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Abstract
Reversible data hiding (RDH) technique allows the original cover to be lossless restored after the secret message is extracted, 
and high dynamic range (HDR) images are becoming more and more popular. We found that the existing RDH schemes for 
HDR image will cause serious stream expansion, which means that the storage size of the cover HDR image will expand. 
Noticing that we proposed a fast coding method named reverse-Golomb code for message embedding in all-zero cover 
to reduce the number of the alteration of pixel’s status, and thus reduce the stream expansion of cover HDR images. The 
experimental results show the superiority of our method.
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1 Introduction

Reversible data hiding (RDH) [1] is a peculiar type of data 
hiding, by which the cover media can be restored from the 
marked media after extracting embedded message. Since 
some cover media are so precious that cannot be damaged, 
RDH technique is widely used in military imagery, medical 
imagery, and law forensics.

Many reversible data hiding (RDH) methods have been 
proposed, since it was introduced. Fridrich and Goljan [2] 
presented a universal framework for reversible data hid-
ing. To achieve larger capacity, Tian [3] proposed a method 
based on difference expansion (DE), and another well-known 

reversible data hiding method is histogram shift (HS) [4]. 
To achieve the better performance, the state-of-the-art RDH 
methods combine these strategies to the residuals of images 
[5–11]. The above-mentioned algorithms are presented for 
gray images, and many RDH methods have been proposed 
for color images, such as [12–17].

In the past few years, interest in high dynamic 
range(HDR) images has skyrocketed. HDR images can rep-
resent a greater range of luminance levels than that can be 
achieved using the traditional methods, which is valuable in 
many real-world scenes containing very bright, direct sun-
light to extreme shade or very faint nebulae. HDR images is 
often achieved by capturing and then combining several dif-
ferent, narrower range, exposures of the same subject matter. 
Non-HDR cameras take photographs with a limited exposure 
range, referred as low dynamic range (LDR), resulting in the 
loss of detail in highlights or shadows. In comparison to the 
LDR images, HDR images use floating-point numbers to 
represent luminance for a scene to better represent the wide 
range of intensity levels found in real scene ranging from 
direct sunlight to the deepest shadows. Figure 1 displays the 
visual difference between LDR and HDR image. This scene 
has high contrast ratio with the bright light in the middle 
of this scene and the dark background around the building. 
When we directly display the LDR image, we lose the details 
of the building and the pool, because the luminance is out of 
the range supported in an ordinary device. However, when 
we use the tone-mapping operator to show this HDR image, 
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all the details are visualized. Many image processing soft-
wares have been developed to support HDR image, and they 
are becoming more and more popular in various of fields, 
such as digital photography, movies, medical imaging, video 
games, and so on.

Though RDH technique in images with 8-bit pixels is 
mature, the research in HDR images has not kept up with 
the pace of it. There has been very few RDH works done 
on HDR images. Cheng and Wang proposed an adaptive 
data hiding method for HDR images [18], who classified 
the pixels into the flat and boundary areas. The classification 
removes the restrictions of a fixed size of message embed-
ded at each pixel to provide a large embedding capacity with 
the little visual distortion. Yu et al. [19] proposed the first 
distortion-free data hiding algorithm for HDR images with 
radiance RGBE format [20]. The HDR images with radiance 
RGBE format have some special pixels. If we operate some 
specific alterations to these pixels, the HDR images will not 
emerge any visual difference after tone mapping. This is 
different from the traditional RDH methods in images with 
8-bit pixels which have to restore the cover media to achieve 
the lossless. Thus, we can distortion-freely embed message 
into it using such character. Subsequent works [21–23] 
improved the capacity of Yu’s work by making better use of 
the homogeneous representations.

Yu’s work and its subsequent works are distortion-free 
in the level of visual and content, but all of them ignored 
that it will cause stream expansion after message embedding 
which means that the storage size of the HDR image will 
expand after message embedding. In the presented paper, to 
reduce the stream expansion, we proposed an efficient cod-
ing method for message embedding to reduce the number of 
the alteration of pixel’s status. The main contribution of our 
method is that it will sharply reduce the stream expansion. 
And it is very fast compared with the minimizing-distortion 
steganographic coding method syndrome trellis code (STC). 
The experimental results showed that our method has a bet-
ter embedding efficiency but much faster than STC.

Because Yu’s work and its subsequent work did not take 
into account the stream expansion and Yu’s work is the most 

representative, to explain our method more concisely, we will 
introduce our method based on Yu’s work rather than its fol-
low-up work.

The following contents are organized as follows. In Sect. 2, 
we will introduce Yu’s work. In Sect. 3.1, we will introduce 
our coding method, and in Sect. 3.2, the message embedding 
in all-zero cover will be stated. In Sects. 3.3 and 3.4, it is the 
analysis of our method and the message embedding in HDR 
images which we expound. The experimental results will be 
shown in Sect. 4, and the last section is the conclusion.

2  Related works

In this section, we will first introduce the radiance RGBE for-
mat for HDR images. Then, we emphatically introduce Yu’s 
work [19].

Let P(r, g, b, e) represent a pixel with the radiance format in 
an HDR image, where the r, g, and b are the scales in the three 
color channels and e represents the scale of the exponent chan-
nel, and all the channel scales r, g, b, e are integers ranging 
from 0 to 255. We can convert the radiance format to floating-
point format by the floating-point conversion, as shown in 
Eq. (1). In like manner, for a given color pixel (R, G, B) with 
the floating value, we can convert it into the radiance (r, g, b, e) 
coding using the integer conversion which is shown in Eq. (2), 
where the max(R,G,B) represents the maximum scale in the 
three color components, R, G, and B:

(1)

R = ((r + 0.5)∕256) × 2(e−128)

G = ((g + 0.5)∕256) × 2(e−128)

B = ((b + 0.5)∕256) × 2(e−128)

(2)

e = ⌊log2[max(R,G,B)] + 128⌋
r = ⌈(256 × R)∕(2e−128)⌉
g = ⌈(256 × G)∕(2e−128)⌉
b = ⌈(256 × B)∕(2e−128)⌉.

Fig. 1  Visual contrast of LDR 
image and HDR image. a LDR 
image, b HDR image
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By Yu et al. [19], for a given pixel with the radiance format 
P(r, g, b, e), the division operator can be used with the divi-
sor 2 for three color channels and increase 1 to the exponent 
channel to obtain a representation A(r∕2, g∕2, b∕2, e + 1) , 
which would give the completely the same color after tone 
mapping and give almost the same floating-point color scale. 
Likewise, we can apply the multiplication operator to pro-
duce the representation B(2r, 2g, 2b, e − 1) on the condition 
that scales of three channel, 2r, 2b, 2g, are within the range 
between 0 and 255. Then, this work defines the homogene-
ous representation group (HRG) for this pixel to represent a 
group of pixels where every pixel in this HRG describes the 
same color with P(r, g, b, e). Then, we denote the HVp to 
represent the homogeneity value which means the number 
of the pixels in this group. The elements are sorted by the 
values in the exponent channel using the ascending order 
in HRG. It allows us to define the homogeneity index (HI) 
for the elements in the HRG range from 0 to (HVP − 1) . An 
example is showed in Table 1.

Two basic rules make it easy to determine the HRG 
for a given pixel. One is that the multiplication operator 
only can be used when all the scales of the given pixel in 
color channels are less than 128. It means that overflow 
is not allowed. The other one is that the division operator 
should be stopped when an odd occurs in color channel. 
It is not difficult to understand it, because all scales in 
channel should be represented as the integers. If an odd 
occurs and we still do division operator, then decimal will 
occur, which is not allowed. After following such two 
rules, if we operate multiplication MU times and division 
DI times, HVP , the homogeneity value of P is calculated 

as HVP = MU + DI + 1 . For the scales in color channel 
with the range of 0 to 255, the max HVP = 7 . In addi-
tion, the HRG at least has P itself, so the min HVP = 1 . 
An example for a given pixel P(96, 56, 68, 128), we can 
only apply the multiplication one time ( MU = 1 ) to get 
(192, 112, 136, 127). In addition, the division operator can 
be used for two times ( DI = 2 ) producing (48, 28, 34, 129) 
and (24, 14, 17, 130). Because of the occurrence of the 
odd number 17, the division operator stops to prevent deci-
mals from happening. Therefore, the homogeneity valve of 
P is calculated as HVP = 1 + 2 + 1 = 4 . After the homoge-
neity group and the homogeneity value of a pixel P have 
been determined, the pixel capacity in bits, CP , can be 
calculated as Eq. (3). The capacity of the pixel means how 
many bits of messages can be embedded into this pixel:

Then, we can use the homogeneity index table (HIT) as 
shown in Table 2 developed by [19] to embed secret mes-
sages into the cover pixel P(r, g, b, e). For a given cover 
pixel P, we can obtain the homogeneity value HVP . Depend-
ing on HVP , we can determine the number of bits that can 
be conveyed by cover pixel P by the first column of Table 2. 
In addition, the third column describes the associate pattern 
of message that can be embedded with respect to different 
homogeneity indices. Then, we can alter the cover status 
C(HVP, HIP) to stego status S(HVP, HI

�
P
) by consulting to 

the HIT.
An example shown below will tersely expound the 

embedding process. For a given pixel P(96, 56, 68, 128), 
first, we produce the HRG for P. As shown in Table 3, 
HRG

P
= {(192, 112, 136, 127), (96, 56, 68, 128), (48, 28, 34,

129), (24, 14, 17, 130)}  .  T h e  c o v e r  s t a t u s 
C(HVP, HIP) = C(4, 1) . And two bits of secret message 
can be embedded into P, because the homogeneity value 
of P equals 4. Depending on the two secret bits, the cover 
status C(4, 1) will be altered to four possible stego sta-
tus according to Table 3. If the secret message is “11”, 
the stego status will be S(4, 3), and the stego pixel will 
become P�(24, 14, 17, 130) which has the homogeneity 

(3)CP = ⌊log2(HVP)⌋.

Table 1  An example of pixel P has four sorted elements in HRG

Pixel value of P HVP Sorted element in HRGP HIp

P(96, 56, 68, 128) 4 (192, 112, 136, 127) 0
(96, 56, 68, 128) 1
(48, 28, 34, 129) 2
(24, 14, 17, 130) 3

Table 2  Homogeneity index 
table use to embed secret 
message into a cover pixel P 
with different homogeneity 
values

Number of bits to 
conveyed

HVP Homogeneity index

0 1 2 3 4 5 6

0 1 NP – – – – – –
1 2 “0” “1” – – – – –
1 3 “1” “0” NA – – – –
2 4 “00” “01” “10” “11” – – –
2 5 “01” “10” “11” “00” NA – –
2 6 “10” “11” “00” “01” NA NA –
2 7 “11” “00” “01” “10” NA NA NA
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index HIK = 3 . It is easy to notice that we will change 
nothing if the secret bits is “01” in this example, and the 
stego pixel will be exactly the same as the cover pixel.

It is noteworthy that the bit patterns associated with the 
homogeneity index are different with different homogeneity 
values of cover pixel. The benefit of this is to avoid coinci-
dent alternation of homogeneity index when embedding the 
same amount of secret messages. Another reason is that it 
will reduce the variation of histogram distributions in color 
channel.

The homogeneity index table is necessary to both mes-
sage embedding and extraction, and we can use a secret key, 
key1, to avoid the attack of eavesdroppers. Now, given an 
HDR image in RGBE format with size of M × N , the mes-
sage embedding process is tersely made up of four following 
steps:

Step 1: Examine every pixel according to a secret key, 
key2, which determines the embedding order of secret mes-
sage. For an examined pixel, such as K, we determine the 
corresponding HRGK and HVK.

Step 2: For the examined pixel, we calculate the pixel 
capacity CK by Eq. (3). If homogeneity valve of K is greater 
than 1, pixel K is able to carry CK bits secret message. Oth-
erwise, we go back to step 1 with the next pixel.

Step 3: Compute the current cover pixel status 
C(HVK , HIK) . According to HIT and the secret message, we 
can determine the desired stego pixel status S(HVK , HI

�
K
).

Step 4: Alter the current cover pixel K to the stego pixel 
K′ by selecting a corresponding element in HRGK that has 
the homogeneity index of HI′

K
 . After all this has been done, 

we go back to step 1 with next pixel.
The total embedding capacity (TMC) of an HDR image 

can be calculated by the following equation:

The extraction of secret message is the straightforward 
inverse process, and we will not give unnecessary details 
here. It is mentioned in [19] that there are two special cases 
of pixel will not be used to carry the secret message. For a 

(4)TMC =

M×N�
i=1

⌊log2(HVi)⌋.

pixel P(r, g, b, e), the first case is when the pixel scales are 
all zeros in both color and exponent channels. It is called 
“null” pixel. The second case appears when the pixel scales 
in the color channels are power of 2, or one or two of pixel 
scales is/are zeros, i.e., P(2j||0, 2j||0, 2j||0, e) , where j is an 
integer ranged in [0, 7]. We refer to this type of pixel as 
“neutral” pixel. It’s not difficult to understand that such two 
kinds of pixels can carry relatively more secret message, but 
it will cause a large pixel difference if we use these two kinds 
of pixel to carry secret message. The difference is caused by 
the magnitude of 0.5 added to the floating-point conversion, 
as shown in Eq. (1), and the floor function is applied for the 
integer conversion, as shown in Eq. (2). It is proved that if 
we do not use those two special cases of pixel as mentioned 
above to carry secret message, the pixel difference will be 
small enough to ignore. As for the experimental results, the 
average capacity offered by this method [19] is in range of 
0.1256–0.1281 bits per pixel.

3  The proposed works

As we described above, Yu et al. [19] is a distortion-free 
data hiding scheme for HDR images, in terms of visual 
quality and content. After some experiments, we found that, 
though it is truly distortion-free, it will cause stream expan-
sion after secret message is embedded. In another word, it 
will enlarge the storage size of the HDR images after we 
embed secret message into it and code the image. It is not 
difficult to understand why the stream expansion happened 
for it breaks the correlation of pixels after we alter the pixel 
scales. For a cover HDR image with storage size 2604 KB, 
the storage size will grow to 2672 KB with the 0.62 embed-
ding rate using the method of [19]. The core work of the 
presented paper is to introduce a specific code to reduce the 
stream expansion.

The stream expansion appears when we alter the pixel’s 
status. Hereby, reducing the number of the alteration of pix-
el’s status is an efficient way to decrease the stream expan-
sion. First, we will introduce our coding method which can 
be used in all-zero cover to minimize the alteration, and 
then, we will expound why the redundancy space in HDR 
images with RGBE format can be regarded as all-zero cover.

3.1  Coding method for secret data

Inspired by a compression algorithm named Golomb Code 
which is used to compress the sparse sequence, if we can use 
its decompression algorithm to encode the secret message, 
we can obtain a sparse message sequence. Thus, we can 
reduce the alteration in the embedding phase to decrease the 
stream expansion. Hereby, we proposed a coding algorithm 

Table 3  An example of embedding 2 bits of secret message into a 
cover pixel P(96, 56, 68, 128)

Sorted elements in HRGP HIP Status of stego 
pixel

Con-
veyed 
message

(192, 112, 136, 127) 0 S(4, 0) “00”
(96, 56, 68, 128) 1 S(4, 1) “01”
(48, 28, 34, 129) 2 S(4, 2) “10”
(24, 14, 17, 130) 3 S(4, 3) “11”



Journal of Real-Time Image Processing 

1 3

for all-zero cover called reverse-Golomb (RG) code. And 
why we can regard the cover as all-zero cover will be 
explained in Sect. 3.3.

First, we introduce a simple coding method named Unary 
code as preliminaries. The Unary code of a non-negative 
integer i is i 0’s followed by a 1. For example, the Unary 
code of 4 is “00001”. Now, we will expound our cod-
ing scheme using the Unary code. For an all-zero cover 
sequence c = (c1, c2,… , cN) , which means all the symbols 
ci = 0 for 1 ≤ i ≤ N , we want to embed a massage sequence 
x = (x1, x2,… , xL,…) into it. Now, we introduce an impor-
tant positive integer parameters m. The parameter m is a 
controlled parameter decided by the embedding rate. The 
discussion of how to determine m appears later.

Once m is decided, we will build a binary tree to encode 
all the Unary code of the integers from 0 to m − 1 . We use 
the different prefix codes to build the tree, and details are 
expounded as follows. First, we choose an integer param-
eter k, satisfying 2k−1 < m ≤ 2k , which is equivalent to 
k = ⌈log2 m⌉ . Then, we build a k-step full binary tree which 
has 2k leaves. If m = 2k , the building of the tree finished. The 
leaves are the Unary code of 0 to m − 1 from left to right. 
And the branches are left to right by a natural binary code 
of 0 to m − 1. If m < 2k , we need to merge some leaves. We 
encode 0 to 2k − m − 1 to the code which constituted with 
k − 1 bits which means that the leaves on these branches of 
the full binary tree will be merged. This is (k − 1)-bits cor-
responding natural binary code. Wherein, the code word of 
integer 0 is k − 1 0’s, and the rest code words plus 1 orderly 
until the code word of 2k − m − 1 ; From 2k − m to m − 1 , 
we use k bits to encode. Wherein, the value of code word 
of (2k − m) is 2 × (2k − m) , and the rest code words plus 1 
orderly in the same way. Now, we finished the compilation of 
the coding dictionary of 0 to m − 1 using two kinds of length 
( k − 1 bits and k bits) of code word when m < 2k . A simple 
example is displayed as follows.

Example 1 Take the parameter m = 5 , k = ⌈log2 m⌉ = 3 . The 
code words of leaves of three-step binary tree, respectively, 
are 000, 001, 010, 011, 100, 101, 110, 111. There are three 
code words whose length is 2, so combine 000 with 001 to 
00, 010 with 011 to 01 and 100 and 101 to 10. The leaves 
of this tree is the Unary code of 0 to m − 1 from left to right 
orderly. Therefore, the coding of 0 to m − 1 is 0:00, 1:01, 
2:10, 3:110, and 4:111. The code tree is shown in Fig. 2.

The tree which we build above is for the Unary code of 
the number from 0 to m − 1 . After finishing building this 
tree, there is one last step to build the tree for encoding of 
the secret message. Started from the root, branch “0” con-
nects m continuous 0’s; Branch “1” connects the tree which 
we built before. It is all the operations of building the code 
tree for the secret message. The code tree is shown in Fig. 3, 

and the code table which is built based on the code tree is 
shown in Table 4. It is worth mentioning that we always 
put the source word “0” at the last of the table and give the 
index “ m + 1 ” to it.

3.2  Message embedding in all‑zero cover

After the code table is obtained, the message embedding 
process is visualized. A register R and two pointers P1, 
P2 are needed for embedding. P1 is used to label the last 
cover symbol that has been altered, and P2 is used to label 
the number of message bits that have been embedded. R is 
used to store the current bits which need to be encoded and 
embedded. First, let P1 = 0 and P2 = 0 and clear R.

R reads in the message bits xP2+1.
Case 1: If R = 0 , let P1 = P1 + m , P2 = P2 + 1 and 

one bit xP2+1 is embedded. In this case, no cover symbol is 
altered.

Case 2: If R = 1 , R reads in next k − 1 which equals 
to ⌈log2 m⌉ − 1 bits message sequentially. Now, try match 
R(xP2+1,… , xP2+k) with the source words in the second row 
of the code table. If it matches with the column which 
has the index of “j”, let P1 = P1 + j , P2 = P2 + k , and 
flip cover symbol cP1 form “0” to “1”, and clear R. Thus, 
k bit messages (xP2+1,… , xP2+k) are embedded and only 
one cover symbol is altered. And if match failed, R reads 

Fig. 2  Code tree for Unary code (m = 5)

Fig. 3  Code tree for message (m = 5)
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in one more bit and match R(xP2+1, ..., xP2+k+1) with the 
code words in second row of the code table. If it matches 
with column which has the index of “j”, let (P1 = P1 + j) , 
(P2 = P2 + k + 1) , and flip cover symbol cP1 form “0” to 
“1”, and clear R. Thus, k + 1 bits (xP2+1,… , xP2+k+1) are 
embedded and only one cover symbol is altered.

For both cases, we have embedded the first P2 bits of 
secret message into first P1 cover symbol. In the same 
way, we continue to embed the rest bits into the rest 
cover, until N − P1 < m . We obtain the marked cover 
c� = (c�

1
, c�

2
,… , c�

N
).

The extraction is performed in the reverse way. Let 
P1 = 0,P2 = 0 and clear R. R reads in c�

P1+1
 , and there are 

three cases according to c�
P1+1

 and Rlen which express the 
length of the current R.

Case 1: If c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 , and 
R reads in one more bit c�

P1+1
.

Case 2: If c�
P1+1

= 0 and Rlen = m . Let P1 = P1 + 1 , 
P2 = P2 + 1 , let the P2th message bit xP2 = 0 . And clear R.

Case 3: If c�
P1+1

= 1 , check the column which has 
the index of Rlen of the code table. The message source 
words of this column are the message fragment that we 
extract. Assume that the length the message fragment is 
a ( a = k or k + 1 ) and the message fragment is expressed 
as A(A1,… ,Aa) . The message that we extract can be 
presented as (xp2+1,… , xP2+1+a) = A . Let P1 = P1 + 1 , 
P2 = P2 + a , and clear R.

With the same manner, we extract message from the rest 
symbol until N − P1 < m and there is no symbol “1” in 
the rest N − P1 symbols of the marked cover. Now, we use 
a simple example to show the embedding and extraction 
processes of our method.

Example 2 Take m = 5 , the code tree and code table 
have already built in Fig.  3 and Table  4. Assume the 
message strand that we want to embed is presented as 
x = (0, 1, 0, 1, 0, 1, 1, 1, 0) and the cover is a 16-length all-
zero cover, i.e., N = 16 , as shown in Table 5. First, let 
P1 = 0 , P2 = 0 and clear R.

Step 1: R reads in x1 = 0 , so let P1 = P1 + 5 = 5 , 
P2 = P2 + 1 = 1 , and clear R.

Step 2: R reads in xP2+1 = x2 = 1 , thus R sequentially 
reads in k − 1 = 2 bits message. Match R(1, 0, 1) with the 
second row in Table 4. Matched with the column 2. Thus, 
P1 = P1 + 2 = 7 , P2 = P2 + k = 4 , and flips the cover sym-
bol cP1 = c7 from “0” to “1”. Clear R.

Step 3: R reads in xP2+1 = 0 , so let P1 = P1 + 5 = 12 , 
P2 = P2 + 1 = 5 , and clear R.

Step 4: R reads in xP2+1 = 1 , thus R sequentially reads in 
k − 1 = 2 bits message. Match R(1, 1, 1) with the second 
row in Table 4, FAILED. Therefore, R reads in one more 
bit. Match R(1, 1, 1, 0) with code Table 4. Matched with the 
column 4. Thus P1 = P1 + 4 = 16 , P2 = P2 + k + 1 = 9 and 
clear R. Flips the cover symbol cP1 from “0” to “1”. Clear R. 
As N − P1 = 0 < m , so the embedding process stops. The 
marked cover x′ is obtained by altering the 7th and 16th bits.

To extract the massage from c′ , set P1 = 0 , P2 = 0 , and 
clear R.

Step 1: {c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 , and 
R reads in one more bit c�

P1+1
} × 4. Now, c�

P1+1
= 0 and 

Rlen = m = 5 . P1 = P1 + 1 = 5,P2 = P2 + 1 = 1 , let the 
P2th message bit xP2 = x1 = 0 . And clear R (the mark 
“ {⋇} × n ” express the operation “ ⋇ ” have been repeated for 
n times).

Step 2: c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 = 6, 
and R reads in one more bit c�

P1+1
 . Now c�

P1+1
= 1 and 

Rlen = 2 . Check the column which has index of 2 of Table 4. 
The message source words is expressed as A(1, 0, 1) and 
a = 3 . Thus, message bits (m2,m3,m4) = A = (1, 0, 1) . Let 
P1 = P1 + 1 = 7,P2 = P2 + a = 4 and clear R.

Step 3: {c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 , and 
R reads in one more bit c�

P1+1
} × 4. Now, c�

P1+1
= 0 and 

Rlen = m = 5.P1 = P1 + 1 = 12,P2 = P2 + 1 = 5 , let the 
P2th message bit xP2 = x5 = 0 . And clear R.

Step 4: Although N − P1 = 4 < m , the extraction pro-
cess continue, because there are symbol “1” in the last four 
bits. {c�

P1+1
= 0 and Rlen < m . Let P1 = P1 + 1 , and R reads 

in one more bit c�
P1+1

} × 3. Now, c�
P1+1

= 1 and Rlen = 4 . 

Table 4  Code table (m = 5) Index 1 2 3 4 5 6

Source word 100 101 110 1110 1111 0
Code word 1 01 001 0001 00001 00000

Table 5  Example of data 
embedding into all-zero covers

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Message x 0 1 0 1 0 1 1 1 0
Cover c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Marked cover c′ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
Embedding step Step 1 Step 2 Step 3 Step 4
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Check the column which has index of 4 of Table 4. The 
massage source words is expressed as A(1, 1, 1, 0) and a = 4 . 
Thus, message bits (m6,m7,m8,m9) = A = (1, 1, 1, 0) . Let 
P1 = P1 + 1,P2 = P2 + a = 9 and clear R.

In this example, we embedded 9 bits of secret message 
into a 16-length all-zero cover with only two alterations. 
We denote our embedding method by � . We research two 
cases to analyze the embedding rate and distortion of � . In 
case 1, we embed one bit into a m-length cover without any 
alteration; in case 2, we embed k or k + 1 bits of message by 
costing the cover symbols range from 1 to m and one altera-
tion occurs. Because of the randomness of the message, the 
probability of being “1” or “0” of the first bit register R reads 
in within embedding process is both 0.5. Once “0” is first 
read in, there will be no alteration, and one alteration will 
happen when “1” is first read in no matter what is to be the 
next. Therefore, the average number of alteration is equal to 
the following:

As we discussed above, when m < 2k which means that m is 
not the power of 2, there will be (2k − m) segments of mes-
sage whose length is k and (2m − 2k) segments of message 
whose length is k + 1 in case 2. Consequently, the average 
number of embedded bits is equal to the following:

Because the number of cover symbols which we cost is rang-
ing from 1 to m, the average number of expending cover 
symbols is equal to

Therefore, the embedding rate R0 and the distortion D0 of 
code � can be calculated by the following:

And if m = 2k , the calculation will be visualized:

(5)Nalt = 0.5.

(6)

Nmes =
1

2
× 1 + [

1

2k
(2k − m)k +

1

2k+1
(2m − 2k)(k + 1)]

=
1

2
k +

m

2k
.

(7)Ncov =
1

2
m +

⎛
⎜⎜⎝

2k−m�
i=1

i

2k
+

m�
i=2k−m+1

i

2k+1

⎞
⎟⎟⎠
.

(8)R0 =
Nmes

Ncov

=

1

2
k +

m

2k

1

2
m +

�∑2k−m

i=1

i

2k
+
∑m

i=2k−m+1

i

2k+1

�

(9)D0 =
Nalt

Ncov

=
1

m +
�∑2k−m

i=1

i

2k−1
+
∑m

i=2k−m+1

i

2k

� .

3.3  Analysis of pixel characteristic of HDR image 
and parameter selection

After a survey of the pixel scale of HDR images, we 
found that, for overwhelming majority of the pixels, the 
max(r, g, b) is larger than 127 (except the “null” pixels 
mentioned in Sect. 2). This is because all the images in 
RGBE format are converted from images in floating-
point format, and we can get max(r, g, b) ≥ 128 by Eq. (2). 
With regard to this feature, the redundancy space in HDR 
images can be regarded as all-zero cover for the initial HIs 
of all the pixels are always “0”.

As we discussed above, the HVp of a HRG is ranging 
from 1 to 7, and when the HVp is larger than 1, this HRG 
can be used to carry messages. It is not difficult to under-
stand that the larger the HVp is, the more message that we 
can embed into this HRG. However, in our method, we use 
only the elements whose HI is equal to 0 or 1 in a HRG 
which means that we have to abandon some capacity of the 
HDR image. The purpose of this choice is to reduce the 
stream expansion. For the same one bit message, we want to 
embed; the stream expansion caused by embedding it using 
element with large HI will be larger than the that using small 
HI. And if we regard the pixel scale as random, the prob-
ability of pixel which has large HVp is slim. Every time 
the HVp grows 1, the probability of its appearance will be 
8 times smaller. Therefore, this choice makes the capacity 
(1∕82) + (1∕83) + (1∕84) + (1∕85) ≈ 0.018 smaller in aver-
age calculation, and it is still acceptable. Therefore, for every 
pixel which HV is larger than 2, we declared this pixel’s 
HV of 2.

The embedding rate R0 has been obtained by Eq. (8). In 
addition, for a given HDR image with size of M × N  , the 
total embedding capacity of our method can be easily cal-
culated by examining the homogeneity value of each pixel, 
as shown in the following equation:

For the message sequence x = (x1, x2,… , xn) to be embed-
ded, the parameter m can be self-adaption computed after 
the TEC and R0 are obtained:

(10)
Nmes =

1

2
+

k + 1

2
=

k

2
+ 1 R0 =

Nmes

Ncov

=
2k + 4

3m + 1

Ncov =
3

4
m +

1

4
D0 =

Nalt

Ncov

=
2

3m + 1
.

(11)TEC =

M×N�
i=1

⌊log2(HVi)⌋.
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After all this preparatory works, the redundancy space of 
HDR image has completely became all-zero cover. The 
embedding and extraction process will be very simple and 
intuitive.

3.4  Message embedding and extraction with HDR 
image

For a given HDR image I with size of M × N and secret mes-
sage x = (x1, x2,… , xn) , the embedding operation is shown 
in the following steps:

Step 1: Use a secret key, Key1 , to encrypt the message, 
and obtain y = (y1, y2,… , yn) . Examine every pixel of HDR 
image I to get the total embedding capacity TEC. After TEC 
is obtained, we can compute the parameter m using Eq. (12). 
Then, we use m to encode the encrypted message y to get 
encoded message y′ using our RG code.

Step 2: Examine every pixel to obtain the homogeneous 
representation group (HRG) and the homogeneity value 
(HV) of every pixel. For an examined pixel K, if HVK is 1, 
examine next pixel. If HVK is larger than 2, set HVK to 2.

Step 3: If HVK = 2 , we can embed a bit of message y′
i
 into 

it. If y�
i
= 0, we set the pixel status C(HVK , HIK ) to C�(2, 0) . 

If y�
i
= 1, we set the pixel status C(HVK , HIK) to C�(2, 1) . 

And examine next pixel.
We continue these processes until all messages are 

embedded.
The extraction of secret message is straightforward 

reverse. For a given stego HDR image, we examine every 
pixel. For an examined pixel K if HVK = 1 , we examine next 
pixel. If HVK = 2 , we compute the pixel status C(HVK , HIK) . 
If HIK = 0 , the message bit that we extract is “0”, and if 
HIK = 1 , the message bit that we extract is “1”. We examine 
next pixel until all messages are extracted. Then, we use our 
RG coding to decode the message that we extracted. At last, 
use the secret key, Key1 , to decrypt the message.

4  Experimental results and discussion

To show the advantage of our method, several experi-
ments will be discussed in this section. We selected 20 
images from the HDR image library provided by [24] as 
test images. In addition, we employed four HDR images 
as show images including “stairs”, “desk”, “lobby”, and 
“mountain”, as shown in Table 6. The size of these four 

(12)

R0 =
n

TEC
=

Nmes

Ncov

=

1

2
k +

m

2k

1

2
m +

�∑2k−m

i=1

i

2k
+
∑m

i=2k−m+1

i

2k+1

� .

images is 760 × 1016, 644 × 874, 512 × 768 and 1214 × 732 , 
respectively. The number of usable pixels ( HV ≧ 2 ) of 
each image is shown in the third column of Table 6. The 
next column shows the usable pixel rate of each image 
and the average usable pixel rate of these four images can 
be calculated as 0.1289 bpp. The last column shows the 
rate of max(r, g, b) > 127 of our four test images, and all 
of them are equal or very close to 1. Figure 4 displays 
the tone-mapped cover and stego images with different 
embedding rates. Figure 4a is the tone-mapped image 
of the “Stairs”, and the Fig. 4b is the stego image of it 
with 0.62 embedding rate (m = 4). Figure 4c–h shows the 
tone-mapped images of the rest three test images and the 
stego images with the embedding rates of 0.4 (m = 8), 0.31 
(m = 12), and 0.24 (m = 16). As for different images with 
different embedding rates, the generated stego images will 
not reveal any visual differences contrasted with the cover 
images.

The main purpose of our method is to reduce the stream 
expansion caused by the method of [19]. First, we quantify 
the stream expansion as DS in the following equation:

Ss is the storage size of the stego image after secret 
message is embedded and the Sc is the storage size of the 
original cover image. Table 7 displays the different stream 
expansions with different embedding rates in our four test 
images.

In Table 7, the last column shows the embedding rates 
that we choose to test and the value of the relevant param-
eter m. We choose four embedding rates 0.62, 0.4, 0.31, and 
0.24 to test, and the corresponding parameters m are 4, 8, 
12, and 16, respectively. The second and fourth columns 
of Table 7 show the stream expansion of Yu’s work [19] 
and our proposed method with diverse embedding rates. 
The third column is the stream expansion generated by 
Chang’s work [23] embedding the message with the same 
number of bits as the [19] under the corresponding embed-
ding rate. And the fifth column shows the ratio of the stream 

(13)DS =
Ss − Sc

Sc
× 100%.

Table 6  Information of HDR images

Image 
name

Size Number of 
usable pixel

Usable 
pixel rate 
( %)

Rate of 
max(r, g, b) > 127

Stairs 760 × 1016 100580 13.03 1.00
Desk 644 × 874 70660 12.55 1.00
Lobby 512 × 768 52538 13.36 1.00
Mountain 1214 × 732 112075 12.61 1.00
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expansion of our method and Yu’s work. It is worth mention-
ing that, since [23] is the follow-up work of [19], and [23] 
only increases the capacity of [19] to a certain extent, the 

stream expansion generated by [23] is almost equal to [19] 
when the same number of bits is embedded. Therefore, in 
the subsequent comparison, we will use [19] as the main 

Fig. 4  Cover images and marked images. a Cover image, stairs. b Marked image, stairs. c Cover image, desk. d Marked image, desk. e Cover 
image, lobby. f Marked image, lobby. g Cover image, mountain. h Marked image, mountain

Table 7  Stream expansion 
comparison with different 
embedding rates

DS Yu’s work (%) Chang’s 
work (%)

Our method (%) Stream expan-
sion ratio

R0 (m)

Stairs 2.61 2.64 1.42 0.54 0.62 (4)
1.65 1.67 0.77 0.47 0.4 (8)
1.27 1.29 0.54 0.43 0.31 (12)
0.96 0.97 0.38 0.39 0.24 (16)

Desk 2.02 2.08 1.25 0.62 0.62 (4)
1.14 1.16 0.67 0.59 0.4 (8)
0.93 0.94 0.47 0.51 0.31 (12)
0.73 0.73 0.31 0.42 0.24 (16)

Lobby 2.29 2.33 1.40 0.61 0.62 (4)
1.48 1.50 0.74 0.5 0.4 (8)
1.11 1.12 0.52 0.47 0.31 (12)
0.88 0.87 0.37 0.42 0.24 (16)

Mountain 2.78 2.81 1.34 0.48 0.62 (4)
1.88 1.90 0.70 0.37 0.4 (8)
1.44 1.42 0.50 0.35 0.31 (12)
1.14 1.15 0.37 0.32 0.24 (16)

Average results of 
20 test images

2.45 2.48 1.33 0.54 0.62 (4)
1.47 1.49 0.75 0.51 0.4 (8)
1.18 1.19 0.51 0.43 0.31 (12)
0.99 0.99 0.36 0.36 0.24 (16)
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comparison method. In Table 7, the second-to-fifth rows 
show the experimental results of the test image “stairs”. As 
for the 0.62 embedding rate ( m = 4 ), the stream expansion 
of Yu’s work is 2.61%, and the stream expansion of our pro-
posed method is 1.42%. The ratio of the stream expansion of 
our work to Yu’s work is 0.54 which means that our method 
reduces 46% stream expansion of Yu’s work with the 0.62 
embedding rate. When the embedding rate is equal to 0.4 
( m = 8 ), the stream expansion of Yu’s work and our work 
are 1.65% and 0.77% severally. And the ratio of the stream 
expansion of our work to Yu’s work is 0.47. With the embed-
ding rate reducing to 0.31 ( m = 12 ), the stream expansion 
of Yu’s work and our method reduce to 1.27% and 0.54% 
respectively. And the ratio of the stream expansion of our 
work to Yu’s work becomes 0.43. The stream expansion of 
Yu’s work and our work is 0.96% and 0.38% with the 0.24 
embedding rate ( m = 16 ). The ratio of the stream expan-
sion of our work to Yu’s work is 0.39 correspondingly. The 
experimental results of the last tree test images is shown in 
the sixth-to-seventeenth rows in Table 7. The last four rows 
of Table 7 show the average results of the 20 test pictures. 
It is not hard to understand that when the embedding rate 
is less than or equal to 0.75 ( m ≧ 2 ), our proposed method 
will be able to reduce the stream expansion. And observing 
the fifth column of Table 7, we can discover that with the 
embedding rate reducing (m growing) the ratio of the stream 
expansion of our work to Yu’s work is reducing. This means 
that the smaller embedding rate is, the more efficient our 
method is.

We have discussed before why we use only the homoge-
neity value of 2 in Sect. 3.3, now, we have done some experi-
ments to prove that the total capacity [19] and the capacity 
of our choice of the four test images are shown in Table 8.

The second column of Table 8 shows the capacity of our 
method (denoted as C1) and the next column shows the 
total capacity of Yu’s [19] method (denoted as C2). The 
last column shows the capacity loss rate which equals to 
(C2 − C1)∕C2 . For a simple example, the second row shows 
the experimental result of the test image “stairs”. The capac-
ity of our method is 100588 bits, and the total capacity is 
103,250 bits. Therefore, the capacity loss rate can be cal-
culated as (103,250 − 100,588)∕103,250 ≈ 0.025 . Though 
the capacity loss rate of the test image “stairs” is a little bit 
higher than what we expect (0.018), the capacity loss rates of 

the last three test images which are 0.018, 0.017, and 0.017, 
respectively, are conform to the expectation.

The next experiment that we did is to show the biggest 
stream expansion of Yu’s work and our method, which 
means that we have to utilize the division operator as much 
as possible. In this experiment, the division operator will be 
done once the pixel having the homogeneity value no less 
than 2 for our method. And for Yu’s method, the division 
operator will be tautologically utilized till an add occurs 
in color channel. Table 9 displays the experimental result. 
The second column of Table 9 shows the maximal stream 
expansion of possible of our method (denoted as DS1 ), and 
the next column shows the maximal stream expansion of 
possible of Yu’s work (denoted as DS2 ). The last column is 
the decrement of the maximal stream expansion of possible 
which equals to (DS2 − DS1)∕DS2 . In the second cow of 
Table 9, the maximal stream expansion of possible of our 
method is 7.72% and the maximal stream expansion of pos-
sible of Yu’s work is 7.88%. Therefore, the decrement of the 
maximal stream expansion of possible of test image “stairs” 
is 2.03%. The experimental results of last three test images 
are shown in the next three rows. Therefore, the average 
decrement of the four test images is 2.14%. And the two 
experiments discussed above proved that we sacrificed 1.8% 
capacity to reduce 2.14% stream expansion.

In this experiment, we compared our coding method 
with the syndrome trellis code (STC). In STC’s method, 

Table 8  Capacities of our method and Yu’s work

Capacity Our method (bit) Yu’s work (bit) Capacity loss rate

Stairs 100,588 103,250 0.025
Desk 70,660 71,937 0.018
Lobby 52,538 53,459 0.017
Mountain 112,075 114,040 0.017

Table 9  Maximal stream expansion of our method and Yu’s work

Maximal 
stream expan-
sion

Our method (%) Yu’s work (%) Decrement of 
stream expansion 
(%)

Stairs 7.72 7.88 2.03
Desk 6.85 6.99 2.00
Lobby 7.45 7.64 2.48
Mountain 7.65 7.81 2.04

Fig. 5  Embedding efficiency of our method and STC



Journal of Real-Time Image Processing 

1 3

with the parameter h increasing the embedding efficiency 
(which is equal to the number of embedded message bits 
divided by the number of the modified cover bits) is reach-
ing the theoretical boundary, but the algorithm complexity 
and execution time are exponential growth. In our method, 
the embedding efficiency is approaching the theoretical 
boundary, and the execution time is very short. We use 
MATLAB R2016a to implement these two algorithms. 
And the experimental results are shown in Fig. 5 and 
Table 10. In Fig. 5, the vertical axis is the embedding 
efficiency, and the abscissa axis is the parameter h of STC. 
We choose 0.4 embedding rate in this experiment, and the 
parameter m of our method will remain as 8. The embed-
ding efficiency of our method will not change with the h 
as it stays at 4.93. With h increasing from 10 to 18, the 
embedding efficiency of STC grows from 4.54 to 4.82, 
which is still under our method but near. And in Table 10, 
the velocity of embedding (VoE) is shown. The velocity 
of embedding reduces from 798.6 kbit∕s to 4kbit∕s with the 
parameter h change from 10 to 18 in STC. And velocity of 
embedding of our method is much faster as 16,683.8 kbit∕s . 
And it is worth mentioning that STC is not only suitable 
for all-zero cover, it is also applicable to none-all-zero 
cover. Therefore, we can claim that, in the all-zero cover, 
the embedding efficiency of our coding method is slightly 
higher than that of STC, but the embedding speed is much 
higher than that of STC.

5  Conclusions

Yu proposed the first distortion-free data hiding scheme 
for HDR images in terms of visual quality and content, 
but he ignored the stream expansion which is caused by 
the message embedding process. Therefore, we presented 
a specific coding method named reverse-Golomb code to 
reduce the stream expansion. Our method will sharply 
decrease the stream expansion with a short execution time 
compared with the minimizing-distortion steganographic 
coding method STC. And the coding method that we pro-
posed can be used not only in HDR images but also in all 
the circumstances where the cover can be regarded as all-
zero cover. However, the corresponding limitation of our 

work is that the coding method that we proposed only can 
be used in all-zero cover.
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