI, the experimental

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 09:55:09 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: NON-ADDITIVE COST FUNCTIONS FOR COLOR IMAGE STEGANOGRAPHY

results are given and analyzed. Finally, we conclude the paper
in Section VII.

II. PRELIMINARIES
A. Notations

Throughout the paper, matrices, vectors and sets are writ-
ten in bold face. The color images are in the RGB (red,
green, blue) color space and every pixel has three color
components. For simplicity, the three channels are denoted
as R, G and B. The cover image (of size n; x ny x 3) is
denoted by X = (x;jx)"*"*3 x; ;i € {0,1,---,255},
1 <i <n;, 1 < j < ny k € {1,2,3}). We use the
numbers 1, 2 and 3 to represent the three channels R, G and B,
respectively. Y = (y; j«)"! *n2x3 denotes the stego image. The
embedding operation on x; j is formulated by the range 1.
An embedding operation is called binary if |/| = 2 and ternary
if |I| = 3 for all i, j, k. In this paper, we only discuss the
ternary embedding, in which one pixel has two directions of
modifications. Therefore, one pixel has three costs: pZ‘ ik Pk
and pg ik The pZ‘ ;x means the cost of increasing the pixel by
one, and the p; ;x Means the cost of decreasing the pixel by
one. The pg ik is the cost of not changing, and we assume its
value is 0.

B. Minimal Distortion Steganography

In the model established in [3], the cost of modifying a color
component pixel value x; j x to y; j.x can be simply denoted by
p(vi,jx)- Denote m (y; j x) as the probability of changing x; ; «
to y;, j.k- The sender can send up to H (x) bits of message and
with total distortion D, such that

H(z)=> H(z;).Dx =Y Dn, (1)
k k

where

H(zy)==>>" > i (tijx)log(ms (tijk) @
i J tijk€lijk
Dp, => > > autijpije 3)
i J lijk€lijk

For a given message length L, the sender wants to min-
imize the total distortion D,. However, different schemes
will produce different results. In the traditional framework,
the embedding payload is evenly distributed across each color
channel; we call this the Average strategy, which can be
formulated as the following optimization problem:

D?verage =min (Dml>+mi” (sz>+min (Dm3> 4)
s.t. H (wy,) = L/3. ®)

Conversely, when we use the SCC strategy, the three
channels are concatenated into one to produce a monochro-
matic image. Thus, we can adaptively distribute the messages
across the monochrome image, and the optimization problem
becomes

scc _ -
Dy~ = min (Z Dmk) , (6)
k

st. H(z) = L. (7)
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The optimal 7 follows a Gibbs distribution:
exp(=axp (yi,j k)
> exp(=iap(iji)

tijk €L, jk

®)

i (Vijk) =

The scalar parameter A; > 0 is determined by payload
constraint (5) or (7). In the SCC strategy, we can obtain the
suitable payloads C1, C> and C3 that each channel can embed:

Co==2> > D () log(my (jk) (O
i J tijkElijk
In this paper, we will first calculate the suitable payload
for each channel using the SCC strategy, according to that
the messages of corresponding payloads are assigned to three
channels. In the same channel, we evenly divide the messages
into sub-images, as done in traditional methods [9] [23].

C. Four Rules in Cost Assignment

In previous steganographic schemes, four rules for designing
cost functions have been proposed for grayscale images. These

rules for cost assignment can be summarized as follows:
1) Complexity Prior: The most important rule is the Com-

plexity Prior. Its philosophy is to assign lower costs to
the pixels in the textured and noisy regions. Because the
non-periodical textured and noisy regions are difficult to
model, making modifications in such regions often leads
to slight deviations in the steganalytic feature space, and
thus is more difficult to detect. Many methods proposed
in [4]-[7] follow this rule explicitly.

2) Spreading: The second rule is called the Spreading
rule [25], which requires that the costs of two neighboring
pixels not differ significantly. In other words, a pixel with
high or low priority should spread its high rank or low
rank to its neighbours. In this way, a pixel close to a
complex region will have higher priority than a pixel
close to the smooth region even though these two pixels
have the same cost after using the cost function. The
Spreading rule has been successfully utilized in the spatial
domain [25] and DCT domain [26].

3) Controversial Pixels Prior: The third rule is called the
Controversial Pixels Prior (CPP) rule [27], which was
proposed by Zhou et al. The CPP rule considers a
combination of several methods that have comparable
security performance and gives priority for modification
to the pixels with very distinguishing costs calculated by
different cost functions.

4) Synchronizing Modification Directions: The above three
rules are based on the additive distortion model, in which
the changes of pixels are assumed to be independent.
However, the changes of neighboring pixels will interact
with each other, and thus, it will be more suitable for
adaptive steganography with a non-additive distortion
model. The first important rule based on the non-additive
distortion was proposed by Li et al. [9] and Denemark
and Fridrich [10] independently. This rule is called Syn-
chronizing Modification Directions (SMD) or Clustering
Modification Directions (CMD). This rule aims at syn-
chronizing the modification directions of adjacent pixels.
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Soon after, Zhang et al. [12] proposed a novel framework
called DeJoin for minimizing non-additive distortion in
steganography.

III. G-CHANNEL-RELATED INTER-CHANNEL
NON-ADDITIVE STRATEGY

In the previous section, four rules for grayscale images for
assigning cost functions are revisited. Because the method of
obtaining the initial cost in the color images is the same as
that for grayscale images, we assume that those rules that are
based on the additive distortion model can also be used in the
color images. However, for the SMD rule, we assume that it
needs to be modified for the color images when considering the
correlations between channels. In this section, we will extend
the SMD rule and propose a new strategy for color images.
We validate the effectiveness of this strategy in a series of
simulations. The simulations are performed on a color version
of BOSSbase 1.01 [28] containing 10,000 color 512 x 512 x 3
images. We call this dataset BOSSbasePPGBIC, which is
obtained as follows. We first use dcraw (ver. 9.26) for demo-
saicking full-resolution raw images and then down-sampling
the obtained images such that the smaller image dimension is
512 and for central cropping to 512 x 512. The demosaicking
algorithm used in dcraw is the Patterned Pixel Grouping
(PPG). By default, dcraw writes PPM with 8-bit samples,
a BT.709 gamma curve, a histogram-based white level and the
sRGB colorspace. The resizing algorithm used is the Bicubic
kernel in Matlab.

A. The Correlations Between Channels

To study the correlations between color image channels,
we will analyze the interaction between different channels in
the process of color image formation.

For color images, when we need to collect a variety of basic
colors, such as R, G and B colors, the easiest method is to use
the filter method, i.e., the three wavelengths pass through three
corresponding filters. The best choice for collecting the three
basic colors of RGB is using the Bayer format, which was
invented by Bayer [29]. The Bayer format uses twice as many

Raw image
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green pixels as red or blue to mimic the physiology of the
human eye. Fig. 1 shows the image capture process in a digital
camera. The filtered light is sensed by the sensor and passed
through an analog-to-digital converter. After that, it is stored
in a raw image. However, each channel of the raw image has
many empty pixels. Therefore, CFA interpolation is performed
to make the raw image similar to the original scene. The
Bayer image study shows that the green component contains
the main luminance information, and it has strong spatial and
spectral correlations with the red and blue components, thereby
playing a key role in reconstructing high-quality full-color
images. Therefore, the G channel contains more raw infor-
mation, and most demosaicing algorithms give priority to the
G channel.

To measure the strength of the correlations, we will use the
Pearson correlation coefficient [30] to quantify the correlation
between the two channels. We denote Corrcoef (R, G) as
the Pearson correlation coefficient value of R and G. A larger
Corrcoef indicates that the two channels are very similar
or have a stronger correlation. We compute the Pearson
correlation coefficient between two of the three channels
of each image in BOSSbasePPGBIC and then compute
the average of the Corrcoef(R,G), Corrcoef(R,B)
and Corrcoef(G,B) values of these images to obtain
Corrcoefupg(R, G) = 0.9399, Corrcoefu,s(R, B) = 0.8284
and Corrcoefqu,,(G,B) = 0.9101. Obviously, Corrcoefqy,
(R,G) and Corrcoefag(G,B) are much stronger than
Corrcoefqyo(R,B). In addition, we validate some
non-Bayer format sample images from DEREVIEW (https:/
www.dpreview.com). The results are shown in TABLE 1.
The results seem to imply that this relationship exists in the
non-Bayer format as well. Therefore, we should pay greater
attention to the G channel in color image steganography.

B. The Strategy of Clustering Modification
Directions Between Channels

In [9], the CMD was proposed to preserve the correla-
tions between neighbouring pixels. Motivated by the excellent
performance of the CMD, a strategy called CMD-C (clustering
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TABLE I
THE CORRELATION BETWEEN NON-BAYER FORMAT COLOR IMAGE CHANNELS

Device Color Filter Array ~ Number ‘ Corrcoefug(R,G)  Corrcoefus(R,B)  Corrcoefu4(G,B)
Fujifilm X-T30 X-Trans 49 ‘ 0.9532 0.8898 0.9577
Huawei P30 Pro RYYB 37 \ 0.9630 0.9155 0.9468
Sony DSC-F828 RGBE 20 \ 0.8093 0.7342 0.9050

TABLE II

DIFFERENT THREE-CHANNEL EMBEDDING PATTERNS AND THEIR STEGANALYSIS RESISTANCE

‘ Pattern A Pattern B Pattern C Pattern D Pattern E Pattern F
Modes BASIC(R) BASIC(G) BASIC(B) BASIC(R) BASIC(R) BASIC(R)
for SYN(G,R) SYNR,G) SYNR,B) ASYN(G,R) SYN(G,R) ASYN(G,R)
R-G-B SYNB,R) SYNB,G) SYN(G,B) ASYNB,R) ASYN(B,R) SYN(B,R)
CRMQI 0.3051 0.3111 0.2991 0.2079 0.2067 0.1561
SCRMQ1 0.2555 0.2682 0.2548 0.2098 0.2069 0.1607

modification directions for color components) [23] was later
proposed. That method aims to preserve not only correla-
tions between neighbouring pixels but also the correlations
among the three channels. However, the actual performance
of CMD-C is not as expected because of the experimental
setup. This is because the authors did not pay attention to the
correlations between channels. In [23], Tang et al. performed a
simulation to verify a useful idea, that the same modification
direction at the same pixel location among the three color
channels is effective in enhancing empirical security. This is
a good conclusion, except for the simulation in that it only
synchronizes the three color components of one pixel based
on the R. However, we have previously analyzed that the G
has a higher correlation than the R and B. Therefore, we will
further expand and improve upon this simulation experiment
to explore the impact of different embedding orders on the
steganography security.

In this simulation, we use the BOSSbasePPGBIC as our
database. HILL-CMD [9] is used as the baseline method, and
the payload is set to 0.4 bpcp (bits per channel pixel). We will
use six patterns to create six stego image sets. Taking pattern
A in TABLE II as an example, messages are embedded into R
using the HILL-CMD denoted as BASIC(R), and the modifi-
cation directions of the pixels in R are copied to the other two
channels, denoted as SY N(G, R) and SY N(B, R). In contrast
to SYN, ASYN means that the modification directions are
opposite. The two feature sets CRMQI1 and SCRMQI [13],
which are powerful enough to detect the correlations among
the channels, are used to evaluate the security. The ensemble
classifier [31] is fed the extracted features. The anti-detection
performance is evaluated by the testing error, which is the
mean of the false alarm rate and the missed detection rate
over 10 runs using 5000/5000 database splits. A larger testing
error means stronger security.

The experimental results are shown in TABLE II. We can
see that patterns A, B, and C belong to the same class;
however, their performances are different. In these three
patterns, the modification directions of the three channels

are the same, except that the fundamental modifications are
different. Among them, pattern B is the most secure, and its
basic modifications are derived from G. Patterns D, E, and
F belong to another class; they have the same fundamental
modifications; however, only two channels have the same
modification directions, while the other channel is opposite
to the two channels. Among them, pattern F, where the
modification directions of G are opposite to those of R and B,
shows the worst performance. The results again verify that G is
not only a unique channel but also plays a crucial role in color
image steganography. The results also show that the SMD rule
cannot be used equally between the three channels. Therefore,
we extend the SMD rule to the Intra-channel-SMD rule and
the Inter-channel-SMD rule for the color image. The Intra-
channel-SMD rule is the same as the SMD rule in the grayscale
image and is used in the color channels. The Inter-channel-
SMD rule will be used to guide the modification directions
between the color channels.

To further explore the impact of synchronization or asyn-
chronization between two channels on the performance of sta-
tistical undetectability for steganography, we will use another
Six patterns to create six stego image sets. Within the patterns,
only two channels are embedded. The embedding method,
payload and evaluation method are the same as before. The
experimental results are shown in TABLE III. From pat-
terns G, H, I and J, we can see that when R or B is
synchronized with G, the performance is much better than
the corresponding asynchronization. However, from patterns
K and L, we can see that there is minimal difference in
performance between R and B after synchronization or asyn-
chronization. Moreover, the capacity of each pixel will be
reduced when attempting to synchronize modification direc-
tions, and thus, the change rate will be increased for a
given payload, which may reduce the steganography security.
Therefore, it is not necessary to synchronize the modification
directions of R and B. We propose that the Inter-channel-
SMD rule should be used preferentially when there is a strong
correlation.
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TABLE IIT
DIFFERENT TWO-CHANNEL EMBEDDING PATTERNS AND THEIR STEGANALYSIS RESISTANCE

\ Pattern G Pattern H Pattern I Pattern J Pattern K Pattern L
Mf‘zies BASIC(G)  BASIC(G)  BASIC(G)  BASIC(G)  BASIC(R)  BASIC(R)
RCEB | SYNRG) ASYNR.G) SYNB,G) ASYNB.G) SYNBR) ASYNGB.R)
CRMQI 0.3038 0.2231 0.3066 0.2173 0.2634 0.2506
SCRMQ! 0.2835 0.2319 0.2908 0.2349 0.2734 0.2612
TABLE IV

GINA

The main difference between the GINA and CMD-C.

Fig. 2.

For color images, we should synchronize the modification
directions of R and B according to G. The G should be
embedded first, and then, R and B should be embedded
according to G. Based on this idea, we design a new strategy
for defining a non-additive cost for color image steganography,
called G-channel-related Inter-channel Non-Additive (GINA).
The GINA strategy will apply both the Intra-channel-SMD
rule and the Inter-channel-SMD rule to the channels. The main
difference between the GINA and CMD-C strategies is shown
in Fig. 2, where R and B influence each other in the CMD-C
but weakly influence each other in the GINA.

IV. THE DIFFERENCES BETWEEN CHANNELS

In the previous section, we found that G has a stronger
correlation with R and B and proposed that the Inter-channel-
SMD rule should be used preferentially when there is a
stronger correlation between channels. However, it is not only
the intensity of the correlation that varies between channels
but also the payload capacity and the distribution of complex
regions. In this section, we will first show the differences in
the payload capacity and the distribution of complex regions
between channels and then propose a new method to select the
complex regions to apply the Inter-channel-SMD rule between
channels.

A. The Capacity Differences Between Channels

In conventional steganographic schemes, we usually treat
each color channel as a grayscale image independently for
embedding and allocating the same payload. Because these
schemes do not consider the differences among the three color
channels, they may not minimize a distortion (detectability)
over all pixels from the three channels. In [13], Goljan et al.
confirmed that the red channel is the noisiest. There-
fore, we should allocate more payload to the red channel.

THE PERCENTAGE VALUE OF PAYLOAD PARTITION IN RGB CHANNELS
UNDER DIFFERENT EMBEDDING PAYLOADS

Channel | 0.1 0.2 0.3 0.4 0.5
R ‘ 5246% 51.01% 49.76% 48.61% 47.51%
G ‘ 22.19%  22.32%  22.58%  22.93%  23.34%
B ‘ 2535%  26.68%  27.66%  28.46%  29.15%

Because the SCC is simple and can distribute the payload
adaptively, we will use it to explore the payload capacity
between the three channels.

In this experiment, we randomly select 1000 color images
from BOSSbasePPGBIC and then decompose each color
image and merge the three channels into a single-channel
image. We use HILL to compute the costs of the
single-channel image and then obtain the average payload ratio
of each channel over different total embedding payloads. The
results are shown in TABLE IV. The payload partition using
the SCC strategy is entirely different from the average payload
assignment. Moreover, regardless of the payload, the average
payload partition of G is the smallest. It seems that G is
smoother than the other two channels. And We think that
synchronizing with G to update the costs will lead to a lower
rate of change. In this paper, we will use the SCC strategy to
allocate the messages by default.

In the GINA strategy, we will apply the Inter-channel-
SMD rule between two pairs of channels. However, the pay-
load capacity between the channels is different. Therefore,
we believe that the distributions of costs between channels
are not similar and that the Inter-channel-SMD rule cannot
be applied directly and indiscriminately between channels.
In the next subsection, we will show the differences in the
distributions of complex regions.

B. Distribution Differences of Complex Regions
Between Channels

In Section III-A, we found that the R and B are similar to
the G, but the distribution of complex regions may not be sim-
ilar in some regions. Since the modification probability map
can reflect the distribution of complex regions, here we provide
an example to visualize the distribution between the three
channels. A sample color image “5136.ppm”, which is from
the BOSSbasePPGBIC, as shown in Fig. 3(a). Fig. 3(b)-(d)
are grayscale displays of the three channels. As we can see
that the overall structure of each image is similar, but the
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(i) Probability map (WOW) (j) Probability map of R (WOW)

Fig. 3.

details are different. We use HILL and WOW applied with
the SCC strategy to calculate the modification probability map
with an embedding rate of 0.4 bpcp. For a more intuitive
display, the probability is scaled and adjusted to [0, 1]. The
higher the modification probability, the brighter the display.
We show the modification probability map for the three
channels in Fig. 3(e)-(1). We can see that the probability in the
same position varies greatly in different channels. In this paper,
we consider those high probability regions to be complex
regions. Therefore, some regions are complex regions in the
G but smooth regions in the R or B. If we update the costs
of the R and B according to the modifications of the G,
it will violate the Complexity Prior rule. As we know, the basic
rule for cost assignment is the Complexity Prior rule, which
gives the high priority for modification to the complex regions.
Several effective cost functions in the spatial domain allocate
pixel costs by measuring the complexity of the neighborhood.
The high cost means low modification probability and vice
versa. In fact, the CMD strategy also follows the Complexity
Prior rule. Because those pixels modified in steganography

2087

(1) Probability map of B (WOW)

(k) Probability map of G (WOW)

The modification probability map for the three channels.

are likely to be in textured regions and natural images are
highly correlated in a local neighbourhood. Therefore, it is
also reasonable to update the costs of surrounding pixels to
make it easier to modify, and the Intra-channel-SMD rule
does not conflict with the Complexity Prior rule. However,
the distribution of complex regions between channels is not
similar. When we adopt the Inter-channel-SMD rule directly
between channels, once the cost is updated, the priority of
the pixel for modification will be changed. However, this can
break the order of priority of the pixels. And we believe that
the Inter-channel-SMD rule should under the Complexity Prior
rule between color channels. To solve this problem, we will
select the complex regions to update the costs.

C. Selecting the Complex Regions to Apply
Inter-Channel-SMD Rule

To avoid priority reversal when applying the Inter-channel-
SMD rule, we will only update the costs of the complex
regions. However, selecting the regions is a problem. In [32],
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Tang et al., from the position of the detector, proposed a strat-
egy to narrow down the suspicious regions for steganalysis.
The suspicious regions are the complex regions with lower
embedding costs, which are located based on the ¢ percent of
pixels with the lowest costs. However, the threshold r makes
the selected regions of each image the same size. In [22],
Liao et al. proposed a probability threshold for determining the
complex regions. However, the threshold is fixed and cannot
be optimized.

In this paper, we will select the complex regions that can
carry the top T percent of modified pixels with the highest
modification probability. When we use the SCC strategy to

allocate messages, we can o?tain the modification probability
nyxnp x3
m

map O™ = (”i,j,k of the cover image, and ni””j’k
can be calculated by Formula (8). A high probability means
high complexity, and the set of high-probability pixels H'
that can carry the top T percent of modified pixels with the

highest modification probability have the following attributes:

S oAl = (Z n;jlj,k) x T%, (10)
G, j.k)eHT
min |zl ‘2 max |xl" ‘ (11)
jdyent |7 G gt 170

Therefore, we only need to choose the optimal 7. Once
T is determined, the set of high-probability pixels H? can
be determined. The size of the set depends on not only
on the threshold 7', but also content adaptation and pay-
load adaptation. It varies with the complexity of the image.
In general, the larger T is, the larger the set. The best T
to resist steganalysis can be determined experimentally, as in
Section VI-C.

V. EMPLOYMENT OF THE GINA

In this section, we first present the framework of the GINA
strategy. Then, we detail the embedding steps in the three
channels.

A. Framework

It has been shown in Section III that when the modification
directions are consistent with G, better resistance to detection
will be obtained. According to this discovery, we generalized
the CMD strategy for grayscale images to color images, and
this generalized strategy is called GINA.

The processing flow of the GINA-based algorithm is shown
in Fig. 4. We first decompose the color image into three
grayscale channel images. Then, we embed the first segment
of messages into G using the CMD-based algorithm. Next,
we embed the last two segments of messages into R and B
according to the modification directions of G. During the
embedding processes in R and B, the costs of the pixels are
selectively updated according to its neighbouring pixels in the
same channel and the pixels in the same position in G. Finally,
the three stego channel images are recombined into a color
stego image.

For each channel image, adaptive steganographic schemes,
such as WOW, S-UNIWARD and HILL, can be applied to
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Fig. 4.
strategy.

Flowchart of the proposed solution used to incorporate the GINA

obtain the costs C = (c;, j k)" xn2x3 At first, we set the initial
costs p;rj,k = Pijx = Cijk- The SCC strategy is used by
default to make the messages of m bits adaptively distributed
among the three channels. With the SCC strategy, we can get a

nyxXnyx3
) . We cal-

culate the set of pixels H” as the complex regions according
to the threshold 7', which will be determined experimentally
in Section VI-C.

In the next two subsections, we will detail the embedding
steps in the three channels.

m

modification probability map ™ = (ni Yk

B. Embedding in G Channel

According to the CMD strategy [9], we first decompose
G into four disjoint sub-images. The set of pixels in the
sub-image can be expressed as

Sap2 = {xi,j2li =a+2kq, j = b+ 2kp}, (12)
where a € (1,2}, b € (1,2}, ks € {0,1,---, 5] — 1},
kp € {0, 1,---, L"TZJ — 1}, and |x| means rounding X down.

As illustrated in Fig. 5(a), we embed the messages into the four
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X112 [ X120 X152 X16 N
412 A22,2 )\252 A2,6,2
X312 [ %32k X3,5,2 X362
XA12 X232 | 'X‘ii,'s,zg 46,2
Xs,1,2 ‘- 1?1(5,2’2' Xs,5,2 X562
e12 X622 7‘652 R6,6,2

(b)

Fig. 5. Tllustration of the embedding order. (a) An example embedding
order for the four disjoint sub-images with horizontal zig-zag scan. (b) The
embedding order in each red dotted sub-block of the sample G channel image.

sub-images in a horizontal zig-zag scan order, i.e., S1,12 —
S1.2.2 = $2.22 = 82,1,2. Note that we embed messages into
the pixels of each 2 x 2 sub-block in the same order, as shown
in Fig. 5(b).

We intialize the stego image Y = X. For each sub-image,
the length of the message to be embedded is equal. We first
embed one quarter of messages into S 12 with the initial
costs. After embedding the messages into Sj,1,2, we compute
the difference between the stego image and the cover image
D=Y-X= (di,j,k)”1X"2X3, and then, we update the costs
of S1.2,2 as follows:

Ci,j,k/aa if Z dl,m,n >0
+
Pijk = (L,m,m)EN;,jk (13)
Ci,j ks otherwise,
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v
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!
4

X212 X232

Xa12 Xag2

Fig. 6.  An example embedding order for the 12 disjoint sub-images on the
three channels.

and
Ci,j,k/aa if Z dl,m,n <0
Pijk = (tm.n)eN;, jk (14)
Ci,jks otherwise,
where a is a scaling factor, and we set a = 9 in this

paper according to [9]. N; j x is the four-pixel neighbourhood
of the pixel x;;; from the same channel, ie., x;—1 .
Xit1,j.ks Xij—1,k> and x; jy1x. When the pixel is on the
image boundary, we use the available pixels in the four-pixel
neighbourhood. After embedding the message into Sy 22 with
the updated costs, we recalculate the difference D and then
update the costs of S7 22 as before. The same steps are used
to embed the message into $7, 1,2 after we embed message into
S$2,2,2. After we embed messages into the four sub-images,
we can get a stego G. In the next subsection, we will detail
the embedding steps in the R and B channels.

C. Embedding in R and B Channels

After embedding the messages into the G channel,
we embed the rest of messages into the R and B channels
according to the modifications on the G channel. Similar to
the decomposition in the G, we first decompose the R and B
into four sub-images respectively. The embedding order in R
and B is the same as that in G, as shown in Fig. 6.

On the same channel, we embed a message with the
same length into each sub-image. Before embedding, we first
compute the difference D and then update the costs of Sy 1,1
and Sp,1,3. The cost update will consider the modifications on
G and the positions of the pixels. For the pixels in the complex
regions, we update the costs considering the modification
directions on G. Therefore, the costs of Sj,1,1 and Sj,1,3 with
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TABLE V
THE PERFORMANCE WITH DIFFERENT CHANNEL EMBEDDING ORDERS

Embedding Features Change Rate Same Direction Rate
Order CRMQI SCRMQ1 R G B Mean SDR(G,R) SDR(G,B) SDR(R,B)
HILL-RINA 0.2843 0.2618 0.1515 0.0878 0.1080 0.1158 0.3669 0.3732 0.3374
HILL-BINA 0.3206 0.2816 0.1609  0.0852 0.0917 0.1126 0.2150 0.5391 0.2752
HILL-GINA 0.3453 0.3078 0.1586  0.0763  0.1002 0.1117 0.3128 0.5286 0.1785
(i, j, k) € HT are updated by 5,404-dimensional CRMQ1 [13] feature sets with the ensem-
£ d 0 ble classifier, and the performance quantification is the same
pt. P = Cijk/s Af dijo > (15) as that described in Section III-B.
b Ci,j k> otherwise,
and B. Impact of the Embedding Order
N cijxfo, ifdija <0 ' }n Section I1I-B, we pe.rforrped a’ 51m}11at10n to confirm that
Pijk = otherwise (16) it is better when the modification directions between channels
) Cij W . .
QUL ’ are synchronized with G and worse when reversed. Here, we

for (i, j, k) ¢ HT, the costs of S1.1,1 and Sy,1,3 will not be
updated. After updating the costs of the pixels in the complex
regions, we embed the corresponding message into Sy 1,1 and
S1,1,3 repectively. After this embedding, we recalculate the
difference D and then update the costs of S, and Si23
considerring modifications to the neighbouring pixels and part
of G. For (i, j, k) € HT | the costs of S1.2,1 and S13 are
updated as follows:

Ci,j,k/a, if Z dl,m,n + di,j,2 >0
p,-jrj,k = (I,m,n)€N;,j i (17)
Ci,jks otherwise,
and
ciji/os it D dimn+dij2 <0
Pijk = (lm,n)EN;,j.k (18)
| Ciljiks otherwise,

for (i, j,k) ¢ HT, we update the costs according to (13)
and (14), the same as the updating on G. After embed-
ding messages into S 2,1 and Sj 2,3 with the updated costs,
we recalculate the difference D and then update the costs of
S2.2,1 and S22 3 as before. The same steps are used to embed
the messages into S,1,1 and S 1 3 after we embed messages
into S$22,1 and S723. At last, we can get the three stego
channel images and recombine them into a color stego image.
In this paper, we use S-UNIWARD and HILL to ini-
tialize the costs. And the corresponding schemes are called
S-UNIWARD-GINA and HILL-GINA, respectively.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. Setups

In this section, all experiments except for the two described
in subsections VI-F and VI-G are carried out on BOSS-
basePPGBIC, which has been described in Section III. For
the sake of simplicity, we use the optimal embedding sim-
ulator as the default and different seeds are used between
the three channels in each round of embedding. Except
for subsection VI-G, the performance is evaluated by the
steganalyzer using the 18,157-dimensional SCRMQI1 and

will compare the anti-detection performance of the GINA with
the other two embedding orders when updating the costs.
We call the other two embedding orders RINA and BINA.
Taking RINA as an example, we replace G in GINA with
R such that R is embedded first. The other two channels are
embedded according to R. The threshold 7' defaults to 100.
The classification errors and the change rates are reported in
TABLE V. We also calculate the same direction rate (SDR)
of three pairs of channels. For example, SDR(G,R) means
the proportion of G and R having the same modifications
in across all modified pixels. It can be observed that the
GINA is the most secure embedding order in the natural
color images. This again proves the importance of the G.
The mean change rate of the GINA is the lowest, and the
sum of the values of SDR(G,R) and SDR(G,B) is higher than
that of the other two embedding orders. In contrast, RINA
has the worst performance. We believe that this is caused by
two reasons. First, R has a lower Corrcoef value compared
to the other two channels, as computed in Section III-A,
and synchronizing with R is not the best choice. Second, R
has a higher payload partition and change rate, as shown in
TABLE IV and TABLE V; thus, more costs will be updated
based on the modifications of R, and the average rate of
change will increase.

C. Impact of the Threshold

With the GINA strategy, a different threshold 7' will update
different numbers of costs. We will use different thresholds
from O to 100 to test the performance against CRMQI1 and
SCRMQI1. When T = 0, the costs of R and B are not updated
according to the modification of G, whereas T = 100 is
equivalent to updating all costs of R and B according to the
modifications of G. The result is shown in Fig. 7. We show
the relation between the change rate and the threshold T
in Fig. 8. The same direction rate is shown in Fig. 9. It can
be observed that when the threshold increases, the perfor-
mance against the CRMQ1 feature will be better because
of the CRMQ1 formed by 3D co-occurrences across color
channels. As shown in Fig. 9, with increased threshold 7',
more directions of modifications between channels will be in
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Fig. 8. Change rate for HILL-GINA with different threshold 7.

the same direction, which is harder for CRMQI1 to detect.
This also indicates that the GINA can indeed maintain the
correlations between channels. However, the performance
against SCRMQI1 first rises and then falls. This is because the
distribution of the complex regions of G is not very similar
to that of R and B, as discussed in Section IV-B. The larger
the threshold is, the larger the area of the region in which the
costs are selected to be updated, resulting in more costs of
the non-textured regions being updated and the Complexity
Prior rule being violated. It can be observed from Fig. 8 that
the change rate grows as the threshold increases. Therefore,
the trade-off between the Inter-channel-SMD rule and the
Complexity Prior rule can be adjusted by the threshold 7.
Since the SCRMQI1 is the most effective steganalytic feature,
we will refer to it to set the threshold 7 = 90 in the following
experiments by default.

D. Impact of the Payload Partition

In this paper, we take the SCC strategy as a part of the
GINA, and we use it to allocate the payload between the
three channels. Moreover, there are two other payload partition

2091
0.55
- —=—SDR(G,R)| |
04 SDR(G,B)
2 —8— SDR(R,B)
o
c
S
3 0.35f
£
[} N
£ ’—_//'A—_—.—“
©
(]
025" 1
1%
>
015 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100

Threshold T
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strategies in the field of color image steganography. The
traditional method is to treat the three channels equally as
three grayscale images and allocate equal payloads. We call
this the Average strategy. A new payload partition strategy
called ACMP, which is based on amplifying channel modi-
fication probabilities, is an adaptive allocation strategy [22].
The authors stated that the ACMP strategy could allocate
the payload by considering inter-channel correlations and can
cluster the modifications in textured regions. The performance
of HILL-GINA with the three payload partition strategies is
shown in Fig. 10. It can be observed that for different payload
rates and different steganalytic feature sets, the GINA with the
SCC strategy could achieve better statistical undetectability.
At low payload rates, the ACMP strategy is better than the
Average strategy. However, when the embedding payload rate
is higher, such as 0.4 and 0.5 bpcp, combining with the ACMP
strategy will result in a worse performance than the Average
strategy. We think the reason behind this is that the GINA
combined with the ACMP will update the costs twice and
disturb the distribution of the cost, resulting in more embed-
ding changes. The average change rates for HILL-GINA with
different payload partition strategies and different payloads are
shown in Fig. 11. As the figure shows, the average change rates
of the ACMP strategy increase beyond those of the SCC and
Average strategy. Above all, the SCC strategy is selected in
the GINA scheme.

E. Comparison to State-of-the-Art Methods

We compare the HILL-GINA and S-UNIWARD-GINA
schemes with some currently popular methods, including
HILL-CMD-C, S-UNIWARD-CMD-C using the CMD-C [23]
strategy, HILL-CMD, S-UNIWARD-CMD, CPV-CMD using
the CMD [9] strategy, HILL-ACMP, S-UNIWARD-ACMP
using the ACMP [22] strategy and the initial cost HILL [7],
S-UNIWARD [6] and CPV [24]. In this experiment, the pay-
load ranges from 0.1 to 0.5 bpcp, and the CRMQI and
SCRMQI feature sets are used to evaluate the performances.
The results are shown in Fig. 12 and Fig. 13. We can observe
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that GINA-based schemes outperform the other steganographic
schemes.

FE. Performance on Other Datasets

To investigate whether the performance of the GINA is
over-optimized on the BOSSbasePPGBIC database, we con-
duct several experiments on different color image data-
bases. The image sets are obtained with the same steps as
BOSSbasePPGBIC but with different demosaicking methods
and post-processing operations. In this paper, four demosaick-
ing methods (AHD, PPG, bilinear, and VNG) available in
dcraw are used. Three common post-processing operations are
considered: color transform, gamma correction and resize. The
colorspace and gamma curve are set in dcraw, while the resize
operation is set in Matlab. All images are resized or cropped
to 512 x 512 x 3. A total of 13 datasets are used to test the
performance of the GINA.

The results are shown in TABLE VI. As we can see that the
GINA outperforms other steganography methods in all of these
scenarios. It can be concluded that the GINA can significantly
improve the security on the other datasets, indicating that the
GINA is not over-optimized on the BOSSbasePPGBIC (D6)
database. In addition, we have some new findings as follows:
1). The demosaicking algorithm has minimal impact on the
anti-detection performance when the colorspace, gamma curve
and resize method are the same. 2). The color transform
has a huge impact on the anti-detection performance. The
steganographer can achieve better anti-detection performance
for images generated with the Adobe RGB or sRGB col-
orspace. 3). Steganography in the gamma-corrected images
will have a stronger anti-detection ability than in uncor-
rected images. 4). The anti-detection for steganography for
the resized images is much higher than that for images that
have simply been cropped, and the “Bicubic” method is better
than the “Bilinear” method in color image steganography.
Therefore, we recommend steganographers use resized color
images in the SRGB or Adobe RGB colorspace and that are
gamma corrected.

G. Performance on Resisting Other Steganalysis Methods

In addition to the SCRMQ1 and CRMQI1 features, there
are other features and steganalysis methods. In [16],
Abdulrahman et al. enriched the SCRMQI with an
inter-channel correlation composed of three sets of features.
The first set is SCRMQI1, and the other features are based
on local Euclidean and mirror transformations, which can
describe the consistency of the texture direction and reflect the
correlations between channels. We call the two new features
GTM, which are extracted from the co-occurrence correlation
matrices formed by the sine and cosine of the gradient angles
between all the color channels. Recently, deep convolutional
neural networks have attracted increasing attention due
to their excellent performance. In [33], Boroumand et al.
proposed a deep residual network called SRNet, which

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 09:55:09 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: NON-ADDITIVE COST FUNCTIONS FOR COLOR IMAGE STEGANOGRAPHY

05
0.45%

0.4
S
5 035
c
S
T 03
kS)
2
S0 e hiLaNA

—%— CPV-CMD
02} |—® —HiLL-cMD
—— HILL-CMD-C
cPV
015 HILL-ACMP
HILL
0.1 : :
0.1 0.2 0.3 0.4
payload (bpcp)
(@

Fig. 12.

on BOSSbasePPGBIC.

Classification Error

0.5

0.5

0.4

0.35

0.3

0.25

Classification Error

0.2 | [— ® —S-UNIWARD-GINA
— ® — S-UNIWARD-CMD
—— S-UNIWARD-CMD-C
015 S-UNIWARD-ACMP
S-UNIWARD
0.1 ! :
0.1 0.2 0.3 0.4
payload (bpcp)
(@
Fig. 13.

BOSSbasePPGBIC.

Classification Error

0.5

TABLE VI

2093
05
0.45 i
0.4 i
0.35 i
03 i
|
025 [ [ —HiLL-GINA
—%— CPV-CMD
02l |— @ —HiLL-cMD
—— HILL-CMD-C
cPV
015 HILL-ACMP
HILL
0.1 : : :
0.1 0.2 0.3 0.4 0.5

payload (bpcp)
()

Comparison of HILL [7], CPV [24], ACMP [22], CMD [9], CMD-C [23] and GINA for resisting dection by (a) CRMQ1

and (b) SCRMQL [13]

0.5

0.45

0.2 | [— ® —S-UNIWARD-GINA
— ® — S-UNIWARD-CMD
—— S-UNIWARD-CMD-C
015 S-UNIWARD-ACMP
S-UNIWARD
0.1 I I | ]
0.1 0.2 0.3 0.4

payload (bpcp)
()

DETECTION ERRORS ON DIFFERENT DATASETS FOR DIFFERENT STEGANOGRAPHIC SCHEMES UNDER 0.4 BPCP PAYLOAD

Comparison of S-UNIWARD [6], ACMP [22], CMD [9], CMD-C [23] and GINA for resisting dection by (a) CRMQI1 and (b) SCRMQI [13] on

Datasets CRM SCRM
Index | Demosaicking | Colorspace | Gamma curve | Resize HILL CMD-C CMD GINA | HILL CMD-C CMD GINA
D1 PPG RAW BT.709 Bicubic 0.0591 0.1321 0.1330  0.1831 | 0.0612 0.1330 0.1382  0.1838
D2 AHD RAW BT.709 Bicubic 0.0603 0.1329 0.1326  0.1814 | 0.0625 0.1334 0.1368  0.1787
D3 Bilinear RAW BT.709 Bicubic 0.0721 0.1617 0.1586  0.2094 | 0.0753 0.1614 0.1622  0.2045
D4 VNG RAW BT.709 Bicubic 0.0565 0.1310 0.1299  0.1759 | 0.0603 0.1337 0.1399  0.1718
D5 PPG Adobe RGB BT.709 Bicubic 0.1513 0.2601 0.2664  0.3032 | 0.1543 0.2430 0.2521  0.2791
D6 PPG sRGB BT.709 Bicubic 0.1753 0.2725 0.2797  0.3387 | 0.1741 0.2492 0.2625  0.3110
D7 PPG RAW Linear Bicubic 0.0421 0.0895 0.0910  0.1322 | 0.0431 0.0898 0.0949  0.1280
D8 PPG sRGB Linear Bicubic 0.1050 0.1654 0.1816  0.2327 | 0.0999 0.1525 0.1683  0.2087
D9 PPG RAW BT.709 Bilinear 0.0167 0.0519 0.0576  0.0931 | 0.0184 0.0551 0.0622  0.0948
D10 PPG RAW BT.709 Only crop | 0.0005 0.0005 0.0005  0.0007 | 0.0004 0.0004 0.0003  0.0005
D11 PPG sRGB BT.709 Only crop | 0.0077 0.0067 0.0086  0.0128 | 0.0053 0.0048 0.0066  0.0079
D12 PPG RAW Linear Only crop | 0.0003 0.0006 0.0005  0.0007 | 0.0003 0.0003 0.0004  0.0005
D13 PPG sRGB Linear Only crop | 0.0028 0.0030 0.0031  0.0032 | 0.0026 0.0027 0.0027  0.0030

achieves state-of-the-art results in image steganalysis. In the
ALASKA steganalysis challenge [34], Yousfi et al. [21] won
the challenge using methods built around the same deep

residual neural network SRNet.

To investigate whether the GINA-based method is effective
in resisting steganalyzers equipped with enriched rich features
or deep convolutional neural networks, we conducted addi-

tional experiments to test the anti-steganalysis performance.
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TABLE VII
DETECTION ERRORS (SRNET AND SCRMQ1+GTM) ON BOSSBASEPPGBIC256 FOR DIFFERENT STEGANOGRAPHIC SCHEMES AND PAYLOADS

Steganalysis method \ SRNet \ (SCRMQ1+GTM)+Ensemble Classifier
Payload (bpcp) \ 0.1 0.2 0.3 04 \ 0.1 0.2 0.3 0.4
HILL 0.1756  0.1047 0.0681 0.0052 | 04181 0.3106 0.2184 0.1554
HILL-CMD-C 0.2366  0.1556  0.1092  0.0833 | 0.4519 0.3856 0.3146 0.2520
HILL-CMD 0.2287  0.1457 0.1095 0.0901 | 0.4564 0.3936 0.3245 0.2659
HILL-GINA 0.2592 0.1889 0.1505 0.1205 | 0.4620 0.4140 0.3595 0.2980

Due to the limited memory of our GPUs (10-11GB), in order
to use a reasonable size minibatch, these network detectors
were trained on small 256 x 256 tiles, and the cover images
of BOSSbasePPGBIC were resized from 512 x 512 x 3 to
256 x 256 x 3 using imresize with the default settings
in Matlab. We call this dataset BOSSbasePPGBIC256. The
performance quantification of the enriched features is the same
as that described in Section III-B. In SRNet, the image set
is randomly split into a training set with 7,000 cover and
stego image pairs and a validation set with 500 image pairs
and the remaining images were used for testing. The training
was first run for 442k iterations (480 epochs) with an initial
learning rate of r; = 0.001 and then for an additional 100k
iterations (109 epochs) with a learning rate of r» = 0.0001.
We compare the detection performance of HILL, HILL-CMD,
HILL-CMD-C and HILL-GINA with embedding payload rates
of 0.1 to 0.4 bpcp. The results are shown in TABLE VII. It can
be observed that the GINA-based method can also achieve bet-
ter performance when detected by SRNet or SCRMQ1+GTM
with Ensemble Classifier. Furthermore, the steganalysis based
on the deep residual network has a better detection ability than
the traditional machine learning method.

VII. CONCLUSION

With color images becoming the main medium for infor-
mation communication, the corresponding requirements for
powerful color image steganography have become increas-
ingly urgent. In this paper, we proposed a novel strategy
called the GINA for color image steganography considering
the correlations and differences between the three channels.
The strategy can be easily combined with state-of-the-art
steganographic methods to improve steganographic security.
The GINA strategy has two benefits. First, it can effectively
cluster modification directions to maintain the correlations
between channels and within the channel. Second, the GINA
strategy can allocate the payload adaptively and has a lower
change rate.

However, the GINA strategy is designed for color images in
the RGB format. How to design non-additive cost functions for
other color image formats, such as YCbCr [35], [36], is still an
interesting problem. We will extend GINA to YCbCr format
in the future work.
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