
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-019-00855-0

SPECIAL ISSUE PAPER

A fast coding method for distortion‑free data hiding in high dynamic
range image

Yue Guo1 · Weiming Zhang1 · Dongdong Hou1 · Yuanzhi Yao1 · Shuangkui Ge2

Received: 12 November 2018 / Accepted: 22 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Reversible data hiding (RDH) technique allows the original cover to be lossless restored after the secret message is extracted,
and high dynamic range (HDR) images are becoming more and more popular. We found that the existing RDH schemes for
HDR image will cause serious stream expansion, which means that the storage size of the cover HDR image will expand.
Noticing that we proposed a fast coding method named reverse-Golomb code for message embedding in all-zero cover
to reduce the number of the alteration of pixel’s status, and thus reduce the stream expansion of cover HDR images. The
experimental results show the superiority of our method.

Keywords Reversible data hiding · High dynamic range image · Stream expansion · Arithmetic coder

1 Introduction

Reversible data hiding (RDH) [1] is a peculiar type of data
hiding, by which the cover media can be restored from the
marked media after extracting embedded message. Since
some cover media are so precious that cannot be damaged,
RDH technique is widely used in military imagery, medical
imagery, and law forensics.

Many reversible data hiding (RDH) methods have been
proposed, since it was introduced. Fridrich and Goljan [2]
presented a universal framework for reversible data hid-
ing. To achieve larger capacity, Tian [3] proposed a method
based on difference expansion (DE), and another well-known

reversible data hiding method is histogram shift (HS) [4].
To achieve the better performance, the state-of-the-art RDH
methods combine these strategies to the residuals of images
[5–11]. The above-mentioned algorithms are presented for
gray images, and many RDH methods have been proposed
for color images, such as [12–17].

In the past few years, interest in high dynamic
range(HDR) images has skyrocketed. HDR images can rep-
resent a greater range of luminance levels than that can be
achieved using the traditional methods, which is valuable in
many real-world scenes containing very bright, direct sun-
light to extreme shade or very faint nebulae. HDR images is
often achieved by capturing and then combining several dif-
ferent, narrower range, exposures of the same subject matter.
Non-HDR cameras take photographs with a limited exposure
range, referred as low dynamic range (LDR), resulting in the
loss of detail in highlights or shadows. In comparison to the
LDR images, HDR images use floating-point numbers to
represent luminance for a scene to better represent the wide
range of intensity levels found in real scene ranging from
direct sunlight to the deepest shadows. Figure 1 displays the
visual difference between LDR and HDR image. This scene
has high contrast ratio with the bright light in the middle
of this scene and the dark background around the building.
When we directly display the LDR image, we lose the details
of the building and the pool, because the luminance is out of
the range supported in an ordinary device. However, when
we use the tone-mapping operator to show this HDR image,

 * Weiming Zhang
 zhangwm@ustc.edu.cn

 Yue Guo
 guoyue@mail.ustc.edu.cn

 Dongdong Hou
 houdd@mail.ustc.edu.cn

 Yuanzhi Yao
 yaoyz@mail.ustc.edu.cn

 Shuangkui Ge
 xsk@beita.cn

1 School of Information Science and Technology, University
of Science and Technology of China, Hefei, China

2 Beijing Institute of Electronic Technology Application,
Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-019-00855-0&domain=pdf

 Journal of Real-Time Image Processing

1 3

all the details are visualized. Many image processing soft-
wares have been developed to support HDR image, and they
are becoming more and more popular in various of fields,
such as digital photography, movies, medical imaging, video
games, and so on.

Though RDH technique in images with 8-bit pixels is
mature, the research in HDR images has not kept up with
the pace of it. There has been very few RDH works done
on HDR images. Cheng and Wang proposed an adaptive
data hiding method for HDR images [18], who classified
the pixels into the flat and boundary areas. The classification
removes the restrictions of a fixed size of message embed-
ded at each pixel to provide a large embedding capacity with
the little visual distortion. Yu et al. [19] proposed the first
distortion-free data hiding algorithm for HDR images with
radiance RGBE format [20]. The HDR images with radiance
RGBE format have some special pixels. If we operate some
specific alterations to these pixels, the HDR images will not
emerge any visual difference after tone mapping. This is
different from the traditional RDH methods in images with
8-bit pixels which have to restore the cover media to achieve
the lossless. Thus, we can distortion-freely embed message
into it using such character. Subsequent works [21–23]
improved the capacity of Yu’s work by making better use of
the homogeneous representations.

Yu’s work and its subsequent works are distortion-free
in the level of visual and content, but all of them ignored
that it will cause stream expansion after message embedding
which means that the storage size of the HDR image will
expand after message embedding. In the presented paper, to
reduce the stream expansion, we proposed an efficient cod-
ing method for message embedding to reduce the number of
the alteration of pixel’s status. The main contribution of our
method is that it will sharply reduce the stream expansion.
And it is very fast compared with the minimizing-distortion
steganographic coding method syndrome trellis code (STC).
The experimental results showed that our method has a bet-
ter embedding efficiency but much faster than STC.

Because Yu’s work and its subsequent work did not take
into account the stream expansion and Yu’s work is the most

representative, to explain our method more concisely, we will
introduce our method based on Yu’s work rather than its fol-
low-up work.

The following contents are organized as follows. In Sect. 2,
we will introduce Yu’s work. In Sect. 3.1, we will introduce
our coding method, and in Sect. 3.2, the message embedding
in all-zero cover will be stated. In Sects. 3.3 and 3.4, it is the
analysis of our method and the message embedding in HDR
images which we expound. The experimental results will be
shown in Sect. 4, and the last section is the conclusion.

2 Related works

In this section, we will first introduce the radiance RGBE for-
mat for HDR images. Then, we emphatically introduce Yu’s
work [19].

Let P(r, g, b, e) represent a pixel with the radiance format in
an HDR image, where the r, g, and b are the scales in the three
color channels and e represents the scale of the exponent chan-
nel, and all the channel scales r, g, b, e are integers ranging
from 0 to 255. We can convert the radiance format to floating-
point format by the floating-point conversion, as shown in
Eq. (1). In like manner, for a given color pixel (R, G, B) with
the floating value, we can convert it into the radiance (r, g, b, e)
coding using the integer conversion which is shown in Eq. (2),
where the max(R,G,B) represents the maximum scale in the
three color components, R, G, and B:

(1)

R = ((r + 0.5)∕256) × 2(e−128)

G = ((g + 0.5)∕256) × 2(e−128)

B = ((b + 0.5)∕256) × 2(e−128)

(2)

e = ⌊log2[max(R,G,B)] + 128⌋
r = ⌈(256 × R)∕(2e−128)⌉
g = ⌈(256 × G)∕(2e−128)⌉
b = ⌈(256 × B)∕(2e−128)⌉.

Fig. 1 Visual contrast of LDR
image and HDR image. a LDR
image, b HDR image

Journal of Real-Time Image Processing

1 3

By Yu et al. [19], for a given pixel with the radiance format
P(r, g, b, e), the division operator can be used with the divi-
sor 2 for three color channels and increase 1 to the exponent
channel to obtain a representation A(r∕2, g∕2, b∕2, e + 1) ,
which would give the completely the same color after tone
mapping and give almost the same floating-point color scale.
Likewise, we can apply the multiplication operator to pro-
duce the representation B(2r, 2g, 2b, e − 1) on the condition
that scales of three channel, 2r, 2b, 2g, are within the range
between 0 and 255. Then, this work defines the homogene-
ous representation group (HRG) for this pixel to represent a
group of pixels where every pixel in this HRG describes the
same color with P(r, g, b, e). Then, we denote the HVp to
represent the homogeneity value which means the number
of the pixels in this group. The elements are sorted by the
values in the exponent channel using the ascending order
in HRG. It allows us to define the homogeneity index (HI)
for the elements in the HRG range from 0 to (HVP − 1) . An
example is showed in Table 1.

Two basic rules make it easy to determine the HRG
for a given pixel. One is that the multiplication operator
only can be used when all the scales of the given pixel in
color channels are less than 128. It means that overflow
is not allowed. The other one is that the division operator
should be stopped when an odd occurs in color channel.
It is not difficult to understand it, because all scales in
channel should be represented as the integers. If an odd
occurs and we still do division operator, then decimal will
occur, which is not allowed. After following such two
rules, if we operate multiplication MU times and division
DI times, HVP , the homogeneity value of P is calculated

as HVP = MU + DI + 1 . For the scales in color channel
with the range of 0 to 255, the max HVP = 7 . In addi-
tion, the HRG at least has P itself, so the min HVP = 1 .
An example for a given pixel P(96, 56, 68, 128), we can
only apply the multiplication one time (MU = 1) to get
(192, 112, 136, 127). In addition, the division operator can
be used for two times (DI = 2) producing (48, 28, 34, 129)
and (24, 14, 17, 130). Because of the occurrence of the
odd number 17, the division operator stops to prevent deci-
mals from happening. Therefore, the homogeneity valve of
P is calculated as HVP = 1 + 2 + 1 = 4 . After the homoge-
neity group and the homogeneity value of a pixel P have
been determined, the pixel capacity in bits, CP , can be
calculated as Eq. (3). The capacity of the pixel means how
many bits of messages can be embedded into this pixel:

Then, we can use the homogeneity index table (HIT) as
shown in Table 2 developed by [19] to embed secret mes-
sages into the cover pixel P(r, g, b, e). For a given cover
pixel P, we can obtain the homogeneity value HVP . Depend-
ing on HVP , we can determine the number of bits that can
be conveyed by cover pixel P by the first column of Table 2.
In addition, the third column describes the associate pattern
of message that can be embedded with respect to different
homogeneity indices. Then, we can alter the cover status
C(HVP, HIP) to stego status S(HVP, HI

�
P
) by consulting to

the HIT.
An example shown below will tersely expound the

embedding process. For a given pixel P(96, 56, 68, 128),
first, we produce the HRG for P. As shown in Table 3,
HRG

P
= {(192, 112, 136, 127), (96, 56, 68, 128), (48, 28, 34,

129), (24, 14, 17, 130)} . T h e c o v e r s t a t u s
C(HVP, HIP) = C(4, 1) . And two bits of secret message
can be embedded into P, because the homogeneity value
of P equals 4. Depending on the two secret bits, the cover
status C(4, 1) will be altered to four possible stego sta-
tus according to Table 3. If the secret message is “11”,
the stego status will be S(4, 3), and the stego pixel will
become P�(24, 14, 17, 130) which has the homogeneity

(3)CP = ⌊log2(HVP)⌋.

Table 1 An example of pixel P has four sorted elements in HRG

Pixel value of P HVP Sorted element in HRGP HIp

P(96, 56, 68, 128) 4 (192, 112, 136, 127) 0
(96, 56, 68, 128) 1
(48, 28, 34, 129) 2
(24, 14, 17, 130) 3

Table 2 Homogeneity index
table use to embed secret
message into a cover pixel P
with different homogeneity
values

Number of bits to
conveyed

HVP Homogeneity index

0 1 2 3 4 5 6

0 1 NP – – – – – –
1 2 “0” “1” – – – – –
1 3 “1” “0” NA – – – –
2 4 “00” “01” “10” “11” – – –
2 5 “01” “10” “11” “00” NA – –
2 6 “10” “11” “00” “01” NA NA –
2 7 “11” “00” “01” “10” NA NA NA

 Journal of Real-Time Image Processing

1 3

index HIK = 3 . It is easy to notice that we will change
nothing if the secret bits is “01” in this example, and the
stego pixel will be exactly the same as the cover pixel.

It is noteworthy that the bit patterns associated with the
homogeneity index are different with different homogeneity
values of cover pixel. The benefit of this is to avoid coinci-
dent alternation of homogeneity index when embedding the
same amount of secret messages. Another reason is that it
will reduce the variation of histogram distributions in color
channel.

The homogeneity index table is necessary to both mes-
sage embedding and extraction, and we can use a secret key,
key1, to avoid the attack of eavesdroppers. Now, given an
HDR image in RGBE format with size of M × N , the mes-
sage embedding process is tersely made up of four following
steps:

Step 1: Examine every pixel according to a secret key,
key2, which determines the embedding order of secret mes-
sage. For an examined pixel, such as K, we determine the
corresponding HRGK and HVK.

Step 2: For the examined pixel, we calculate the pixel
capacity CK by Eq. (3). If homogeneity valve of K is greater
than 1, pixel K is able to carry CK bits secret message. Oth-
erwise, we go back to step 1 with the next pixel.

Step 3: Compute the current cover pixel status
C(HVK , HIK) . According to HIT and the secret message, we
can determine the desired stego pixel status S(HVK , HI

�
K
).

Step 4: Alter the current cover pixel K to the stego pixel
K′ by selecting a corresponding element in HRGK that has
the homogeneity index of HI′

K
 . After all this has been done,

we go back to step 1 with next pixel.
The total embedding capacity (TMC) of an HDR image

can be calculated by the following equation:

The extraction of secret message is the straightforward
inverse process, and we will not give unnecessary details
here. It is mentioned in [19] that there are two special cases
of pixel will not be used to carry the secret message. For a

(4)TMC =

M×N�
i=1

⌊log2(HVi)⌋.

pixel P(r, g, b, e), the first case is when the pixel scales are
all zeros in both color and exponent channels. It is called
“null” pixel. The second case appears when the pixel scales
in the color channels are power of 2, or one or two of pixel
scales is/are zeros, i.e., P(2j||0, 2j||0, 2j||0, e) , where j is an
integer ranged in [0, 7]. We refer to this type of pixel as
“neutral” pixel. It’s not difficult to understand that such two
kinds of pixels can carry relatively more secret message, but
it will cause a large pixel difference if we use these two kinds
of pixel to carry secret message. The difference is caused by
the magnitude of 0.5 added to the floating-point conversion,
as shown in Eq. (1), and the floor function is applied for the
integer conversion, as shown in Eq. (2). It is proved that if
we do not use those two special cases of pixel as mentioned
above to carry secret message, the pixel difference will be
small enough to ignore. As for the experimental results, the
average capacity offered by this method [19] is in range of
0.1256–0.1281 bits per pixel.

3 The proposed works

As we described above, Yu et al. [19] is a distortion-free
data hiding scheme for HDR images, in terms of visual
quality and content. After some experiments, we found that,
though it is truly distortion-free, it will cause stream expan-
sion after secret message is embedded. In another word, it
will enlarge the storage size of the HDR images after we
embed secret message into it and code the image. It is not
difficult to understand why the stream expansion happened
for it breaks the correlation of pixels after we alter the pixel
scales. For a cover HDR image with storage size 2604 KB,
the storage size will grow to 2672 KB with the 0.62 embed-
ding rate using the method of [19]. The core work of the
presented paper is to introduce a specific code to reduce the
stream expansion.

The stream expansion appears when we alter the pixel’s
status. Hereby, reducing the number of the alteration of pix-
el’s status is an efficient way to decrease the stream expan-
sion. First, we will introduce our coding method which can
be used in all-zero cover to minimize the alteration, and
then, we will expound why the redundancy space in HDR
images with RGBE format can be regarded as all-zero cover.

3.1 Coding method for secret data

Inspired by a compression algorithm named Golomb Code
which is used to compress the sparse sequence, if we can use
its decompression algorithm to encode the secret message,
we can obtain a sparse message sequence. Thus, we can
reduce the alteration in the embedding phase to decrease the
stream expansion. Hereby, we proposed a coding algorithm

Table 3 An example of embedding 2 bits of secret message into a
cover pixel P(96, 56, 68, 128)

Sorted elements in HRGP HIP Status of stego
pixel

Con-
veyed
message

(192, 112, 136, 127) 0 S(4, 0) “00”
(96, 56, 68, 128) 1 S(4, 1) “01”
(48, 28, 34, 129) 2 S(4, 2) “10”
(24, 14, 17, 130) 3 S(4, 3) “11”

Journal of Real-Time Image Processing

1 3

for all-zero cover called reverse-Golomb (RG) code. And
why we can regard the cover as all-zero cover will be
explained in Sect. 3.3.

First, we introduce a simple coding method named Unary
code as preliminaries. The Unary code of a non-negative
integer i is i 0’s followed by a 1. For example, the Unary
code of 4 is “00001”. Now, we will expound our cod-
ing scheme using the Unary code. For an all-zero cover
sequence c = (c1, c2,… , cN) , which means all the symbols
ci = 0 for 1 ≤ i ≤ N , we want to embed a massage sequence
x = (x1, x2,… , xL,…) into it. Now, we introduce an impor-
tant positive integer parameters m. The parameter m is a
controlled parameter decided by the embedding rate. The
discussion of how to determine m appears later.

Once m is decided, we will build a binary tree to encode
all the Unary code of the integers from 0 to m − 1 . We use
the different prefix codes to build the tree, and details are
expounded as follows. First, we choose an integer param-
eter k, satisfying 2k−1 < m ≤ 2k , which is equivalent to
k = ⌈log2 m⌉ . Then, we build a k-step full binary tree which
has 2k leaves. If m = 2k , the building of the tree finished. The
leaves are the Unary code of 0 to m − 1 from left to right.
And the branches are left to right by a natural binary code
of 0 to m − 1. If m < 2k , we need to merge some leaves. We
encode 0 to 2k − m − 1 to the code which constituted with
k − 1 bits which means that the leaves on these branches of
the full binary tree will be merged. This is (k − 1)-bits cor-
responding natural binary code. Wherein, the code word of
integer 0 is k − 1 0’s, and the rest code words plus 1 orderly
until the code word of 2k − m − 1 ; From 2k − m to m − 1 ,
we use k bits to encode. Wherein, the value of code word
of (2k − m) is 2 × (2k − m) , and the rest code words plus 1
orderly in the same way. Now, we finished the compilation of
the coding dictionary of 0 to m − 1 using two kinds of length
(k − 1 bits and k bits) of code word when m < 2k . A simple
example is displayed as follows.

Example 1 Take the parameter m = 5 , k = ⌈log2 m⌉ = 3 . The
code words of leaves of three-step binary tree, respectively,
are 000, 001, 010, 011, 100, 101, 110, 111. There are three
code words whose length is 2, so combine 000 with 001 to
00, 010 with 011 to 01 and 100 and 101 to 10. The leaves
of this tree is the Unary code of 0 to m − 1 from left to right
orderly. Therefore, the coding of 0 to m − 1 is 0:00, 1:01,
2:10, 3:110, and 4:111. The code tree is shown in Fig. 2.

The tree which we build above is for the Unary code of
the number from 0 to m − 1 . After finishing building this
tree, there is one last step to build the tree for encoding of
the secret message. Started from the root, branch “0” con-
nects m continuous 0’s; Branch “1” connects the tree which
we built before. It is all the operations of building the code
tree for the secret message. The code tree is shown in Fig. 3,

and the code table which is built based on the code tree is
shown in Table 4. It is worth mentioning that we always
put the source word “0” at the last of the table and give the
index “ m + 1 ” to it.

3.2 Message embedding in all‑zero cover

After the code table is obtained, the message embedding
process is visualized. A register R and two pointers P1,
P2 are needed for embedding. P1 is used to label the last
cover symbol that has been altered, and P2 is used to label
the number of message bits that have been embedded. R is
used to store the current bits which need to be encoded and
embedded. First, let P1 = 0 and P2 = 0 and clear R.

R reads in the message bits xP2+1.
Case 1: If R = 0 , let P1 = P1 + m , P2 = P2 + 1 and

one bit xP2+1 is embedded. In this case, no cover symbol is
altered.

Case 2: If R = 1 , R reads in next k − 1 which equals
to ⌈log2 m⌉ − 1 bits message sequentially. Now, try match
R(xP2+1,… , xP2+k) with the source words in the second row
of the code table. If it matches with the column which
has the index of “j”, let P1 = P1 + j , P2 = P2 + k , and
flip cover symbol cP1 form “0” to “1”, and clear R. Thus,
k bit messages (xP2+1,… , xP2+k) are embedded and only
one cover symbol is altered. And if match failed, R reads

Fig. 2 Code tree for Unary code (m = 5)

Fig. 3 Code tree for message (m = 5)

 Journal of Real-Time Image Processing

1 3

in one more bit and match R(xP2+1, ..., xP2+k+1) with the
code words in second row of the code table. If it matches
with column which has the index of “j”, let (P1 = P1 + j) ,
(P2 = P2 + k + 1) , and flip cover symbol cP1 form “0” to
“1”, and clear R. Thus, k + 1 bits (xP2+1,… , xP2+k+1) are
embedded and only one cover symbol is altered.

For both cases, we have embedded the first P2 bits of
secret message into first P1 cover symbol. In the same
way, we continue to embed the rest bits into the rest
cover, until N − P1 < m . We obtain the marked cover
c� = (c�

1
, c�

2
,… , c�

N
).

The extraction is performed in the reverse way. Let
P1 = 0,P2 = 0 and clear R. R reads in c�

P1+1
 , and there are

three cases according to c�
P1+1

 and Rlen which express the
length of the current R.

Case 1: If c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 , and
R reads in one more bit c�

P1+1
.

Case 2: If c�
P1+1

= 0 and Rlen = m . Let P1 = P1 + 1 ,
P2 = P2 + 1 , let the P2th message bit xP2 = 0 . And clear R.

Case 3: If c�
P1+1

= 1 , check the column which has
the index of Rlen of the code table. The message source
words of this column are the message fragment that we
extract. Assume that the length the message fragment is
a (a = k or k + 1) and the message fragment is expressed
as A(A1,… ,Aa) . The message that we extract can be
presented as (xp2+1,… , xP2+1+a) = A . Let P1 = P1 + 1 ,
P2 = P2 + a , and clear R.

With the same manner, we extract message from the rest
symbol until N − P1 < m and there is no symbol “1” in
the rest N − P1 symbols of the marked cover. Now, we use
a simple example to show the embedding and extraction
processes of our method.

Example 2 Take m = 5 , the code tree and code table
have already built in Fig. 3 and Table 4. Assume the
message strand that we want to embed is presented as
x = (0, 1, 0, 1, 0, 1, 1, 1, 0) and the cover is a 16-length all-
zero cover, i.e., N = 16 , as shown in Table 5. First, let
P1 = 0 , P2 = 0 and clear R.

Step 1: R reads in x1 = 0 , so let P1 = P1 + 5 = 5 ,
P2 = P2 + 1 = 1 , and clear R.

Step 2: R reads in xP2+1 = x2 = 1 , thus R sequentially
reads in k − 1 = 2 bits message. Match R(1, 0, 1) with the
second row in Table 4. Matched with the column 2. Thus,
P1 = P1 + 2 = 7 , P2 = P2 + k = 4 , and flips the cover sym-
bol cP1 = c7 from “0” to “1”. Clear R.

Step 3: R reads in xP2+1 = 0 , so let P1 = P1 + 5 = 12 ,
P2 = P2 + 1 = 5 , and clear R.

Step 4: R reads in xP2+1 = 1 , thus R sequentially reads in
k − 1 = 2 bits message. Match R(1, 1, 1) with the second
row in Table 4, FAILED. Therefore, R reads in one more
bit. Match R(1, 1, 1, 0) with code Table 4. Matched with the
column 4. Thus P1 = P1 + 4 = 16 , P2 = P2 + k + 1 = 9 and
clear R. Flips the cover symbol cP1 from “0” to “1”. Clear R.
As N − P1 = 0 < m , so the embedding process stops. The
marked cover x′ is obtained by altering the 7th and 16th bits.

To extract the massage from c′ , set P1 = 0 , P2 = 0 , and
clear R.

Step 1: {c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 , and
R reads in one more bit c�

P1+1
} × 4. Now, c�

P1+1
= 0 and

Rlen = m = 5 . P1 = P1 + 1 = 5,P2 = P2 + 1 = 1 , let the
P2th message bit xP2 = x1 = 0 . And clear R (the mark
“ {⋇} × n ” express the operation “ ⋇ ” have been repeated for
n times).

Step 2: c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 = 6,
and R reads in one more bit c�

P1+1
 . Now c�

P1+1
= 1 and

Rlen = 2 . Check the column which has index of 2 of Table 4.
The message source words is expressed as A(1, 0, 1) and
a = 3 . Thus, message bits (m2,m3,m4) = A = (1, 0, 1) . Let
P1 = P1 + 1 = 7,P2 = P2 + a = 4 and clear R.

Step 3: {c�
P1+1

= 0 and Rlen < m . Let P1 = P1 + 1 , and
R reads in one more bit c�

P1+1
} × 4. Now, c�

P1+1
= 0 and

Rlen = m = 5.P1 = P1 + 1 = 12,P2 = P2 + 1 = 5 , let the
P2th message bit xP2 = x5 = 0 . And clear R.

Step 4: Although N − P1 = 4 < m , the extraction pro-
cess continue, because there are symbol “1” in the last four
bits. {c�

P1+1
= 0 and Rlen < m . Let P1 = P1 + 1 , and R reads

in one more bit c�
P1+1

} × 3. Now, c�
P1+1

= 1 and Rlen = 4 .

Table 4 Code table (m = 5) Index 1 2 3 4 5 6

Source word 100 101 110 1110 1111 0
Code word 1 01 001 0001 00001 00000

Table 5 Example of data
embedding into all-zero covers

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Message x 0 1 0 1 0 1 1 1 0
Cover c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Marked cover c′ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
Embedding step Step 1 Step 2 Step 3 Step 4

Journal of Real-Time Image Processing

1 3

Check the column which has index of 4 of Table 4. The
massage source words is expressed as A(1, 1, 1, 0) and a = 4 .
Thus, message bits (m6,m7,m8,m9) = A = (1, 1, 1, 0) . Let
P1 = P1 + 1,P2 = P2 + a = 9 and clear R.

In this example, we embedded 9 bits of secret message
into a 16-length all-zero cover with only two alterations.
We denote our embedding method by � . We research two
cases to analyze the embedding rate and distortion of � . In
case 1, we embed one bit into a m-length cover without any
alteration; in case 2, we embed k or k + 1 bits of message by
costing the cover symbols range from 1 to m and one altera-
tion occurs. Because of the randomness of the message, the
probability of being “1” or “0” of the first bit register R reads
in within embedding process is both 0.5. Once “0” is first
read in, there will be no alteration, and one alteration will
happen when “1” is first read in no matter what is to be the
next. Therefore, the average number of alteration is equal to
the following:

As we discussed above, when m < 2k which means that m is
not the power of 2, there will be (2k − m) segments of mes-
sage whose length is k and (2m − 2k) segments of message
whose length is k + 1 in case 2. Consequently, the average
number of embedded bits is equal to the following:

Because the number of cover symbols which we cost is rang-
ing from 1 to m, the average number of expending cover
symbols is equal to

Therefore, the embedding rate R0 and the distortion D0 of
code � can be calculated by the following:

And if m = 2k , the calculation will be visualized:

(5)Nalt = 0.5.

(6)

Nmes =
1

2
× 1 + [

1

2k
(2k − m)k +

1

2k+1
(2m − 2k)(k + 1)]

=
1

2
k +

m

2k
.

(7)Ncov =
1

2
m +

⎛
⎜⎜⎝

2k−m�
i=1

i

2k
+

m�
i=2k−m+1

i

2k+1

⎞
⎟⎟⎠
.

(8)R0 =
Nmes

Ncov

=

1

2
k +

m

2k

1

2
m +

�∑2k−m

i=1

i

2k
+
∑m

i=2k−m+1

i

2k+1

�

(9)D0 =
Nalt

Ncov

=
1

m +
�∑2k−m

i=1

i

2k−1
+
∑m

i=2k−m+1

i

2k

� .

3.3 Analysis of pixel characteristic of HDR image
and parameter selection

After a survey of the pixel scale of HDR images, we
found that, for overwhelming majority of the pixels, the
max(r, g, b) is larger than 127 (except the “null” pixels
mentioned in Sect. 2). This is because all the images in
RGBE format are converted from images in floating-
point format, and we can get max(r, g, b) ≥ 128 by Eq. (2).
With regard to this feature, the redundancy space in HDR
images can be regarded as all-zero cover for the initial HIs
of all the pixels are always “0”.

As we discussed above, the HVp of a HRG is ranging
from 1 to 7, and when the HVp is larger than 1, this HRG
can be used to carry messages. It is not difficult to under-
stand that the larger the HVp is, the more message that we
can embed into this HRG. However, in our method, we use
only the elements whose HI is equal to 0 or 1 in a HRG
which means that we have to abandon some capacity of the
HDR image. The purpose of this choice is to reduce the
stream expansion. For the same one bit message, we want to
embed; the stream expansion caused by embedding it using
element with large HI will be larger than the that using small
HI. And if we regard the pixel scale as random, the prob-
ability of pixel which has large HVp is slim. Every time
the HVp grows 1, the probability of its appearance will be
8 times smaller. Therefore, this choice makes the capacity
(1∕82) + (1∕83) + (1∕84) + (1∕85) ≈ 0.018 smaller in aver-
age calculation, and it is still acceptable. Therefore, for every
pixel which HV is larger than 2, we declared this pixel’s
HV of 2.

The embedding rate R0 has been obtained by Eq. (8). In
addition, for a given HDR image with size of M × N , the
total embedding capacity of our method can be easily cal-
culated by examining the homogeneity value of each pixel,
as shown in the following equation:

For the message sequence x = (x1, x2,… , xn) to be embed-
ded, the parameter m can be self-adaption computed after
the TEC and R0 are obtained:

(10)
Nmes =

1

2
+

k + 1

2
=

k

2
+ 1 R0 =

Nmes

Ncov

=
2k + 4

3m + 1

Ncov =
3

4
m +

1

4
D0 =

Nalt

Ncov

=
2

3m + 1
.

(11)TEC =

M×N�
i=1

⌊log2(HVi)⌋.

 Journal of Real-Time Image Processing

1 3

After all this preparatory works, the redundancy space of
HDR image has completely became all-zero cover. The
embedding and extraction process will be very simple and
intuitive.

3.4 Message embedding and extraction with HDR
image

For a given HDR image I with size of M × N and secret mes-
sage x = (x1, x2,… , xn) , the embedding operation is shown
in the following steps:

Step 1: Use a secret key, Key1 , to encrypt the message,
and obtain y = (y1, y2,… , yn) . Examine every pixel of HDR
image I to get the total embedding capacity TEC. After TEC
is obtained, we can compute the parameter m using Eq. (12).
Then, we use m to encode the encrypted message y to get
encoded message y′ using our RG code.

Step 2: Examine every pixel to obtain the homogeneous
representation group (HRG) and the homogeneity value
(HV) of every pixel. For an examined pixel K, if HVK is 1,
examine next pixel. If HVK is larger than 2, set HVK to 2.

Step 3: If HVK = 2 , we can embed a bit of message y′
i
 into

it. If y�
i
= 0, we set the pixel status C(HVK , HIK) to C�(2, 0) .

If y�
i
= 1, we set the pixel status C(HVK , HIK) to C�(2, 1) .

And examine next pixel.
We continue these processes until all messages are

embedded.
The extraction of secret message is straightforward

reverse. For a given stego HDR image, we examine every
pixel. For an examined pixel K if HVK = 1 , we examine next
pixel. If HVK = 2 , we compute the pixel status C(HVK , HIK) .
If HIK = 0 , the message bit that we extract is “0”, and if
HIK = 1 , the message bit that we extract is “1”. We examine
next pixel until all messages are extracted. Then, we use our
RG coding to decode the message that we extracted. At last,
use the secret key, Key1 , to decrypt the message.

4 Experimental results and discussion

To show the advantage of our method, several experi-
ments will be discussed in this section. We selected 20
images from the HDR image library provided by [24] as
test images. In addition, we employed four HDR images
as show images including “stairs”, “desk”, “lobby”, and
“mountain”, as shown in Table 6. The size of these four

(12)

R0 =
n

TEC
=

Nmes

Ncov

=

1

2
k +

m

2k

1

2
m +

�∑2k−m

i=1

i

2k
+
∑m

i=2k−m+1

i

2k+1

� .

images is 760 × 1016, 644 × 874, 512 × 768 and 1214 × 732 ,
respectively. The number of usable pixels (HV ≧ 2) of
each image is shown in the third column of Table 6. The
next column shows the usable pixel rate of each image
and the average usable pixel rate of these four images can
be calculated as 0.1289 bpp. The last column shows the
rate of max(r, g, b) > 127 of our four test images, and all
of them are equal or very close to 1. Figure 4 displays
the tone-mapped cover and stego images with different
embedding rates. Figure 4a is the tone-mapped image
of the “Stairs”, and the Fig. 4b is the stego image of it
with 0.62 embedding rate (m = 4). Figure 4c–h shows the
tone-mapped images of the rest three test images and the
stego images with the embedding rates of 0.4 (m = 8), 0.31
(m = 12), and 0.24 (m = 16). As for different images with
different embedding rates, the generated stego images will
not reveal any visual differences contrasted with the cover
images.

The main purpose of our method is to reduce the stream
expansion caused by the method of [19]. First, we quantify
the stream expansion as DS in the following equation:

Ss is the storage size of the stego image after secret
message is embedded and the Sc is the storage size of the
original cover image. Table 7 displays the different stream
expansions with different embedding rates in our four test
images.

In Table 7, the last column shows the embedding rates
that we choose to test and the value of the relevant param-
eter m. We choose four embedding rates 0.62, 0.4, 0.31, and
0.24 to test, and the corresponding parameters m are 4, 8,
12, and 16, respectively. The second and fourth columns
of Table 7 show the stream expansion of Yu’s work [19]
and our proposed method with diverse embedding rates.
The third column is the stream expansion generated by
Chang’s work [23] embedding the message with the same
number of bits as the [19] under the corresponding embed-
ding rate. And the fifth column shows the ratio of the stream

(13)DS =
Ss − Sc

Sc
× 100%.

Table 6 Information of HDR images

Image
name

Size Number of
usable pixel

Usable
pixel rate
(%)

Rate of
max(r, g, b) > 127

Stairs 760 × 1016 100580 13.03 1.00
Desk 644 × 874 70660 12.55 1.00
Lobby 512 × 768 52538 13.36 1.00
Mountain 1214 × 732 112075 12.61 1.00

Journal of Real-Time Image Processing

1 3

expansion of our method and Yu’s work. It is worth mention-
ing that, since [23] is the follow-up work of [19], and [23]
only increases the capacity of [19] to a certain extent, the

stream expansion generated by [23] is almost equal to [19]
when the same number of bits is embedded. Therefore, in
the subsequent comparison, we will use [19] as the main

Fig. 4 Cover images and marked images. a Cover image, stairs. b Marked image, stairs. c Cover image, desk. d Marked image, desk. e Cover
image, lobby. f Marked image, lobby. g Cover image, mountain. h Marked image, mountain

Table 7 Stream expansion
comparison with different
embedding rates

DS Yu’s work (%) Chang’s
work (%)

Our method (%) Stream expan-
sion ratio

R0 (m)

Stairs 2.61 2.64 1.42 0.54 0.62 (4)
1.65 1.67 0.77 0.47 0.4 (8)
1.27 1.29 0.54 0.43 0.31 (12)
0.96 0.97 0.38 0.39 0.24 (16)

Desk 2.02 2.08 1.25 0.62 0.62 (4)
1.14 1.16 0.67 0.59 0.4 (8)
0.93 0.94 0.47 0.51 0.31 (12)
0.73 0.73 0.31 0.42 0.24 (16)

Lobby 2.29 2.33 1.40 0.61 0.62 (4)
1.48 1.50 0.74 0.5 0.4 (8)
1.11 1.12 0.52 0.47 0.31 (12)
0.88 0.87 0.37 0.42 0.24 (16)

Mountain 2.78 2.81 1.34 0.48 0.62 (4)
1.88 1.90 0.70 0.37 0.4 (8)
1.44 1.42 0.50 0.35 0.31 (12)
1.14 1.15 0.37 0.32 0.24 (16)

Average results of
20 test images

2.45 2.48 1.33 0.54 0.62 (4)
1.47 1.49 0.75 0.51 0.4 (8)
1.18 1.19 0.51 0.43 0.31 (12)
0.99 0.99 0.36 0.36 0.24 (16)

 Journal of Real-Time Image Processing

1 3

comparison method. In Table 7, the second-to-fifth rows
show the experimental results of the test image “stairs”. As
for the 0.62 embedding rate (m = 4), the stream expansion
of Yu’s work is 2.61%, and the stream expansion of our pro-
posed method is 1.42%. The ratio of the stream expansion of
our work to Yu’s work is 0.54 which means that our method
reduces 46% stream expansion of Yu’s work with the 0.62
embedding rate. When the embedding rate is equal to 0.4
(m = 8), the stream expansion of Yu’s work and our work
are 1.65% and 0.77% severally. And the ratio of the stream
expansion of our work to Yu’s work is 0.47. With the embed-
ding rate reducing to 0.31 (m = 12), the stream expansion
of Yu’s work and our method reduce to 1.27% and 0.54%
respectively. And the ratio of the stream expansion of our
work to Yu’s work becomes 0.43. The stream expansion of
Yu’s work and our work is 0.96% and 0.38% with the 0.24
embedding rate (m = 16). The ratio of the stream expan-
sion of our work to Yu’s work is 0.39 correspondingly. The
experimental results of the last tree test images is shown in
the sixth-to-seventeenth rows in Table 7. The last four rows
of Table 7 show the average results of the 20 test pictures.
It is not hard to understand that when the embedding rate
is less than or equal to 0.75 (m ≧ 2), our proposed method
will be able to reduce the stream expansion. And observing
the fifth column of Table 7, we can discover that with the
embedding rate reducing (m growing) the ratio of the stream
expansion of our work to Yu’s work is reducing. This means
that the smaller embedding rate is, the more efficient our
method is.

We have discussed before why we use only the homoge-
neity value of 2 in Sect. 3.3, now, we have done some experi-
ments to prove that the total capacity [19] and the capacity
of our choice of the four test images are shown in Table 8.

The second column of Table 8 shows the capacity of our
method (denoted as C1) and the next column shows the
total capacity of Yu’s [19] method (denoted as C2). The
last column shows the capacity loss rate which equals to
(C2 − C1)∕C2 . For a simple example, the second row shows
the experimental result of the test image “stairs”. The capac-
ity of our method is 100588 bits, and the total capacity is
103,250 bits. Therefore, the capacity loss rate can be cal-
culated as (103,250 − 100,588)∕103,250 ≈ 0.025 . Though
the capacity loss rate of the test image “stairs” is a little bit
higher than what we expect (0.018), the capacity loss rates of

the last three test images which are 0.018, 0.017, and 0.017,
respectively, are conform to the expectation.

The next experiment that we did is to show the biggest
stream expansion of Yu’s work and our method, which
means that we have to utilize the division operator as much
as possible. In this experiment, the division operator will be
done once the pixel having the homogeneity value no less
than 2 for our method. And for Yu’s method, the division
operator will be tautologically utilized till an add occurs
in color channel. Table 9 displays the experimental result.
The second column of Table 9 shows the maximal stream
expansion of possible of our method (denoted as DS1), and
the next column shows the maximal stream expansion of
possible of Yu’s work (denoted as DS2). The last column is
the decrement of the maximal stream expansion of possible
which equals to (DS2 − DS1)∕DS2 . In the second cow of
Table 9, the maximal stream expansion of possible of our
method is 7.72% and the maximal stream expansion of pos-
sible of Yu’s work is 7.88%. Therefore, the decrement of the
maximal stream expansion of possible of test image “stairs”
is 2.03%. The experimental results of last three test images
are shown in the next three rows. Therefore, the average
decrement of the four test images is 2.14%. And the two
experiments discussed above proved that we sacrificed 1.8%
capacity to reduce 2.14% stream expansion.

In this experiment, we compared our coding method
with the syndrome trellis code (STC). In STC’s method,

Table 8 Capacities of our method and Yu’s work

Capacity Our method (bit) Yu’s work (bit) Capacity loss rate

Stairs 100,588 103,250 0.025
Desk 70,660 71,937 0.018
Lobby 52,538 53,459 0.017
Mountain 112,075 114,040 0.017

Table 9 Maximal stream expansion of our method and Yu’s work

Maximal
stream expan-
sion

Our method (%) Yu’s work (%) Decrement of
stream expansion
(%)

Stairs 7.72 7.88 2.03
Desk 6.85 6.99 2.00
Lobby 7.45 7.64 2.48
Mountain 7.65 7.81 2.04

Fig. 5 Embedding efficiency of our method and STC

Journal of Real-Time Image Processing

1 3

with the parameter h increasing the embedding efficiency
(which is equal to the number of embedded message bits
divided by the number of the modified cover bits) is reach-
ing the theoretical boundary, but the algorithm complexity
and execution time are exponential growth. In our method,
the embedding efficiency is approaching the theoretical
boundary, and the execution time is very short. We use
MATLAB R2016a to implement these two algorithms.
And the experimental results are shown in Fig. 5 and
Table 10. In Fig. 5, the vertical axis is the embedding
efficiency, and the abscissa axis is the parameter h of STC.
We choose 0.4 embedding rate in this experiment, and the
parameter m of our method will remain as 8. The embed-
ding efficiency of our method will not change with the h
as it stays at 4.93. With h increasing from 10 to 18, the
embedding efficiency of STC grows from 4.54 to 4.82,
which is still under our method but near. And in Table 10,
the velocity of embedding (VoE) is shown. The velocity
of embedding reduces from 798.6 kbit∕s to 4kbit∕s with the
parameter h change from 10 to 18 in STC. And velocity of
embedding of our method is much faster as 16,683.8 kbit∕s .
And it is worth mentioning that STC is not only suitable
for all-zero cover, it is also applicable to none-all-zero
cover. Therefore, we can claim that, in the all-zero cover,
the embedding efficiency of our coding method is slightly
higher than that of STC, but the embedding speed is much
higher than that of STC.

5 Conclusions

Yu proposed the first distortion-free data hiding scheme
for HDR images in terms of visual quality and content,
but he ignored the stream expansion which is caused by
the message embedding process. Therefore, we presented
a specific coding method named reverse-Golomb code to
reduce the stream expansion. Our method will sharply
decrease the stream expansion with a short execution time
compared with the minimizing-distortion steganographic
coding method STC. And the coding method that we pro-
posed can be used not only in HDR images but also in all
the circumstances where the cover can be regarded as all-
zero cover. However, the corresponding limitation of our

work is that the coding method that we proposed only can
be used in all-zero cover.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China under Grant 61572452,
U1636201, and U1536104.

References

 1. Khan, A., Siddiqa, A., Munib, S., Malik, S.A.: A recent survey of
reversible watermarking techniques. Inf. Sci. 279, 251–272 (2014)

 2. Fridrich, J., Goljan, M., Du, R.: Lossless data embedding for all
image formats. In: Proceedings of EI SPIE, Security and Water-
marking of Multimedia Contents IV, vol. 4675, San Jose, pp.
572–583 (2002)

 3. Tian, J.: Reversible data embedding using a difference expansion.
IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)

 4. Ni, Z., Shi, Y.Q., Ansari, N., Wei, S.: Reversible data hiding. IEEE
Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)

 5. Tsai, P., Hu, Y.C., Yeh, H.L.: Reversible image hiding scheme
using predictive coding and histogram shifting. Signal Process.
89, 1129–1143 (2009)

 6. Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.: Reversible
watermarking algorithm using sorting and prediction. IEEE Trans.
Circuits Syst. Video Technol. 19(7), 989–999 (2009)

 7. Yang, C.H., Tsai, M.H.: Improving histogram-based reversible
data hiding by interleaving predictions. IET Image Process. 4(4),
223–234 (2010)

 8. Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based
on adaptive prediction-error expansion and pixel selection. IEEE
Trans. Image Process. 20(12), 3524–3533 (2011)

 9. Wang, S.Y., Li, C.Y., Kuo, W.C.: Reversible data hiding based
on two-dimensional prediction errors. IET Image Process. 7(9),
805–816 (2013)

 10. Wang, J., Ni, J., Zhang, X., Shi, Y.: Rate and distortion optimiza-
tion for reversible data hiding using multiple histogram shifting.
IEEE Trans. Cybern. 47(2), 315–326 (2017)

 11. Qin, C., Chang, C.C., Huang, Y.H., et al.: An inpainting-assisted
reversible steganographic scheme using a histogram shifting
mechanism. IEEE Trans. Circuits Syst. Video Technol. 23(7),
1109–1118 (2013)

 12. Qin, C., Chang, C.C., Chiu, Y.P.: A novel joint data-hiding and
compression scheme based on SMVQ and image inpainting. IEEE
Trans. Image Process. 23(3), 969–978 (2014)

 13. Chang, C., Lin, C., Fan, Y.: Lossless data hiding for color images
based on block truncation coding. Pattern Recognit. 41(7), 2347–
2357 (2008)

 14. Asikuzzaman, M., Alam, M.J., Lambert, A.J., Pickering, M.R.: A
blind and robust video watermarking scheme using chrominance
embedding. In: International conference on digital image comput-
ing: techniques and applications, pp. 1–6 (2014)

Table 10 Velocity of
embedding of STC and our
method

Method h

VoE (kbit/s)

10 11 12 13 14 15 16 17 18

STC 798.6 423.3 220.5 121.9 60.6 31.0 15.9 7.8 4.0
Our method 16,683.8

 Journal of Real-Time Image Processing

1 3

 15. Ou, B., Li, X., Zhao, Y., Ni, R.: Efficient color image reversible
data hiding based on channel-dependent payload partition and
adaptive embedding. Signal Process. 108, 642–657 (2015)

 16. Li, J., Li, X., Yang, B.: Reversible data hiding scheme for color
image based on prediction-error expansion and cross-channel cor-
relation. Signal Process. 93(9), 2748–2758 (2013)

 17. Hou, D., Zhang, W., Chen, K., Lin, S., Yu, N.: Reversible data
hiding in color image with grayscale invariance. In: IEEE Trans-
actions on Circuits and Systems for Video Technology (2018)

 18. Cheng, Y.M., Wang, C.M.: A novel approach to steganography
in high-dynamic range images. IEEE MultiMedia 16(3), 70–80
(2009)

 19. Yu, C.M., Wu, K.C., Wang, C.M.: A distortion-free data hiding
scheme for high dynamic range images. Displays 32(1), 225–236
(2011)

 20. Ward, G.: Real pixel, Graphic Gem II, Chapter 15. pp. 80–83
(1991)

 21. Wang, Z.H., Lin, T.Y., Chang, C.C, Lin, C.C.: A novel distortion-
free data hiding scheme for high dynamic range images. In: 2012
Fourth International Conference on Digital Home (ICDH). IEEE
(2012)

 22. Chang, C.C., Nguyen, T.S., Lin, C.C.: Distortion-free data embed-
ding scheme for high dynamic range images. J. Electron. Sci.
Technol. 11(1), 20–26 (2013)

 23. Chang, C.C., Nguyen, T.S., Lin, C.C.: A new distortion-free data
embedding scheme for high-dynamic range images. Multimedia
Tools Appl. 75(1), 145–163 (2016)

 24. http://www.anyhe re.com/gward /hdren c/pages /origi nals.html

Yue Guo received his B.S. degree in 2015 from University of Science
and Technology of China (USTC). He is currently pursuing the M.S.
degree in information security in University of Science and Technology
of China (USTC). His research interests include image watermarking
and information hiding.

Weiming Zhang received his M.S. degree and Ph.D. degree in 2002
and 2005, respectively, from the Zhengzhou Information Science and
Technology Institute, People’s Republic of China. Currently, he is a
professor with the School of Information Science and Technology,
University of Science and Technology of China. His research interests
include information hiding and multimedia security.

Dongdong Hou received his B.S. degree in 2014 from Hefei University
of Technology, Hefei, China. He is now pursuing the Ph.D. degree in
University of Science and Technology of China. His research interests
include multimedia security, image processing, and deep learning.

Yuanzhi Yao received his Ph.D. degree in electronic engineering from
the University of Science and Technology of China in 2017, where he
is currently a postdoctoral researcher. His research interests include
information hiding and video coding.

Shuangkui Ge graduated from Electronic Information School, Wuhan
University in 2003. Currently, he is an Associate Professor in Beijing
Institute of Electronic Technology Application. He is now engaged in
multimedia processing and information security research.

http://www.anyhere.com/gward/hdrenc/pages/originals.html

	A fast coding method for distortion-free data hiding in high dynamic range image
	Abstract
	1 Introduction
	2 Related works
	3 The proposed works
	3.1 Coding method for secret data
	3.2 Message embedding in all-zero cover
	3.3 Analysis of pixel characteristic of HDR image and parameter selection
	3.4 Message embedding and extraction with HDR image

	4 Experimental results and discussion
	5 Conclusions
	Acknowledgements
	References

