
1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

1

Watermarking-Based Secure Plaintext Image
Protocols for Storage, Show, Deletion and

Retrieval in the Cloud
Xiaojuan Dong, Weiming Zhang, Mohsin Shah, Bei Wang, and Nenghai Yu

Abstract—In this paper, we propose secure plaintext image storage protocols in the cloud environment for image owners managing
and controlling their outsourced images. To solve control and privacy issues, conventional schemes suggest outsourcing images in the
encrypted form. However, encrypted images lose their usability and visibility. For example, image owners cannot quickly find their
stored images in the cloud. The proposed protocols encourage plaintext image storage in the cloud with copyright protection of images,
visible display, lossless retrieval and controlled deletion via techniques of homomorphic encryption and digital watermarking. We allow
the image owner to embed and remove the watermark in a privacy-preserving way without compromising the security of the original
data and the computed results. Moreover, the image owner can securely detect the cloud’s dishonest act of not completely deleting an
image as required or leaking an image without permission. Compared with existing works, our work achieves more functions. We prove
that the proposed work achieves the controllable management of the outsourced plaintext images without privacy leakage to
unauthorized parties and demonstrate the utility and the efficiency of our protocols through experimental evaluation.

Index Terms—Cloud Storage; Homomorphic Encryption; Watermarking; Privacy Preserving; Services Computing; Anti-Collusion
Attacks.

F

1 INTRODUCTION

COMBINING cloud service technologies and networks
makes it easy for people to display their images on-

line, specifically on social platforms, such as Facebook and
WeChat. According to the statistics of Facebook [1], 300 mil-
lion photos are uploaded to Facebook per day. Posting data
online cloud reduces the storage on local devices. But data
placed on social platforms lose their owners’ protection. As
a result, these data can be abused by others. For instance,
Enck [2] investigated the behaviour of 30 popular third-
party applications in his 2010 and 2012 studies and found
that two-thirds of the applications potentially misused user-
s’ sensitive data and that half of the applications reported
users’ information to remote advertising servers. Given that
the owners’ uploaded images may contain privacy informa-
tion, such as an ID card number, image owners delete the
uploaded images from social platforms to protect privacy
data. Unfortunately, it is difficult for the image owners
to completely delete uploaded images since cloud service
providers store multiple backups [3] of data over different
online or offline servers for fault tolerance. As a result,
even though one copy of the to-be-deleted data has been
deleted from the current server, the other copies are still on
offline/online servers. The lack of trust services impedes the
prevalence of clouds as outsourced storage and computing
services [4]. Therefore, in the case of the dishonest cloud,

• Xiaojuan Dong, Mohsin Shah and Bei Wang are with CAS Key Labo-
ratory of Electromagnetic Space Information, University of Science and
Technology of China, Hefei 230026, China. E-mail: {xjuadong, mohsin,
wangbei}@mail.ustc.edu.cn.

• Weiming Zhang and Nenghai Yu are with CAS Key Laboratory of Electro-
magnetic Space Information, University of Science and Technology of
China, Hefei 230026, China. E-mail: {zhangwm, ynh}@ustc.edu.cn.

determining how to protect the privacy of cloud data and
control the deletion of cloud data remains a challenge.

To minimize security and privacy concerns regarding
cloud data, common solutions rely on encryption technol-
ogy, including quantum encryption [5] and [6]. The user’s
data are usually encrypted before stored in the cloud so
that the encrypted cloud data can keep private and secure.
Deleting the encrypted cloud data is achieved by destroying
the corresponding encryption keys, resulting in the inacces-
sibility of encrypted cloud data [7]. However, the encrypt-
ed data lose convenient usability. Even though the cloud
computing services support some ciphertext calculations,
such as public auditability [8], similarity search [9], feature
extraction [10], and editing images [11], the calculations over
ciphertexts are complex and expensive. Furthermore, a large
number of calculations still cannot be implemented in the
ciphertext domain. Therefore, outsourcing plaintext data is
more common than outsourcing ciphertext data in the real
world. However, directly outsourcing plaintext to the public
cloud inevitably leads to privacy concerns.

To support storing plaintext images in the cloud while
protecting the images’ copyright, preventing leakage and
abuse of images and controlling deletion of images, we
exploit the traceability property of digital watermarking to
identify the dishonest cloud that leaks its stored images or
does not delete images as required by the image owner. The
operations of watermarking are performed in the homo-
morphic encryption domain without leaking the sensitive
information.

Our contributions of this paper can be summarized as
follows:

1) Secure plaintext image storage (SPIS) protocols in-

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

2

volving four parties are proposed; these parties are
an image owner, a cloud server, a management
authority and a judge. SPIS protocols support im-
age display, image deletion and image retrieval, as
shown in Fig. 1.

2) The embedding, removal and detection operations
on watermarks are performed in the encrypted do-
main without exposure of any plaintext watermark.
The embedding positions of the watermarking are
hidden, and no one knows where the watermark is
embedded.

3) Assume that the image owner, the cloud server
and the management authority are semi-honest. The
image owner or the cloud server may conspire
with the management authority to obtain the cloud
server’s or the image owner’s plaintext data, such
as the original image or the identity watermark.
However, the conspiracy is prevented and no clear
information is leaked in the communication.

4) We conduct an in-depth security analysis of SPIS
protocols. The communication and computation
overheads of SPIS protocols are evaluated. We built
a simulator in Java to demonstrate the utility of SPIS
protocols.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces notations and
preliminaries. Section 4 presents the system model, the
attack models and the pursuing goals. Section 5 describes
the SPIS protocols and four secure computing sub-protocols.
In Section 6, the security analysis is described. In Section 7,
simulation experiments are performed. We summarize this
paper in Section 8.

2 RELATED WORK

The encryption methodology can reduce cloud data security
and privacy concerns to a certain degree. To realize fine-
grained access control for encrypted cloud data, attribute
based encryption (ABE) is an effective mechanism available
in the literature [12], [13] and [14]. To delete the ciphertext
data stored in the cloud, Tang et al. [15] presented the
assured deletion scheme. Before uploading data, the data
owner uses a data key to encrypt the data through a sym-
metric encryption method, and the data owner also uses
the access structure to encrypt the data key to control ac-
cessibility. The assured data deletion is reached by attribute
revocation such that all data keys of the users are useless
and none of the users can decrypt the ciphertext. However,
symmetric encryption used in ABE schemes does support
mathematical operations on encrypted data.

Fortunately, homomorphic encryption supports some
manipulation operations on encrypted data without proper
decryption [16]. Many applications of homomorphic en-
cryption focus on secure computation over an unsecured
channel, cloud computing and cloud storage available in
the literature [11], [17], [18], [23], [24], [25], [26] and [27].

Samanthua et al. [17] employed homomorphic encryp-
tion and proxy re-encryption, and achieved fine-grained ac-
cess control over data outsourced to the cloud. This method
can be used for documents and numbers but is not fit for

Fig. 1. System model of SPIS protocols

images as encrypted images are prone to an extreme loss of
their visibility and usability.

To support the upload of plaintext images, our previous
work [19] and [20] proposed plaintext image storage pro-
tocols, using homomorphic encryption and watermarking
techniques. Homomorphic encryption technology, specifi-
cally referring to the Paillier cryptosystem [21], ensures the
confidentiality of image content during the upload process;
the cloud’s watermark is embedded into the uploading
encrypted image; the cloud server receives the encrypted
and watermarked image, and stores it after decryption. The
embedded watermark can track the misbehaviour of the
cloud, such as revealing the upload image or not deleting
the image as required by the image owner. The protocols in
[19] and [20] protect the cloud user’s right to be forgotten
[22]. The users request the cloud to delete his/her image, but
the cloud does not comply. If this image appears again, the
authors argue that the cloud does not delete the user’ image,
and the corresponding cloud violates the user’s right to be
forgotten. However, the retrieved image in [19] contains
double watermarks, which seriously damages the visual
quality of the image. Moreover, the protocols in [19] and
[20] both assume that the third party is honest and trust-
worthy. Consequently, the third party can store and know
the plaintext watermarks that belong to the image owner
and the cloud, and the conspiracy of the third party with
the cloud sever or with the image owner is not discussed.
Furthermore, the schemes based on the Paillier cryptosys-
tem in [11], [17], [24], [25], [26], and [27] do not consider
the dishonest third party. In practice, the third party may
be dishonest regarding the interests or disclose the users’
data due to invasion. Hence, we adopt our previous work,
the restrained Paillier cryptosystem in [28], where the third
party is semi-honest and has no knowledge of the privacy
data of other participants.

3 PRELIMINARY

In this section, we review the cryptographic primitives and
watermarking primitives involved in this paper.

3.1 Cryptographic Primitives

In this section, we introduce typical properties of partially
homomorphic cryptosystems and then review the restrained
Paillier cryptosystem in [28]. For the sake of brevity, the
notations used in the cryptosystems are shown in Table 1.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

3

TABLE 1
Notations in Cryptosystems

Notation Description
| · | Bit length

pk, sk Partially homomorphic public & private key
E+

pk(·) Additive encryption algorithm with public key
E×

pk(·) Multiplicative encryption algorithm with public key
gcd(x, y) Greatest common divisor between x and y

3.1.1 Partially Homomorphic Cryptosystems

Two additive ciphertexts E+
pk(m1) and E+

pk(m2) accord with
the following property:

E+
pk(m1)× E+

pk(m2) = E+
pk(m1 +m2).

Two multiplicative ciphertexts such as E×
pk(m1) and

E×
pk(m2) accord with the following property:
E×

pk(m1)× E×
pk(m2) = E×

pk(m1 ×m2).

3.1.2 Restrained Paillier Cryptosystem

The public key is (N, g, h = gθ mod N) with a generator
g of order λ = 2p′q′ (where p = 2p′ + 1, q = 2q′ + 1 are
safe primes). The strong key is λ, and the weak private
key θ ∈ [1, N2/2]. Such a g can be obtained by selecting
a random a ∈ Z∗

N2 but a ̸= 1 mod N and computing
g = −a2N mod N . The party i’s pair of public and private
key is denoted as (pki, ski). The party j’s pair of keys is
denoted as (pkj , skj).

Additive Encryption (AddEnc): Given a message m ∈
ZN , choose a random r ∈ [0, N/4] and output the additive
ciphertext as E+

pk(m) = {AC1, AC2}, where AC1 = (hr

mod N)N (1 +mN) mod N2; AC2 = gr mod N .
Additive Decryption with Weak Private Key (Ad-

dDecWkey): An additive ciphertext such as E+
pk(m) can

be decrypted with private key sk = θ by calculating:
m = L{ AC1

[(AC2)
θ mod N]N

}.
Additive Decryption with Strong Private Key (Ad-

dDecSkey): The original message m is calculated as: m =

L[(AC1)
λ

mod N2]λ−1 mod N , since gcd(λ,N) = 1.
Strong Private Key Splitting (SkeyS): Split the strong

private key λ into two partial strong private keys. One,
denoted as λi, is sent to a party i; the other one, denoted
as λj , is sent to a party j. λi and λj meet the following two
constraints:{

λi + λj = 0 mod λ,

λ1 + λj = 1 mod N.
Additive Decryption with Partial Strong Private Key

Step One (AddDecPSkey1): This algorithm is run in the
party i side. Exploiting the partial strong private key λi, the
partial decrypted ciphertext DC1 of E+

pk(m) can be calculat-
ed as DC1 = (AC1)

λi = gλi·rθ(1 + λimN) mod N2. The
party i forwards {E+

pk(m), DC1} to the party j.
Additive Decryption with Partial Strong Private Key

Step Two (AddDecPSkey2): This algorithm is run on the
party j side. Given {E+

pk(m), DC1} and λj , the partial
decrypted ciphertext DC2 can be calculated as DC2 =
(AC1)

λj = gλj ·rθ(1 + λjmN) mod N2. Then, the original
message m can be recovered as: m = L[DC1 ·DC2].

Multiplicative Encryption (MulEnc): Given a message
m ∈ ZN , choose a random number r ∈ [1, N/4] and output

the multiplicative ciphertext as E×
pk(m) = {MC1,MC2},

where MC1 = mgrθ mod N ; MC2 = gr mod N .
Multiplicative Decryption (MulDec): The multiplica-

tive ciphertext E×
pk(m) can be decrypted with the private

key sk = θ by calculating m = MC1

(MC2)θ
mod N .

Multiplicative Ciphertext Refresh (MCR): Refresh
E×

pk(m) without decrypting this ciphertext by random-
ly choosing r′ ∈ Zp′q′ and calculate (E×

pk[m])′ =
{(MC1)

′, (MC2)
′}. (MC1)

′ = mhrCR mod N ; (MC2)
′ =

grCR mod N ; rCR = r + r′ mod 2p′q′.
A Multiplicative Ciphertext to A Mixed Ciphertext

(MultoMix): Gives the multiplicative ciphertext E×
pk(m) =

{MC1, C2}, where MC1 = mhr mod N ; MC2 = gr

mod N . Randomly choosing a number r′ ∈ [0, N/4]
runs the AddEnc algorithm and outputs the mixed ci-
phertext E∗

pk(m) as E∗
pk(m) = {MixC1,MixC2}, where

MixC1 = (hr′ mod N)N (1+mhrN) mod N2; MixC2 =
gr mod N .

A Mixed Ciphertext to An Additive Ciphertext (Mix-
toAdd): The MixtoAdd algorithm is executed between the
party i and the party j as follows.

Step 1 (@j): Given a mixed ciphertext E∗
pkij

(m), Uj

chooses a random number s ∈ Z2p′q′ and computes t1 =
(MixCij,2 · gθj)

s
= g(r+s)θj mod N and t2 = gs mod N .

Uj sends MixCij,1, t1 and t2 to party i.
Step 2 (@i): Once t1 is received, the party i first com-

putes (t1)
θi = h

(r+s)
ij mod N and its inverse [h

(r+s)
ij]−1

mod N , which the party i uses to calculate (MixCij)
′ as

(MixCij)
′

= (MixCij)
[h

(r+s)
ij]−1

mod N2

= (hr′

ij mod N)[h
(r+s)
ij]−1N [1 +m(hs

ij)
−1

N] mod N2.
Then, i computes T2 = (t2)

θi = gsθi mod N , and forwards
(MixCij)

′ and T2 to party j.
Step 3 (@j): Upon receiving T2, the party j uses it to

compute a middle result (T2)
′ = (T2)

θj = hs
ij mod N .

Next, the additive ciphertext E+
pkij

(m) is computed as
E+

pkij
(m)

= [(MixCij)
′](T2)

′

= (hr′

ij mod N)(h
r
ij)

−1N (1 +mN) mod N2.

3.2 Watermarking Primitives
Digital watermarking embeds some identification informa-
tion in the protected digital carrier to prove the ownership of
copyright or track the infringement and does not affect the
use value of the original carrier. Identification information
that is commonly called a watermark can be bit strings,
company logos, images, biometrical features, and so on, and
a Trojan can also be embedded as a feature [29].

Here, we briefly recall the multiplicative spread spec-
trum watermarking technique proposed by Cox et al. [31]
and then review the method of watermark detection.

3.2.1 Spread Spectrum Watermark
The components of watermark W = {w1, · · ·, wL} are L co-
efficients independently chosen from N(0, 1) Gaussian dis-
tribution. The watermark W is embedded into the largest L
alternating current (AC) coefficients X = {x1, · · ·, xL} in the
discrete cosine transform (DCT) of an original carrier by the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

4

following multiplicative insertion formula: Y = X(1+αW),
where Y represents the modified coefficients and α rep-
resents the embedding strength factor, which can used to
control the visual quality of the carrier.

3.2.2 Watermark Detection
Digital watermark detection can not only detect duplicate
digital media such as [30] but can also track the copy be-
haviour according to the detected watermark. Watermark-
ing detection is accomplished by computing a correlation
value denoted as corr, which measures the confidence for
the presence of a specific watermark W = {w1, · · ·, wL} in a
suspected carrier Y = {y1, · · ·, yL}. The decision regarding
the presence of watermark W in Y occurs if corr > δ
holds for a predefined detection threshold δ. Otherwise W is

absent. corr is calculated as: corr = <Y,W>
<Y,Y > =

L∑
n=1

(yi·wi)√
L∑

i=1
(yi·yi)

.

When L is large enough, it obeys a normal distribution.
Assume that Y is independent of W ; the threshold δ can be
derived as in [32].

4 SYSTEM MODEL, GOALS AND THREAT MODEL

In this section, we formalize the involved four-party system
model, define the attack models and design the goals.

4.1 System Model
The proposed protocols involve four parties: an image own-
er, a cloud server, a management authority and a judge. The
main interactions among the image owner, the cloud server
and the management authority are shown in Fig. 1.

The image owner (IO) embeds the cloud server’s i-
dentity watermark into images prior to uploading. When
retrieving the IO’s images, the IO requires obtaining the
original image without any watermark embedded. The IO
has his/her unique identity watermark that is considered
privacy data and confidential to the other parties.

The cloud server (CS) has a powerful computing ca-
pability and enormous storage space and offers the IO
the storage service for fee. The CS has its unique identity
watermark that is its privacy data and confidential to the
other parties.

The management authority (MA) is a semi-trusted par-
ty. It is in charge of generating cryptosystem parameters.
In addition, the MA preserves and manages the unique
identity watermark for each registered party.

The judge (J) executes arbitrations against information
leakage and copyright infringement.

4.2 Insider Attacks
Two unique identity watermarks for the IO and the CS are
denoted as Wo and Wc. Before uploading to the CS, the
image has been watermarked with Wo and Wc. Wo is used
to prove the ownership of the image by the IO, and Wc

is used to track the improper behaviour of the CS. When
retrieving the uploaded image, removal of Wo and Wc is
performed to restore the original images. Watermarks Wo

and Wc are privacy information and need to be encrypted
during calculations.

The IO, the CS, and the MA all are semi-honest parties in
that they correctly follow the SPIS protocols, but are curious
about other’s personal private information, such as private
keys, original images and identity watermarks. Hence, we
discuss the underlying security issues triggered by IO, the
CS, and the MA. These security issues are introduced as
follows:

• IO’s Dishonesty: The IO causes three security issues.
The first issue is that in the image uploading phase,
the IO acquires Wc from the CS and then embeds
Wc and Wo concurrently into the image X to forge
XWoc . The IO leaks the forged image XWoc stealthily,
accuses the CS of the leakage behaviour, and then
gains compensation from the CS. The first issue has
been solved in our previous work [19], where the
IO obtains only the encrypted Wc and not the plain-
text Wc. The second new issue is that in the image
retrieval phase, the IO obtains Wc by not removing
Wc from XWoc . To solve the second issue, the CS
has the task of removing the embedded watermarks
from XWoc . The third new issue is that the IO hinders
the CS from removing the watermark by providing
the CS with a fake watermark. Consequently, the
IO can obtain the CS’s private watermark Wc. To
solve the third issue, the CS verifies the watermark
authenticity. All solutions will be described later.

• CS’s Dishonesty: The CS induces two security issues.
The first issue is that the CS gives the IO a false
identity watermark instead of the true Wc so that the
CS can escape from watermarking tracing. To solve
the first issue, the IO detects the authenticity of Wc

before embedding the watermark. The second issue
is that in the image retrieval phase, the CS obtains
the embedding locations of the watermark. Then, the
CS destroys the embedded watermark causing a wa-
termark detection failure. The second issue is settled
since the IO hides the locations of the embedded
watermark. All solutions will be described later.

• MA’s Dishonesty: For various benefits or as a result
of being compromised, the MA may sell out or give
out some parties’ private keys. To solve this issue,
we use the key distribution scheme in our previous
work [28].

• Conspiracy Problems: The IO or the CS conspire with
the MA to obtain the CS’s or the IO’s plaintext data,
such as the original image or the identity watermark.

4.3 Outsider Attacks
We introduce an attacker A∗ outside the system. The adver-
sary A∗ is an active adversary who can threat the IO, the
CS, and the MA. The attack capabilities of the adversary A∗

are discussed as follows:

1) A∗ may eavesdrop on all communication to obtain
the encrypted data.

2) A∗ may threaten the MA to obtain the strong key λ
and to open all the additive ciphertexts.

3) A∗ may compromise the IO to guess the plaintext
value of all ciphertexts sent from the CS.

4) A∗ may compromise the CS to guess the locations
where to embed watermarks of images outsourced

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

5

from the IO, and the plaintext value of all cipher-
texts sent from the IO.

4.4 Design Goals
Under the assumption that the IO, the CS, and the MA all
are semi-honest parties, our ultimate goal is to design well-
functioning image protocols that allow storing plaintext
images in the cloud in order to support exhibition, lossless
retrieval and assurance of the deletion of these plaintext
images. The proposed protocols should realize the following
goals.

• Data Security: Data are encrypted during trans-
mission. Only the receiver can decrypt and obtain
plaintext data.

• Traceability: Any copy of an image must be iden-
tifiable and traceable to find the illegal distributor.
Specially, a watermarking protocol should enable
an IO to determine whether a specific CS illegally
revealed his/her image.

• Fairness: The proposed protocols are fair to the IO
and the CS. A malicious IO cannot frame an innocent
CS. An illegal CS cannot deny its faults.

• Conspiracy Problem: The IO and the MA may at-
tempt to cheat the CS’s identity watermark. The CS
and the MA may conspire to obtain the positions of
the embedded watermark.

• Recovery of Image Quality: When the IO retrieves
his/her own images, the IO obtains original images
without any loss of visual quality.

• Right to Be Forgotten: If the CS disobeys the us-
er’s delete request, the misbehaviour can be found
through detecting the CS’s unique identity water-
mark from the image that should have been deleted.

5 PROPOSED PROTOCOLS

5.1 Overview of SPIS Protocols
SPIS protocols, where important notations used are summa-
rized in Table 2, consist of four phases: system initialization,
image uploading, image retrieval, and image tracing. The initial
phase is used for preparing public-private keys and distri-
bution of identity certificates for participant parties.

In the image uploading phase, the IO and the CS first
link Wc and Wo together. To hide where the watermark is
embedded, the IO extends the length of the linked result to
the size of X and obtains the combined watermark Woc. The
IO embeds Woc in X , and obtains the watermarked image
XWoc , which is sent to the CS for the watermark removal in
the image retrieval phase.

In the image retrieval phase, the IO obtains his/her
recovered original image X through the CS removing the
embedded watermarked Woc.

The IO finds an image Y that is similar to X . Y may
be a copy of XWoc revealed from the CS. The IO exploits
watermark detection to find the illegal distributor.

5.2 Concrete Construction
In this subsection, we introduce our SPIS protocols in de-
tail. The SPIS protocols will invoke secure computing sub-
protocols, which include the secure combined multiplication

TABLE 2
Summary of Notations in SPIS Protocols

Notation Description
X Original image
Y Illegal copy of X

W,H Width and height of X
pko, θo IO’s public key and private key
pkc, θc CS’s public key and private key

pkoc
Joint public key of the IO

and the CS

L
Length of each party’s unique

identity watermark
α = {α1, · · · , αL} Strength of embedded watermark

Wo

= {wo,1, · · · , wo,L}
IO’s unique identity watermark

SWo

= {swo,1, · · · , swo,L}
Strengthened Wo

Wc

= {wc,1, · · · , wc,L}
CS’s unique identity watermark

SWc

= {swc,1, · · · , swc,L}
Strengthened Wc

Woc

= {woc,1, · · · , woc,W×H}
Combined watermark
containing Wo and Wc

E×
pko

(Wo) Wo encrypted by pko

E×
pkoc

(Wo) Wo encrypted by pkoc

E×
pkoc

(SWo)
Wo strengthened and

encrypted by pkoc
E×

pkc
(Wc) Wc encrypted by pkc

E×
pkoc

(Wc) Wc encrypted by pkoc

E×
pkoc

(SWc)
Wc strengthened and

encrypted by pkoc

E×
pkoc

(SWoc)
Woc strengthened and

encrypted by pkoc

(SCMul) sub-protocol, the secure strengthened operation
(SStrenOper) sub-protocol, the secure equivalent verifying
(SEVer) sub-protocol, and the secure watermark detection
protocol (SWDec) sub-protocol. Each sub-protocol that will
be described in Section 5.3 accomplishes its own indepen-
dent task without compromising the privacy of data. The
function descriptions and formulaic representations of these
four sub-protocols are shown in Table 3.

5.2.1 System Initialization
The MA generates the system public key (N, g) and the
strong private key λ, according to our previous work [28].
When a party i enrols in the system, i generates his/her
own public-private key pair {hi = gθi mod N, θi}, and
obtains his/her identity IDi and the corresponding identity
certificate Certi from the MA. Before data transmission,
communication parties can identify each other through the
authentication protocol in [28].

In addition, the party i produces his/her own identi-
fication watermark Wi. The length of Wi is set as L. The
party i deploys the MulEnc algorithm to encrypt Wi and
yields E×

pki
(Wi). Then, E×

pki
(Wi) is transmitted to the MA.

The MA stores E×
pki

(Wi) in MA’s database. The MA cannot
modify E×

pki
(Wi) without the party i’s private key. The data

related to the party i are stored in the database of the MA,
as shown in Table 4.

5.2.2 Image Uploading
Before uploading image, the IO and the CS employ the
Diffie-Hellman Key Exchange Agreement [34] to generate

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

6

TABLE 3
Functions and Formulas of Four Sub-protocols

Sub-protocol Function Description Formulaic Representation
SCMul Perform multiplication in the ciphertext domain XWoc = SCMul(IO,CS,X,E×

pkoc
(Woc))

SStrenOper Strengthen the encrypted watermark
with the embedding strength factor E×

pkoc
(1 + αWc) = SStrenOper(IO,CS, α,E×

pkoc
(Wc))

SEVer Verify whether the plaintexts of two different
ciphertexts are the same without decryption True/False = SEqV er(IO,CS,E×

pkc
(Wc), E

×
pkoc

(Wc))

SWDec Detect Watermark in the ciphertext domain corr = SWaterDec(IO,CS, Y,E×
pkoc

(Woc))

TABLE 4
The Party i’s Data in the Database of the MA

IDi (gθri mod N)N (1 + riN) mod N2 E×
pki

(Wi)

their joint public key pkoc = (N, g, gθoθc mod N). The
strong private key λ has been separated into two shares by
the MA. One share denoted as λo is transmitted to the IO.
The other one denoted as λc is sent to the CS. Interactions
between the IO and the CS of the image uploading phase
shown in Fig. 4 are illustrated as follows.

Step 1 (@IO): The IO sends the request to the CS that
the IO is going to outsource an image X to the cloud.

Step 2 (@CS): The CS forwards {E×
pkc

(Wc), E
×
pkoc

(Wc)}
to the IO.

Step 3 (@IO and CS): In order to check whether the
plaintexts of E×

pkc
(Wc) and E×

pk∏
oc

(Wc) are the same, the
SEqVer sub-protocol is run between the IO and the CS. If
they are the same, then continue. Otherwise, the IO and CS
re-execute Step 2 and Step 3.

Step 4 (@IO and CS): To strengthen the CS’s encrypt-
ed watermark E×

pkoc
(Wc), the SStrenOper sub-protocol is

executed between the IO and the CS, producing the CS’
encrypted and strengthened watermark E×

pkoc
(SWc).

Step 5 (@IO): (1) The IO calculates his/her own encrypt-
ed and strengthened watermark E×

pkoc
(SWo), concatenates

it with E×
pkoc

(SWc) and appends E×
pkoc

(1) until the length of
the combined watermark denoted as E×

pkoc
(SWoc) is W×H .

Fig. 2 depicts the process of generating E×
pkoc

(SWoc).

Fig. 2. Generation of the combined encrypted watermark
E×

pkoc
(SWoc).

(2) The IO selects a key Ko to scramble the E×
pkoc

(SWoc)

and obtains Ko[E
×
pkoc

(SWoc)] = {swoc,i(hoc)
roc,i

mod N, groc,i mod N}(i = 1, · · · ,W ×H).
(3) The IO calculates the product of his/her own

strengthened watermark as Mulo =
L∏

i=1
swo,i and

InterRo =
W×H∏
i=1

h
roc,i
o mod N . Then, Ko[E

×
pkoc

(SWoc)],

Mulo and InterRo are put forward to the CS.

Step 6 (@CS): (1) The CS computes Mulc =
W×H∏
i=1

swc,i.

(2) The CS checks whether the equation
W×H∏
i=1

swoc,i(hoc)
roc,i

(InterRo)θc
mod N = Mulo × Mulc mod N

holds or not. Only if it holds does the CS proceed.
Otherwise, the CS asks the IO for the right data.

(3) The CS executes the MCR algorithm to fresh
Ko[E

×
pkoc

(SWoc)] using {r′oc,i}(i = 1, 2, · · · ,W × H), and
obtains a fresh version. The refreshed result is scrambled
by the CS using its scrambling Kc. The scrambled result
is marked as Kc{Ko[E

×
pkoc

(LWoc)]} = {swoc,i(hoc)
Roc,i

mod N, gRi mod N}(i = 1, 2, · · · ,W ×H), where Roc,i =
roc,i + r

′

oc,i.

(4) The CS computes InterRc =
W×H∏
i=1

(h
Roc,i
c) mod N

and then transmits Kc{Ko[E
×
pkoc

(SWoc)]}, Mulc and
InterRc to the IO.

(5) Kc{Ko[E
×
pkoc

(SWoc)]} is saved in the cloud for image
retrieval.

Step 7 (@IO): (1) The IO validates whether SW o and
SWC are still included in Kc{Ko[E

×
pkoc

(SWoc)]} by check-

ing whether the formula

W×H∏
i=1

swoc,i(hoc)
Roc,i

(InterRc)θo
mod N =

Mulo ×Mulc mod N holds or not.
Only if it holds does the IO proceed. Otherwise, the IO

asks the CS to send right data.
Step 8 (@IO and CS): The IO and the C-

S execute the SCMul sub-protocol as XSWoc =
SCMul(IO,CS,X,Kc{Ko[E

×
pkoc

(SWoc)]}), yielding the
encrypted and watermarked image Epkoc

(XSW oc) that is
sent to the CS. After decryption of Epkoc

(XSW oc) is finished,
the plaintext XSW oc is stored in cloud.

Step 9 (@CS): The CS returns Kc{Ko[E
×
pkoc

(SWoc)]},
Kc, and r

′

oc,i(i = 1, 2, · · · ,W ×H) to the IO.
Step 10(@IO): (1) The IO uses his/her local

Ko[E
×
pkoc

(SWoc)], Kc and r
′

oc,i(i = 1, 2, · · · ,W × H)
to re-execute Step (2) in Step 6 (@CS) and acquires
[Kc{Ko[E

×
pkoc

(SWoc)]}]o.
(2) The IO judges the equivalence between

Kc{Ko[E
×
pkoc

(SWoc)]} and [Kc{Ko[E
×
pkoc

(SWoc)]}]o.
If unequal, the IO asks the CS for the right data.

(3) The IO transmits E×
pko

(Ko) and E×
pko

(Kc) to the CS.
Step 11(@CS): The CS stores E×

pko
(Ko) and E×

pko
(Kc)

along with other data for the IO, as shown in Table 5.

TABLE 5
IO’s Data in the Cloud in Image Upload Phase

IDo XSWoc Kc{Ko[E
×
pkoc

(SWoc)]} E×
pko

(Ko), E
×
pko

(Kc)

To clarify the image uploading phase, four important
points are explained as follows:

• In (2) of Step 5 (@IO), the IO cannot execute the
SCMul sub-protocol to embed Ko[E

×
pkoc

(SWoc)] in-

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

7

to X and transmit Ko[E
×
pkoc

(SWoc)] to the CS for
removing the watermark. It is because the IO may
transmit a fake watermark that does not contain SWo

and SWc to the CS. As a result, SWo and SWc cannot
be removed in the image retrieval phase. To solve the
problem, the CS verifies whether Ko[E

×
pkoc

(SWoc)]
contains SWo and SWc in (2) Step 6 (@CS).

• After the verification in (2) of Step 6 (@CS), the CS
still does not trust the IO. It is because the IO may
give the CS a false watermark that contains SWo

and SWc but does not equal the true watermark
element by element. As shown in Fig. 3, the IO first
concatenates E×

pkoc
(SWo) with E×

pkoc
(1) and finally

appends E×
pkoc

(SWc), producing a fake combined
encrypted watermark, denoted as [E×

pkoc
(SWoc)]

′.
The IO conveys Ko{[E×

pkoc
(SWoc)]

′} to the CS. As
a result, in the image retrieval phase, SW c cannot
be removed. To keep the IO from providing a fake
removing watermark, the CS generates the removing
watermark before embedding the watermark in (3)-
(5) of Step 6 (@CS).

• To prevent the IO from utilizing violent attack to
reverse this scrambling key Kc, the CS refreshes the
received watermark Ko[E

×
pkoc

(SW oc)] by running
the MCR algorithm in (3) of Step 6 (@CS).

• Kc and Ko assist the IO to locate the watermark
position and detect the watermark in the watermark
detection phase.

Fig. 3. Generation of the fake combined encrypted water-
mark watermark [E×

pkoc
(SWoc)]

′.

5.2.3 Image Retrieval
When the IO requests to take back XSW oc from
the CS, the CS first removes the embedded water-
mark using the stored removing watermark marked as
Kc{Ko[E

×
pkoc

(SWoc)]} = {swoc,i(hoc)
Roc,i mod N, gRoc,i

mod N}(i = 1, 2, · · · ,W × H). Then, the recovered and
encrypted image Epkoc

(X) is obtained and sent to the IO.
After decrypting Epkoc

(X), the IO obtains his/her original
image X . This process is illustrated as follows.

Step 1 (@IO): The IO sends a download request to the
CS that the IO is going to take back the image X without
degradation.

Step 2 (@CS): Receiving the IO’s image retrieval request,
the CS sends {gRoc,i}(i = 1, 2, · · · ,W ×H) to the IO.

Step 3 (@IO and CS): The IO obtains
his/her original image X by executing the
SCMul sub-protocol formalized as: X =
SCMul(CS, IO,XSW oc

,Kc{Ko[E
×
pkoc

(SWoc)
−1]}},

where Kc{Ko[E
×
pkoc

(SWoc)
−1]} = {[swoc,i(hoc)

Roc,i]−1

mod N, gRoc,i mod N}(i = 1, 2, · · · ,W ×H).

5.2.4 Image Tracing
Once the IO finds an image Y that is similar to X , the
IO can take back the identity, scrambling keys, and the

corresponding encrypted combined watermark from the CS.
Then, the IO decides whether the CS is the illegal divulger if
Wc exists in Y after executing the SWaterDec sub-protocol.

5.3 Four Security Computing Sub-protocols

In this subsection, we introduce four secure computing
sub-protocols involved in SPIS protocols. Each sub-protocol
securely implements a specific function in the ciphertext
domain.

5.3.1 Secure Combined Multiplication Sub-protocol
(SCMul)
The multiplicative spread spectrum watermarking tech-
nique proposed by Cox et al. [31] cannot be implemented
through the multiplication homomorphism in the cipher-
text domain. This is because the IO embeds E×

pkoc
(Woc)

into X by computing E×
pkoc

(XWoc) = E×
pkoc

(X · Woc) =

{xi · woc,i · hri
oc mod N, (gri)θo mod N}(i = 1, 2, · · · , L).

The computed result is sent to the CS. For decrypting
E×

pkoc
(XWoc), g

θor is sent to the CS. However, the CS can
use (gr)θo to decrypt E×

pkoc
(Woc).

To prevent the CS from decrypting E×
pkoc

(Woc), the
multiplicative homomorphism is combined with the ad-
ditive homomorphism to generate the mixed ciphertext
E∗

pkoc
(Woc). The process of using E∗

pkoc
(Woc) to accomplish

watermark embedding is described as follows.
Step 1 (@IO and CS): The IO and CS com-

monly compute E×
pkoc

(Woc) = {woc,i(hoc)
ri mod N, gri

mod N}(i = 1, 2, · · · , L), where ri is a random number.
Step 2 (@CS): The CS chooses S = {si}(i =

1, 2, · · · ,W × H) from [1, N
4], and calculates P =

{pi|pi = (hoc)
si mod N}, and T1 = {t1,i|t1,i = gθc(ri+si)

mod N}(i = 1, 2, · · · , L). P is kept secret. T1 is transmitted
to the IO.

Step 3 (@IO): (1) After T1 is received, the IO computes
(T1)

θo and its inverse T2 = [(T1)
θo]

−1
= {t2,i|t2,i =

[(hoc)
(ri+si)]−1 mod N}(i = 1, 2, · · · , L).

(2) E×
pkoc

(X ·Woc) is calculated as:
∀i = 1, 2, · · · , L
E×

pkoc
(xi · woc,i)

= {xi · woc,i(hoc)
ri mod N, gri mod N}.

(3) E∗
pkoc

(X ·Woc) is calculated using E×
pkoc

(X ·Woc) as:
∀i = 1, 2, · · · , L
E∗

pkoc
(xi · woc,i)

= (gθoro,i mod N)N [1 + xi · woc,i(hoc)
riN] mod N2.

(4) E∗
pkoc

(X · Woc · P−1) is calculat-
ed using E∗

pkoc
(X · Woc) and T2 as:

E∗
pkoc

(X ·Woc · P−1) = [E∗
pkoc

(X ·Woc)]
T2 .

(5) The IO uses the AddDecPSkey1 algorithm to calcu-
late [E∗

pkoc
(X ·Woc · P−1)]λo . Then, the IO sends E∗

pkoc
(X ·

Woc · P−1) and [E∗
pkoc

(X ·Woc · P−1)]λo to the CS.
Step 6 (@CS): (1) After receiving {E∗

pkoc
(X · Woc ·

P−1), [E∗
pkoc

(X · Woc · P−1)]λo}, the CS uses the
AddDecPSkey2 algorithm to calculate X · Woc as:
∀i = 1, 2, · · · , L
xi · woc,i

= L({[E∗
pkoc

(Ai)]
λo · [E∗

pkoc
(Ai)]

λc}pi mod N2),
where Ai = xi · woc,i · (pi)−1

mod N .

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

8

IO CS

Upload request
−−−−−−−−→

E×
pkc

(Wc)

E×
pkoc

(Wc)

E
×

pkc
(Wc),E

×

pkoc
(Woc)

←−−−−−−−−−−−−−−−−
SEqVer(E×

pkc
(Wc),E

×

pkoc
(Wc))

←−−−−−−−−−−−−−−−−−−−−→
E

×

pkoc
(SWc)=SStrenOper(α,E

×

pkoc
(Wc))

←−−−−−−−−−−−−−−−−−−−−−−−−−−→
i = 1, · · · ,W ×H

generates {Ko[E
×
pkoc

(SWoc)]}i
= {swoc,i(hoc)

roc,i mod N, groc,i mod N}
computes Mulo, InterRo

Ko[E
×

pkoc
(SWoc)],Mulo,InterRo

−−−−−−−−−−−−−−−−−−−−−−−−→
computes Mulc
Check Mulo ×Mulc mod N

=

W×H∏

i=1

swoc,i(hoc)
roc,i

(InterRo)θc
mod N

i = 1, · · · ,W ×H
chooses r′oc,i←[1, N/4]

MCR(Ko[E
×
pkoc

(SWoc)], r
′

oc)

generates [Kc{Ko[E
×
pkoc

(SWoc)]}]i

= {swoc,i(hoc)
roc,i+r′oc,i mod N,

groc,i+r′oc,i mod N}
computes InterRc

Kc{Ko[E
×

pkoc
(SWoc)]},Mulc,InterRc

←−−−−−−−−−−−−−−−−−−−−−−−−−−−
Check Mulo ×Mulc mod N

=

W×H∏

i=1

swoc,i(hoc)
roc,i+r′

oc,i

(InterRc)θo
mod N

SCMul(X,Kc{Ko[E
×

pkoc
(SWoc)])

←−−−−−−−−−−−−−−−−−−−−−→
obtains XSWoc

Kc{Ko[E
×

pkoc
(SWoc)],Kc,r

′

oc

←−−−−−−−−−−−−−−−−−−−−−

MCR(Ko[E
×
pkoc

(SWoc)], r
′

oc)

generates [Kc{Ko[E
×
pkoc

(SWoc)]}]o

Check [Kc{Ko[E
×
pkoc

(SWoc)]}]o

= Kc{Ko[E
×
pkoc

(SWoc)]}

E
×

pko
(Ko),E

×

pko
(Kc)

−−−−−−−−−−−−−−−→

stores E×
pko

(Ko), E
×
pko

(Kc)

Fig. 4. Interactions between the IO and the CS in the image uploading phase.

In the SCMul sub-protocol, the IO has no ability to
decrypt E×

pkoc
(Woc) because the IO only can access t1 =

g(r+s)θc but not gθcr in Step 3 (@IO). The CS also cannot
decrypt E×

pkoc
(Woc) as the SCMul sub-protocol prevents the

calculation of gθor .
The process of the SCMul sub-protocol is formulated as

XWoc = SCMul(IO,CS,X,E×
pkoc

(Woc)).

5.3.2 Secure Strengthened Operation Protocol
(SStrenOper)

Before the watermark is embedded into the image, the
watermark is strengthened with an embedding strength
factor α to control the image’s quantity after embedding.
For instance, in the Cox et al. scheme [31], the embedding
data are 1+αW , not singly W . Here, W represents the orig-
inal watermark. The IO cannot use E×

pkoc
(Wc) to compute

E×
pkoc

(1 + αWc) through the property of the multiplication
homomorphism since the strengthened operations contain
the additive operation.

The CS can calculate E×
pkoc

(1 + αWc) and send it to the
IO. The IO takes the responsibility to verify the correctness
of E×

pkoc
(1+αWc) to prevent the CS from offering false data.

The length of Wc is L. The process of generating E×
pkoc

(1 +
αWc) is described as follows.

Step 1 (@IO): The IO gives the CS the embedding
strength factor α = (α1, α2, · · · , αL).

Step 2 (@CS): (1) Receiving α, the CS calculates 1+αWc.
(2) The CS chooses r = {ri} from [1, N

4] and r′ = {r′i}
from [1, N

4](i = 1, 2, · · · , L) and runs the MulEnc algorithm
to compute E×

pkoc
(Wc) and E×

pkoc
(1 + αWc).

(3) The CS puts forward E×
pkoc

(Wc) and E×
pkoc

(1 +αWc)
to the IO.

Step 3 (@IO): (1) After receiving E×
pkoc

(Wc) and
E×

pkoc
(1+αWc), the IO computes E∗

pkoc
(αWc) and E∗

pkoc
(1+

αWc) by running the AddEnc algorithm.
(2) The IO sends E∗

pkoc
(αWc) and E∗

pkoc
(1+αWc) to the

CS.
Step 4 (@CS): (1) The CS calculates INC = [(hoc)

r
]−1

mod N and INC ′ = [(hoc)
r′
]−1 mod N .

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

9

(2) Receiving E∗
pkoc

(αWc) and E∗
pkoc

(1 + αWc), the CS
computes [E∗

pkoc
(αWc)]

INC , [E∗
pkoc

(1 + αWc)]
INC′

and the
product of elements of them as:
L∏

i=1
[E∗

pkoc
(αWc)]

INC = {M1,1,M1,2};

L∏
i=1

[E∗
pkoc

(1 + αWc)]
INC′

= {M2,1,M2,1}.

(3) The CS forwards the IO M1,1, M1,2, M2,1 and M2,2.
Step 5 (@IO): (1) After receiving

{M1,1,M1,2,M2,1,M2,2}, the IO uses the AddDecWkey
algorithm to calculate the decrypted results as:
F1 = L{ M1,1

[(M1,2)θo mod N]N mod N2 };

F2 = L{ M2,1

[(M2,2)θo mod N]N mod N2 }.

(2) The IO checks whether the equation F1 +
L∑

i=1
1 = F2

holds or not. If it holds, the IO is sure that F1 =
L∑

i=1
(αiwc,i),

F2 =
L∑

i=1
(1+αiwc,i) and that E×

pkoc
(1+αMc) sent from the

CS is correct. If not, the IO asks the CS for the right data.
The process of the SStrenOper sub-

protocol is formulated as E×
pkoc

(1 + αWc) =

SStrenOper(IO,CS, α,E×
pkoc

(Wc)).
To clarify the SStrenOper sub-protocol, an important

point is explained. In (3) of Step 4 (@CS), the CS send-
s the product of elements of the [E∗

pkoc
(αWc)]

INC and
[E∗

pkoc
(1 + αWc)]

INC′
instead of the single elements to the

IO. This is to prevent collusion between the IO and the MA.
Consequently, the IO obtains the strong key λ to decrypt
[E∗

pkoc
(αWc)]

INC and [E∗
pkoc

(1 + αWc)]
INC′

and obtains
Wc.

5.3.3 Secure Equivalent Verifying Protocol (SEqVer)
The encrypted watermark E×

pkc
(Wc) = {wc,i(hc)

rc,i

mod N, grc,i mod N} and E×
pkoc

(Wc) = {woc,i(hoc)
roc,i

mod N, groc,i mod N}(i = 1, 2, · · · , L) belong to the CS
under pkc and pkoc, respectively. The IO verifies whether
the plaintexts of E×

pkc
(Wc) and E×

pkoc
(Wc) are the same

without decryption. The validation process using the prop-
erty of the multiplicative homomorphism is described as
follows.

Step 1 (@CS): The CS sends E×
pkc

(Wc) and E×
pkoc

(Wc) to
the IO.

Step 2 (@IO): (1) After Epkc
(Wc) and Epkoc

(Wc)
are received, the IO selects ro,i(i = 1, 2, · · · , L) ran-
domly from [1, N

4] to compute a middle result M1 as:

M1 = gθo(roc+ro)

grc mod N .
(2) The IO chooses a scrambling key Ko to scramble M1,

obtaining Ko(M1) and sending it to the CS.
Step 3 (@CS): (1) Upon receiving Ko(M1), the CS com-

putes [Ko(M1)]
θc = Ko(M1

θc).
(2) Ko(M

θc
1) is returned to the IO.

Step 4 (@IO): (1) After receiving Ko(M
θc
1), the IO uses

Ko to inversely scramble Ko(M
θc
1) and recover Mθc

1 as:
Mθc

1 =
h(roc+ro)
oc

hrc
c

mod N .
(2) The IO calculates (hoc)

ro to verify whether the equa-
tion Woc·hroc

oc

Wc·hrc
c

× (hoc)
ro

Mθc
1

mod N = 1 holds or not. If it holds,

then the IO believes plaintexts Epkc
(wc) and Epkoc

(Wc) are
the same and sends Ko and ro,i(i = 1, 2, · · · , L) to the CS.
Otherwise, the IO can ask the CS for the correct data.

Step 5 (@CS): (1) The CS uses the received Ko to re-
scramble [Ko(M1)]

θc and obtains Mθ
1 .

(2) The CS uses the received ro to calculate (hoc)
ro

and then checks whether the equation Mθc
1 mod N =

(hoc)
roc+(hoc)

ro

(hc)rc
mod N holds or not. If it holds, the CS is

sure that the IO is honest. Otherwise, the CS can accuse the
IO of dishonesty in cheating Woc.

To clarify the SEqVer sub-protocol, two important points
are explained.

• Step 5 (@CS) is used to stop the IO from sending
the CS fake (M1)

′ as: (M1)
′ = gθo(roc+ro) mod N .

The CS returns [(M1)
′]θc to the IO. The IO can obtain

hroc
oc = [(M1)

′]θc

hro
oc

mod N that can be used to decrypt
E×

pkoc
(Wc).

• In Step 2 (@IO), the Ko cannot be guessed with an
exhaustive search method in the presence of ro.

• Ko can prevent the CS from providing fake da-
ta that can pass Step 4 (@IO) when the two
plaintexts involved are not the same. For instance,
E×

pkc
(E) = {eigθcre,i mod N, gre,i mod N} and

E×
pkoc

(F) = {fi(hoc)
rf,i mod N, grf,i mod N}(i =

1, 2, · · · , L), where ei ̸= fi are used to test whether
the plaintexts contained are consistent. With the help
of Ko, the CS can only create ei

fi
×Ko[(

gθo(re,i+ro,i)

grf,i)θc]

instead of the true data Ko[
ei
fi
× (g

θo(re,i+ro,i)

grf,i)θc] that
can pass Step 4 (@IO).

The process of the SEqVer sub-protocol is formulated as
True/False = SEqV er(IO,CS,E×

pkoc
(Wc), E

×
pkoc

(Woc)).

5.3.4 Secure Watermark Detection Sub-protocol (SWa-
terDec)

The IO decides if an image Y that is similar to X con-
tains CS’s identical watermark Wc. The IO takes back
Kc{Ko[E

×
pkoc

(SWoc)]}, which is in the encrypted form. For
brevity, Kc{Ko{[E×

pkoc
(SWoc)]} is denoted as E×

pkoc
(Woc) =

{woc,i(hoc)
ri mod N, gri mod N}(i = 1, 2, · · · , L).

The SWaterDec sub-protocol that is used to realize the
watermarking detection in the ciphertext domain is de-
scribed as follows.

Step 1 (@IO): (1) The IO uses Y and E×
pkoc

(Woc) to
calculate E∗

pkoc
(Y ·Woc).

(2) E∗
pkoc

(Y ·Woc) is sent to the CS.
Step 2 (@CS): (1)Receiving E∗

pkoc
(Y ·Woc), the CS

calculates the inverse element INC = (gθcr)−1 mod N ,
[E∗

pkoc
(Y ·Woc)]

INC and the product of elements of it as
:
L∏

i=1
[E∗

pkoc
(Y ·Woc)]

INC = {M1,M2}.

(2) (M2)
λc are obtained by running the AddDecPSkey1

algorithm.
(4) The CS launch M1, M2 and (M2)

λc to the IO.
Step 3 (@IO): (1) Using the received M2, the IO runs the

AddDecPSkey2 algorithm to compute the correlation value
corr1 as:

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

10

corr1 = L[(M2)
λo ·(M2)

λc]√
L∑

i=1
(yi)2

=

L∑
i=1

(yi×woc,i)

L∑
i=1

(yi)2
.

Using the AddDecWkey algorithm, the IO computes
the correlation value corr2 as:

corr2 = L{(M2)\{[(M1)
θo]N mod N2}}√

L∑
i=1

(yi)2
=

L∑
i=1

(yi·woc,i)

L∑
i=1

(yi)2
.

(3) The IO compares corr1 with corr2. If not equal, the IO
asks the CS for right data. As a result, repeat Step 1 (@IO) to
Step 3 (@IO). Otherwise, the final correlation value corr =
corr1 = corr2 is obtained. The IO compares corr with a
detection threshold δ. If corr ≥ δ holds, then the IO makes
sure that Y contains Woc.

To clarify the SWaterDec sub-protocol, an important
point is explained. In (4) of Step 2 (@CS), the CS does not
launch the single element of [E∗

pkoc
(Y · Woc)]

INC element
by element. This is to prevent collusion between the IO and
the MA, where the IO obtains the strong key λ to decrypt
[E∗

pkoc
(Y ·Woc)]

INCand obtains Woc.
The process of the SWaterDec sub-protocol is formulated

as corr = SWaterDec(IO,CS, Y,E×
pkoc

(Woc)).

6 SECURITY ANALYSIS

Limited by the pages, we gave strict security analysis on the
restrained Pallier in our previous work [28]. In this section,
we analyze the security of these four secure computing sub-
protocols, that is the SCMul sub-protocol, the SStrenOper
sub-protocol, the SEVer sub-protocol, and the SWDec sub-
protocol, before elaborating the security of SPIS protocols.

6.1 Security of Computing Sub-Protocols
The general case definitions of the security model can be
referred to in [35]. Based on the security model, we prove the
security of our computing sub-protocols. We consider the
presence of semi-honest adversaries for achieving an ideal
functionality. We use the scenario involving three parties,
the IO, the CS and the MA. The IO can collude with the MA
to obtain the strong key λ. The CS can also collude with the
MA to obtain λ. For the sake of simplicity, the strengthened
watermarks SW oc are simplified to Woc.

We construct two simulators Sim = (SimIO, SimCS)
against two kinds of adversaries A = (AIO,ACS) that
corrupt the IO and the CS, respectively.

Theorem 1: The SCMul sub-protocol described in Section
5.3.1 can securely compute multiplication of a plaintext and
a ciphertext in the present of semi-honest adversaries A =
(AIO,ACS).

Proof. We construct two simulators Sim =
(SimIO, SimCS).

SimCS simulates ACS as follows: First, it generates
encryption E×

pkoc
(Ŵoc) on randomly chosen Ŵoc, random-

ly chooses si ∈ [1, N
4], calculates T1. SimCS and sends

E×
pkoc

(Ŵoc) and T1 to ACS . If ACS replies with ⊥, then
SimCS returns ⊥.

The view of ACS consists of the multiplicative encrypted
data it creates. The views of ACS on the real and the ideal
executions consist of E×

pkoc
(Ŵoc) and T1. In the real world,

this is guaranteed by the semantic security of the MulEnc
algorithm that is proven in [28], even though the MA is
dishonest. The views of ACS in the real and the ideal
executions are indistinguishable.

SimIO simulates AIO as follows: First, it calculates
T2 = {t2,i|t2,i = (hoc)

ri mod N} using the randomly
chosen number ri ∈ [1, N

4]. Second, it generates fictitious
encryption E×

pkoc
(X̂W) by running the MulEnc algorithm

on randomly chosen X̂W and then calculates E∗
pkoc

(X̂W),

[E∗
pkoc

(X̂W)]T2 and {[E∗
pkoc

(X̂W)]T2}λo using the Ad-

dDecPSkey1 algorithm. SimIO sends [E∗
pkoc

(X̂W)]T2 and

{[E∗
pkoc

(X̂W)]T2}λo to AIO. If AIO replies with ⊥, then
SimIO returns ⊥.

The view of AIO consists of the encrypted data it creates.
In both the real and the ideal executions, AIO receives the
outputs [E∗

pkoc
(X̂W)]T2 and {[E∗

pkoc
(X̂W)]T2}λo . In the real

world, this is guaranteed by the semantic security of the
AddEnc algorithm and the MultoMix algorithm that are
proven in [28], even though the MA is dishonest. The views
of AIO in the real and the ideal executions are indistinguish-
able.

The security proofs of the SStrenOper, SEqVer, and
SWaterDec sub-protocols are similar to that of the SC-
Mul sub-protocol under the semi-honest adversaries A =
(AIO,ACS). All the calculations are performed over cipher-
text domains that are secure due to the semantic security of
the restrained Paillier cryptosystem [28].

6.2 Security of SPIS Protocols
In this section, we will illustrate that SPIS protocols are
secure under an active adversary A∗ defined in Section
4.3. For the sake of simplicity, the strengthened watermarks
SW oc are simplified to Woc in this subsection.

6.2.1 Security of Image outsourcing phase
If A∗ eavesdrops on the transmission between the chal-
lenge IO and the CS, the original encrypted data, such as
E×

pkc
(Wc), E×

pkoc
(Wc) and E×

pkoc
(Woc), and the final results

E×
pkoc

(XWoc) and E∗
pkoc

(XWoc) may be obtained by A∗.
Moreover, middle ciphertext results acquired by running the
SCMul, SStrenOper, and SEqVer sub-protocols transmitted
between the IO and the CS may also be obtained by A∗.

First, A∗ will not be able to decrypt the multiplicative
ciphertexts without the challenge parties’ private keys due
to the semantic security of the MulEnc algorithm. Second,
suppose A∗ has compromised the IO or the CS to obtain the
partial strong key λo or λc. However, A∗ is unable to recover
the strong private key λ. Even if A∗ has compromised both
the IO and the CS at the same time or compromised the
MA and obtains λ, A∗ still cannot decrypt the encrypted
and watermarked image given the property of the mixed
ciphertexts that λ cannot decrypt. Third, A∗ may com-
promise the CS to obtain the locations of the embedding
watermark. However, each location of the IO’s image is
pretended to be embedded with the watermark so that A∗

cannot distinguish specific embedding locations. A∗ may
compromise the IO to provide the CS a fake watermark
such that CS cannot remove the CS’s watermark Wc, and A∗

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

11

can obtain an image watermarked with Wc after retrieving
the IO’s uploaded image. This issue is addressed as the CS
actively joins the construction of the embedding watermark
to prevent the IO from faking the watermark.

6.2.2 Security of Image Retrieval phase
The security of the image retrieval phase is based on that of
the SCMul sub-protocol.

6.2.3 Security of Image Tracing Phase
The security of the image tracing is based on the security
of the SWaterDec sub-protocol, which employs both the
semantic security of the MulEnc algorithm and the char-
acteristic of the SCMul sub-protocol.

6.3 Analysis of the Security Requirements

In this subsection, we show that the proposed protocol can
achieve the design goals described in Section 4.4.

Data Security: The transmitted data are either multiplica-
tive ciphertexts or mixed ciphertexts. These ciphertexts can
only be decrypted by the receiver, which is guaranteed by
the MulEnc algorithm.

Traceability: Tracing the dishonest party is realized by
detecting the dishonest party’s identity watermark, which
is achieved by the SWaterDec sub-protocol.

Fairness: No one can access the others’ plaintext water-
marks to fake the watermarked images with the others’
watermark.

Conspiracy Problem: The MA cannot obtain each party’s
private key and cannot decrypt their own encrypted water-
mark. Even if the IO or the CS conspire with the MA and the
MA gives the IO or the CS the strong key λ, the encrypted
watermarks still fail to be decrypted.

Recovery of Image Quality: The CS removes the embedded
watermark and returns the original image to the IO .

Right to Be Forgotten: The IO demands the CS to delete
his/her image, but the CS does not perform deletion. If
the IO meets the image that is asked to be deleted, the
SWaterDec sub-protocol is performed to detect the CS’s
identity watermark in front of the J. If the CS’s identity
watermark is detected, the J convicts the CS of breaking
the right to be forgotten.

7 PERFORMANCE ANALYSIS

In this section, we first give the functionality comparisons
among our scheme and several related schemes and then
analyse the performance of the proposed protocols in terms
of theoretical analysis and experimental results over both
the computational overhead and the communication cost.

7.1 Functionality Comparison

We give the functionality comparison of our scheme with
the relevant scheme in [19] and [20]. As shown in Table 6,
our scheme is the only scheme that can satisfy all of the
following properties: image display, image lossless retrieval,
protection of private data in the case of semi-honest third
party, resistance to collusion with the third party, and hiding
the positions of embedded watermark.

7.2 Theoretical Analysis

We assume that one regular exponentiation operation with
an exponent of length |N | requires 1.5|N | multiplications
[36] (i.e., a length of r is |N | and that computing gr occupies
1.5|N | multiplications). Since the exponentiation operation
introduces significantly higher cost than the addition and
multiplication operations, we ignore the fixed numbers of
addition and multiplication operations in our analysis. For
the restrained-Paillier cryptosystem [28], the bit length of
random is chosen as |r| = |N |

4 , and the bit length of
the private key is set as |θ| = |N2|

2 ≈ |N |. The additive
ciphertext E+

pk(x) needs 3|N | to transmit. The multiplicative
ciphertext E×

pk(x) needs 2|N | to transmit.

7.2.1 Theoretical Costs of Secure Computing Sub-
protocols
The computational (Compu.) costs of the SCMul,
SStrenOper, SWaterDec and SEqVer sub-protocols are
O(|N |) multiplications. In order to compare the computa-
tional cost of participants, the specific computational con-
sumption is presented in Table 7. The length of involved
vectors is denoted L, L ≪ N , and the length of the
scrambling keys involved are denoted as |N |.

From Table 7, we observe that both the computational
costs of the SStrenOper and SWaterDec sub-protocols are
higher than those of the SCMul and SEqVer sub-protocols,
as the SStrenOper and SWaterDec sub-protocols employ
high consumption algorithms, namely, the AddEnc, Ad-
dDecPSkey1 and AddDecPSkey2 algorithms. The SEqVer
sub-protocol consumes the least computational overhead.
This is because the SEqVer sub-protocol only exploits the
lightweight MulEnc algorithm.

As shown in Table 7, the calculation costs of the
SStrenOper and SWaterDec sub-protocols consist of the L
term and constant term, such as (4.5L + 15)|N |. This is
because all elements of an involved vector participate in the
operation after summation or multiplication instead of each
single element, such as Step 4 (@CS) of the SStrenOper
sub-protocol and Step 2 (@CS) of the SWaterDec sub-
protocol.

Communication (Commu.) costs of the four sub-
protocols are O(|N |) bits. The last row of Table 7 presents
the concrete communication overheads.

7.2.2 Theoretical Costs of SPIS Protocols
In the SPIS protocols, the length of the mentioned water-
mark vectors is denoted as LW , ,LW ≪ N , the size of
relative images is denoted as LI , LI ≪ N , the length of
the scrambling keys and weighting factors of the water-
mark involved are |N |. The CS’s watermark E×

pkc
(Wc) and

E×
pkoc

(Wc) under different public keys have been ready,
and the IO has pre-computed E×

pko
(Wo), E×

pkoc
(Wo) and

E×
pkoc

(1, 1, · · · , 1). The computational cost of these ready-
made ciphertext data is not accumulated. Furthermore, the
system initialization phase is considered to run only once,
and thus the overhead of such a phase is little and can
be ignored. The computational costs of each party in each
phase are O(|N |). To clarify the differences of the con-
sumption, Table 8 shows the concrete computational costs

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

12

TABLE 6
Function Comparison with Other Protocols

Image
display

Image
lossless retrieval

Semi-honest
third party

Hiding embedding
positions of watermark Cryptosystem

Dong [19]
√

× × × Paillier [21]
Liu [20]

√ √
× × Paillier [21]

Proposed protocols
√ √ √ √

restrained Paillier [28]

TABLE 7
Costs of the SCMul, SWOper and SWaterDec Sub-protocols

SCMul SStrenOper SWaterDec SEqVer
IO 7.875L|N | (9L+ 3)|N | (2.25L+ 6)|N | 3.375L|N |
CS 6.75L|N | 9L|N | (3L+ 3)|N | 1.875L|N |

Compu. 14.625L|N | (18L+ 3)|N | (5.25L+ 9)|N | 5.25L|N |
Commu. 5L|N | (10.5L+ 6)|N | (3L+ 5)|N | (6.25L+ 1)|N |

TABLE 8
Costs of SPIS Protocols in Theory

Image Outsourcing Image Retrieval Image Tracing
IO (13.5LW + 10.5LI + 18)|N | 9LI |N | (4.5LW + 9)|N |
CS (12LW + 12LI + 9)|N | 9LI |N | (3LW + 3)|N |

Compu. (25.5LW + 22.5LI + 27)|N | 18LI |N | (7.5LW + 12)|N |
Commu. (17LW + 9LI + 10)|N | 6LI |N | (3LW + 9)|N |

in SPIS protocols, including the image outsourcing phase,
the image retrieval phase and the image tracing phase.
Communication costs in SPIS protocols are O(|N |) bits. The
last row of Table 8 presents the specific communication
overheads, and B represents 8 bits.

As shown in Table 8, the computation cost and commu-
nication cost of the image upload phase are the highest since
outsourcing an image dispatches the SCMul, SStrenOper,
and SEqVer sub-protocols. The image retrieval phase only
uses the SCMul sub-protocol. The image tracing phase
only uses the SWaterDec sub-protocol. The overheads of
the image tracing phase in Table 8 are greater than those
of the SWaterDec sub-protocol because the image tracing
phase not only executes the SWaterDec sub-protocol but
also performs the retrieval and decryption scrambling keys.

7.3 Experimental Analysis
In this section, we evaluate the time consumption and
communication cost of four secure computing sub-protocols
and SPIS protocols. We perform the experiments using a
personal computer powered by an Intel(R) Core(TM) i5-4490
@3.30 GHz processor, 8 GB of RAM memory and a Windows
7 professional operating system. The experimental results
are evaluated as an average over 1000 times using a custom
simulator built in Java.

7.3.1 Experimental Costs of Secure Computing Sub-
protocols
Secure computing sub-protocols involve the IO and the CS.
For the sake of brevity, we use the party i to replace the IO
and the party j to replace the CS. Any positive integer x is
involved in the three sub-protocols, and x is limited in the
range of [0, R], where Len(R) < Len(N)

4 .
The computation and communication cost of the SCMul

sub-protocol increases only as |N | increases, as shown in
Table 9. The performance in the SStrenOper, SEqVer, and
SWaterDec is shown in Fig. 5(a) - Fig. 5(f).

As seen from Fig. 5(a) - Fig. 5(f), we find that both com-
putational and communication overheads of sub-protocols
not only increase with the length of N but also with the
length of the involved vector L. The SEqVer sub-protocol
only relies on the MulEnc algorithm. Thus, all the overheads
of the SEqVer sub-protocol are much lower than those of the
SStrenOper sub-protocol and SWaterDec sub-protocol.

7.3.2 Experimental Costs of SPIS Protocols
In this implementation, we show the results of applying
2D DCT on non-overlapping 8 × 8 blocks of the greyscale
Lena image of size 256 × 256. We randomly choose 1024
DCT blocks, and then we take the DCT coefficients from
the third position to the tenth position of each chosen
block in the classical Zig-Zag order to make up the carrier
X = {x1, x2, · · · , x8192}. We choose a 1024-bit length of
N and achieve 80-bit security levels [36]. The watermark
embedding strengths α for uploading an image twice are
set to 0.06. and 0.6. The length of WIO and WCS is 2048,
one-fourth of the length of X . The scaling factor Q is 210 for
quantizing X , WIO , WCS , and α into integers.

The computational cost and communication overheads
are recorded in Table 10, where the time consumption is at
the millisecond level.

TABLE 10
Costs of SPIS Protocols in Practice

Image Outsourcing Image Retrieval Image Tracing
IO 44123.0 ms 15268.0 ms 2929.0 ms
CS 53887.0 ms 44158.0 ms 3249.0 ms

Commu. 6384334.0 B 3127173.0 B 391191.0 B

The visual quality metric to measure the quality of the
greyscale image after embedding the watermark is the peak
signal-to-noise ratio (PSNR) since PSNR is more suitable for
greyscale images [37]. The experimental results of the Lena
image are shown in Fig. 6(a)-Fig. 6 (c).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

13

TABLE 9
Performance of the SCMul Sub-protocol with Different |N |

Sub-protocol
|N | 512 768 1024 1280 1536 1792 2048

SCMul
Party i 5.363 ms 15.01 ms 33.941 ms 67.175 ms 118.771 ms 195.344 ms 282.641 ms
Party j 4.158 ms 11.814 ms 26.649 ms 52.497 ms 92.991 ms 152.886 ms 221.537 ms

Commu. 318.258 B 476.986 B 636.975 B 797.002 B 957.0420 B 1118.264 B 1277.239 B

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Run time on party i with different bit length of N at L = 10. (b) Run time on party j with different bit length
of N at L = 10. (c) Communication costs with different bit length of N at L = 10. (d) Run time on Party i with different
vector length L at |N | = 1024. (e) Run time on party j with vector length L at |N | = 1024. (f) Communication costs with
different vector length L at |N | = 1024.

(a) (b) (c)

Fig. 6. (a) Watermarked image at α = 0.06. (b) Watermarked image embedded at α = 0.6. (c) Retrieved image.

Fig. 6(a) shows that in the image uploading phase, the
PSNR of the watermarked image embedded with Woc is
55.63 dB when α is 0.06. The PSNR of the watermarked
image embedded with Woc is 34.43 dB, as shown in Fig.
6(b), when α is 0.6. As shown in Fig. 6(c), the PSNR of the
retrieved image achieves infinity. This proves that the IO can
recover his/her original image in the image retrieval phase.

In the image tracing phase, when α is 0.06, the correla-
tion corro between the watermark Wc and its carrier XWoc

is 18.1126 and the correlation corrc between Wc and XWoc is
18.8784. Both corro and corrc are higher than the detection

threshold δ that is mentioned in Section 3.2.2. Thus, the
traceability of the proposed protocol can be guaranteed and
effective.

8 CONCLUSION

In this paper, we propose secure plaintext image stor-
age (SPIS) protocols integrated with multiple functions.
SPIS protocols achieve plaintext image storage, display and
deletion in the cloud environment with privacy-preserving
content. The image owner can control the quality of the
uploaded images and trace the cloud’s misbehaviour such

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

14

as leaking images and violating the right to be forgotten.
The cloud can store the plaintext image with reduction in
the storage space. Considering a semi-honest third party,
any conspiracy between a party and the third party is
blocked. Our security analysis and the experimental results
have shown that the SPIS protocols are sufficiently secure
and efficient for a real-world deployment. As future work,
we will study how to securely outsource the plaintext 3D
model, which will allow us to refine the framework to
address more complex and larger computations.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science
Foundation of China under Grant U1636201 and 61572452,
by Anhui Initiative in Quantum Information Technologies
under Grant AHY150400.

REFERENCES

[1] Zephoria. The Top 20 Valuable Facebook Statistics-Updated September
2018. [Online]. Available: https://zephoria.com/top-15-valuable-
facebook-statistics/.

[2] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J.
Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information
flow tracking system for real-time privacy monitoring on smart-
phones,” ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 1-29, Jun.
2014.

[3] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and J. C. S. Lui,“A
secure cloud backup system with assured deletion and version
control,” in Proc. 40th Int. Conf. Parallel Process. Workshops, 2011,
pp. 160-167.

[4] X. Li, H. Ma, W. Yao, and X. Gui, ”Data-driven and feedback-
enhanced trust computing pattern for large-scale multi-cloud col-
laborative services,” IEEE Trans. Serv. Comput., vol. 11, no. 4, pp.
671-684, Jul./Aug. 2018.

[5] A. A. A. El-Latif, B. Abd-El-Atty, E. M. Abou-Nassar, and S.
E. Venegas-Andraca, ”Controlled alternate quantum walks based
privacy preserving healthcare images in Internet of Things,” Optics
& Laser Technology, vol. 124, 105942, 2020.

[6] A. A. A. El-Latif, B. Abd-El-Atty, M. S. Hossain, M. A. Rahman,
A. Alamri, and B. B. Gupta, ”Efficient quantum information hiding
for remote medical image sharing,” IEEE Access, vol. 6, pp. 21075-
21083, 2018.

[7] S. Swanson and M. Wei, ”SAFE: Fast, verifiable sanitization for
SSDs,” San Diego, CA: University of California-San Diego, 2010.

[8] Q. Wang, C. Wang, K. Ren, W Lou, and J. Li, ”Enabling public
auditability and data dynamics for storage security in cloud com-
puting,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847-859,
May. 2011.

[9] L. Yingying, J. Ma, M. Yinbin, Y. Wang, X. Liu, and K. K. R.
Choo, ”Similarity search for encrypted images in secure cloud
computing,” IEEE Trans. Cloud Comput., 2020.

[10] L. Jiang, C. Xu, X. Wang, B. Luo, and H. Wang, ”Secure outsourcing
sift: efficient and privacy-preserving image feature extraction in the
encrypted domain,” IEEE Trans. Depend. Sec. Comput., vol. 17, no. 1,
pp. 179-193, Jan./Feb. 2020.

[11] M. Mohanty, M. R. Asghar, and G. Russello, “2DCrypt: Image
scaling and cropping in encrypted domains,” IEEE Trans. Inf. Foren-
sics Security, vol. 11, no. 11, pp. 2542-2555, Nov. 2016.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ”Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. 13th ACM Conf. Computer and Comm. Security, 2006, pp. 89-98.

[13] R. Ostrovsky, A. Sahai, and B. Waters, ”Attribute-based encryption
with nonmonotonic access structures,” in Proc. 14th ACM Conf.
Computer and Comm. Security, 2007, pp. 195-203.

[14] J. Han, W. Susilo, Y. Mu, J. Zhou, and M. H. A. Au, ”Improving
privacy and security in decentralized ciphertext-policy attribute-
based encryption,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 3,
pp. 665-678, Mar. 2015.

[15] Y. Tang, P. P. C. Lee , J. C. S. Lui, and R. Perlman, “Secure overlay
cloud storage with access control and assured deletion,” IEEE Trans.
Depend. Sec. Comput., vol. 9, no. 6, pp. 903-916, Nov./Dec. 2012.

[16] M. Alloghani, M. M. Alani, D. Al-Jumeily, T. Baker, and A. J. Aljaaf,
”A systematic review on the status and progress of homomorphic
encryption technologies,” Journal of Inf. Security and Appl., vol. 48,
102362, 2019.

[17] B. K. Samanthula, G. Howser, Y. Elmehdwi, and S. Madria, ”An
efficient and secure data sharing framework using homomorphic
encryption in the cloud,” In Proc. 1st Int. Workshop on Cloud Intelli-
gence, 2012, pp. 1-8.

[18] L. Li, A. A. A. El-Latif, and X. Niu, ”Elliptic curve elgamal based
homomorphic image encryption scheme for sharing secret images,”
Signal Process., vol. 92, no. 4, pp. 1069-1078, 2012.

[19] X. Dong, W. Zhang, X. Hu, and K. Liu, “A cloud-user watermark-
ing protocol protecting the Right to Be Forgotten for the outsourced
plain images,” Int. Journal Digit. Crime Forensics, vol. 10, no. 4, pp.
118-139, 2018.

[20] K. Liu, W. Zhang, and X. Dong, “A cloud-user protocol based
on ciphertext watermarking technology,” Security & Commun.
Networks, pp. 1-14, 2017.

[21] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn. Adv. Cryptol. (EUROCRYPT), Prague, Czech Republic, May
1999, pp. 223-238.

[22] Right to Be Forgotten. Available: http-
s://en.wikipedia.org/wiki/Right to be forgotten#cite note-16.

[23] Q. Wang, J. Huang, Y. Chen, C. Wang, F. Xiao, and X. Luo,
“PROST : Privacy-preserving and truthful online double auction
for spectrum allocation,” IEEE Trans. Inf. Forensics Security, vol. 14,
no. 2, pp. 374-386, Feb. 2019.

[24] X. Liu, B. Qin, R. H. Deng, and Y. Li, “An efficient privacy-
preserving outsourced computation over public data,” IEEE Trans.
Serv. Comput., vol. 10, no. 5, pp. 756-770, 2015.

[25] X. Liu, R. H. Deng, K. K. R. Choo, and J. Weng, “An efficient
privacy-preserving outsourced calculation toolkit with multiple
keys,” IEEE Trans Inf. Forensics Security, vol. 11, no. 11, pp. 2401-
2414, Nov. 2016.

[26] X. Liu, R. H. Deng, W. Ding, R. Lu, and B. Qin, “Privacy-preserving
outsourced calculation on floating point numbers,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 11, pp. 2513-2527, Nov. 2016.

[27] X. Liu, R. Choo, R. Deng, R. Lu, and J. Weng, ”Efficient and
privacy-preserving outsourced calculation of rational numbers,”
IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, Jan./Feb. 2018.

[28] X. Dong, W. Zhang, M. Shah, B. Wang, and N. Yu, “A restrained
paillier cryptosystem and its applications for access control of
common secret,” Available: http://arxiv.org/abs/1912.09034.

[29] S. Al Sharif, F. Iqbal, T. Baker, and A. Khattack, ”White-hat hacking
framework for promoting security awareness,” in Proc. 8th IFIP Int.
Conf. on New Technologies, Mobility and Security, 2016.

[30] S. Al Sharif, M. Al Ali, N. Al Reqabi, F. Iqbal, T. Baker, and A.
Marrington, ”Magec: An image searching tool for detecting forged
images in forensic investigation,” in Proc. 8th IFIP Int. Conf. on New
Technologies, Mobility and Security, 2016.

[31] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE Trans. Image Process.,
vol. 6, no. 12, pp. 1673-1687, Dec. 1997.

[32] M. Barni, F. Bartolini, V. Cappellini, and A. Piva, ”A DCT-domain
system for robust image watermarking,” Signal process., vol. 66, no.
3, pp. 357-372, 1998.

[33] H. W. Lim, S. Tople, P. Saxena, and E. Chang, “Faster secure arith-
metic computation using switchable homomorphic encryption,”
IACR Cryptol. ePrint Arch. Tech. Rep. 2014/539, Jul. 2014.

[34] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644-654, Nov. 1976.

[35] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-
party computation,” IACR Cryptol. ePrint Arch. Tech. Rep. 2011/272,
Oct. 2011.

[36] E. Barker, W. Barker, W. Burr,, W. Polk, and M. Smid, ”Recom-
mendation for key management part 1: General (revision 3),” NIST
special publication, vol. 800, no. 57, pp. 1-147, 2012.

[37] X. Yan, S. Wang, A. A. A. El-Latif, X. Niu, and Z. Wei, ”A
new assessment measure of shadow image quality based on error
diffusion techniques,” Journal of Inf. Hiding and Multimedia Signal
Process., vol. 4, no. 2, pp. 118-126, 2013.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3008957, IEEE
Transactions on Services Computing

15

Xiaojuan Dong received her B.S. degree from
Anhui University in 2016. She is currently pursu-
ing the Ph.D. degree in information security with
the University of Science and Technology of Chi-
na. Her research interests include applications of
digital watermark, information and cryptography.

Weiming Zhang received his M.S. degree and
Ph.D. degree in 2002 and 2005, respectively,
from the Zhengzhou Information Science and
Technology Institute, P.R. China. Currently, he
is a professor with the School of Information
Science and Technology, University of Science
and Technology of China. His research interests
include information hiding and multimedia secu-
rity.

Mohsin Shah received the B.Sc degree in t-
elecommunication engineering from the Univer-
sity of Engineering and Technology Peshawar,
Pakistan in 2007, M.Sc degree in telecommuni-
cation engineering from the University of Engi-
neering and Technology Taxila, Pakistan in 2012
and the Ph.D. degree in information and com-
munication engineering from the University of
Science and Technology of China Hefei, China
in 2019. He has been a faculty member with
the Department of Telecommunication, Hazara

University Mansehra Pakistan since 2009, where he is currently an
assistant professor. His research interests include information hiding,
multimedia security, secure signal processing and image forgery detec-
tion.

Bei Wang received her B.S. degree from Hefei
University of Technology in 2013. She is current-
ly working toward the Ph.D. degree at University
of Science and Technology of China. Her re-
search interests mainly include fast computation
of elliptic curve cryptography.

Nenghai Yu received his B.S. degree in 1987
from Nanjing University of Posts and Telecom-
munications, M.E. degree in 1992 from Tsinghua
University and Ph.D. degree in 2004 from the
University of Science and Technology of China,
where he is currently a professor. His research
interests include multimedia security, multimedia
information retrieval, video processing and infor-
mation hiding.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2020 at 11:43:30 UTC from IEEE Xplore. Restrictions apply.

