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Abstract

In this paper, we look into the problem of 3D adver-
sary attack, and propose to leverage the internal proper-
ties of the point clouds and the adversarial examples to de-
sign a new self-robust deep neural network (DNN) based
3D recognition systems. As a matter of fact, on one hand,
point clouds are highly structured. Hence for each local
part of clean point clouds, it is possible to learn what is it
(“part of a bottle”) and its relative position (“upper part of
a bottle”) to the global object center. On the other hand,
with the visual quality constraint, 3D adversarial samples
often only produce small local perturbations, thus they will
roughly keep the original global center but may cause in-
correct local relative position estimation. Motivated by
these two properties, we use relative position (dubbed as
“gather-vector”) as the adversarial indicator and propose
a new robust gather module. Equipped with this module,
we further propose a new self-robust 3D point recognition
network. Through extensive experiments, we demonstrate
that the proposed method can improve the robustness of the
target attack under the white-box setting significantly. For
I-FGSM based attack, our method reduces the attack suc-
cess rate from 94.37 % to 75.69 %. For C&W based attack,
our method reduces the attack success rate more than 40.00
%. Moreover, our method is complementary to other types
of defense methods to achieve better defense results.

1. Introduction

Deep neural networks (DNNs) have achieved great
achievements in many computer vision areas such as im-
age recognition [7, 11], object detection [17] and 3D ob-
ject classification [16, 15], but recent works [18] found
that DNNs are vulnerable to adversarial samples. Ad-
versarial samples are carefully crafted images by making
small and invisible perturbations on the original images.
Although they are indistinguishable from the original im-
ages by human eyes, they can make DNNs produce to-
tally wrong predictions. Furthermore, adversarial samples
can even misguide DNNS to any predefined predictions and
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Figure 1. Schematic diagram about how the local feature influ-

ences its gather-vector. (a) and (c) are clean samples, their circled
out parts have the right local feature and its gather-vector (red vec-
tor in the figure ) points to the real global center (black circle in
the sample center). (b) is an adversarial sample classified as an air-
craft by the DNN. Its circled out part is viewed as a part of wing
by DNN, so its gather-vector point to right and deviate from the
real global center.

this is called target adversarial attack. The following re-
search finds that not only in the image-based DNNs, ad-
versarial samples also exist in DNNs based on various data
forms such as video [20], audio [23, 19], and 3D point
clouds [22, 12, 1, 24].

In recent years, DNNs operating on 3D data have gained
more and more popularity and are widely used in many re-
alistic applications such as 3D reconstruction [5, 8] and au-
tonomous driving [14, 26]. But the existence of adversar-
ial attacks, especially target adversarial attack poses seri-
ous threats to many safety-critical applications. For exam-
ple, under the autonomous driving scenario, if the attacker
dedicatedly guides the system to recognize a ‘passerby’ to
‘nothing’, accidents will happen. Following the image-level
adversarial defense ideas, several methods have also been
proposed to defend 3D adversarial attack, including input
restoration [25] and adversarial training [12].

Despite their effectiveness, we look at this problem from
a new perspective and argue all of these methods have not
considered the internal properties of point clouds and that of
3D adversarial samples, let alone leverage these properties
to design a self-robust 3D recognition system. In fact, point
clouds are highly structured data that for each local part of
clean point clouds, it is possible to learn “what is it” and
“what is its relative position to the global object center”.
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In this paper, we use “gather-vector” to present this rel-
ative position. For instance, Fig. 1(a) is one clean point
cloud sample, we denote the black big point in the center
as the global object center. For clean samples, the recog-
nition model can learn that the circled out part is “part of
a bottle” and it is in the “upper part”. So it can generate a
gather-vector that points to the global center as the red vec-
tor shown in Fig. 1(a). Fig. 1(c) is another example that the
circled out part is “part of an aircraft” and in the “left wing
of an aircraft”, so the gather-vector points to the right.

But for an adversarial sample, because of the visual qual-
ity constraint, its point clouds are often locally perturbed
while its global object center does not change. Just because
of these local perturbations, the gather-vectors of these per-
turbed parts will change with the changing of local features,
and hence causing some of them pointing to a wrong cen-
ter which is far away from the original global object center.
Fig. 1(b) is an adversarial point cloud that is misrecognized
as an aircraft by DNN. The DNN thinks the circled out part
has a similar feature with the circled out part in Fig. 1(c), so
its corresponding gather-vector will be regressed to be the
right direction, far away from the real global center in the
bottom direction.

Motivated by this discrepancy, we propose to use gather-
vector as the adversarial indicator and design a new ro-
bust gather module. The gather module learns from the lo-
cal features without any global information, so the output
gather-vector is only related to the local features. If the lo-
cal features are changed by the adversarial perturbation, the
gather-vector will also change. Equipped with this module,
we propose a new self-robust 3D point recognition network
based on PointNet++. But different from PointNet++ that
uses a global feature combining module before the fully-
connected layers, we use our gather module to evaluate the
potential adversary of every local features. Only features
whose corresponding gather-vectors still point to the global
center will be viewed as clean features, and we calculate the
final prediction with these clean features.

Through extensive experiments, we demonstrate that the
proposed method can greatly improve the robustness to the
target attack under the white-box setting with a less than 1%
decrease of original recognition accuracy on clean samples.
For I-FGSM [10] based attack, our method reduces the at-
tack success rate from 94.37 % to 75.69 %. For C&W [2]
based attack, our method reduces more than 40.00 % of the
attack success rate. Moreover, since the robustness of our
method is a kind of structure robustness, it is independent
of the training data or training strategy. This means our
method is complementary with other types of defense meth-
ods and can be combined to achieve better defense results.

To summarize, our contributions are threefold as below.

e We clearly analyze the internal properties of point
clouds and that of 3D adversarial samples, and clarify

the underlying reason why they can be used to improve
the model robustness.

e Based on the analysis, we propose “gather-vector” as
an effective adversarial indicator and design a new
self-robust 3D point recognition model, which can au-
tomatically ignore adversarial noises.

e Extensive experiments demonstrate that the proposed
method achieving superior robustness to target adver-
sarial attack with only a slight decrease of original
recognition accuracy.

2. Related Works
2.1. Point Cloud Recognition

Point cloud represents a set of points sampled from ob-
ject surfaces by 3D sensors such as depth cameras and Li-
dars. Different from regular input representations such as
image, point cloud is unordered and sparse, thus making
it hard to be consumed by DNNs directly. Qi et al. [15]
address this problem by proposing a new network called
PointNet, which is now widely used for deep point cloud
processing. With a single symmetric function, max pool-
ing, PointNet and its variants [16] aggregate the unordered
input data to a fixed-length global feature vector and enable
end-to-end training. Qi et al. [15] also show the robustness
of PointNet to missing points and random perturbation by
the concept of critical points. However, the following re-
search finds that PointNet is vulnerable when the missing
points [24] and perturbation [22, 12] are carefully crafted.

2.2. Adversarial Attack On Point Clouds

Current point cloud adversarial attack methods can be
categorized into three types: point-perturbation based [22,
12], point-adding based [22] and point-dropping based [24].
Point-perturbation based methods follow the idea from
image-level adversarial attack and can be further cate-
gorized into two sub-types: optimization-based [22] and
gradient-based [12]. Optimization based methods [22] fol-
low the idea from [18, 2] that model the generation of ad-
versarial noise as an optimization problem and use some op-
timizers to solve it. Similarly, gradient-based methods [12]
follow the idea from [6, 10] and use the gradient of the
loss function with respect to the input sample as the adver-
sarial perturbation. Different from the perturbation scheme,
point-adding based method [22] optimizes a few ordered or
unordered points and add them to the original point cloud to
realize attack. And point-dropping based method [24] uses
a salience map to evaluate the importance of every point
for the right recognition, then drop the most important few
points to realize attack. Need to note that these two latter
methods only support untarget attack.
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2.3. Adversarial Defense On Point Clouds

Compared with image-level adversarial defense, there
are only a few methods proposed for 3D point cloud adver-
sarial defense. Adversarial training is one of the most ef-
fective method to boost the robustness by finetuning recog-
nition models with adversarial samples and Liu et al. [12]
extend it to 3D point cloud. Input restoration is another kind
of adversarial defense, these methods remove the adversar-
ial perturbation by adding one pre-processing step before
feeding the input samples into the target model. Recently,
Zhou et al. [25] propose a statistical outlier removal mod-
ule and a upsampling network to realize input restoration.
As mentioned in Sec.1, despite the effectiveness of these
methods, they have not considered the internal properties
of point clouds and that of 3D adversarial samples. In this
paper, we aim at improving the robustness of models from
the structure aspect with these internal properties and pro-
pose a self-robust recognition model, which is orthogonal
and complementary with the above defense methods.

3. Method
3.1. Problem Definition

Adversarial Attack. We denote x as the source point cloud
with n points and y as its corresponding ground-truth la-
bel. Here x = {x;|i = 1,2,...,n} and each point x;
is a vector of its xyz coordinates. Let H be the target
model with parameters 6. Then #(x;#) is the probabil-
ity prediction for each class. For an ideal model we should
get argmax, H(x;60). = y. For a real model, the equa-
tion is also satisfied for most samples. Target adversar-
ial attack method f aims to generate an adversarial sam-
ple x?% = f(x,t) that satisfies argmax, H(x*%;0), = t,
here ¢ is the predefined target label. To guarantee the adver-
sarial sample visually similar to the clean one, the differ-
ence between x and x*® should be small enough. In most
cases, the difference is measured by [/, norm or the Chamfer
loss [4] on point clouds, and the constraint D(x, x“d“) <e€
is proposed to fulfill the similarity requirement. Here € is a
predefined threshold constant.

White-Box vs. Gray-Box vs. Black-Box. If we know the
architecture and parameters of the target model to attack,
such an attack is called a white-box attack. In this case, we
can generate adversarial samples with back-propagated gra-
dients directly. But if there are some unknown input trans-
formations before feeding samples into the model, we call
such an attack as gray-box attack. For the black-box attack
case that we know nothing about the target model, the attack
is often realized by the transferability of adversarial samples
and the adversarial samples are generated by attacking other
white-box models.

(b) Adv Point Cloud

(a) Clean Point Cloud
Figure 2. Illustration to show that the gather-vectors are learnable
for clean point clouds (a) and will be changed and point to a wrong
place if the local features are significantly changed (b). The blue
cycle is the global center.

3.2. Motivation

Since images are only the 2D projection of one 3D object
from one specific view, it is often difficult to directly lever-
age the original 3D structure information for image-level
adversarial defense. By contrast, point clouds are highly
structured data and contain the full 3D information of the
object. Therefore, how to leverage the internal structure in-
formation of point clouds to defend 3D adversarial attack is
natural and worthy studying in depth.

Before diving into how to leverage structure information
for more robust recognition, let us first study how exist-
ing 3D recognition networks work. Take the most popu-
lar recognition network PointNet++ [16] as an example, it
first extracts the local features of each local part, then ag-
gregates all the local features based on some schemes such
as max-pooling to obtain the global feature, finally feeds
the global feature to get the recognition prediction for the
whole object. It is not difficult to find that the final recog-
nition results of these recognition systems are all based on
the local features. In other words, for each local parts of the
point cloud, it is possible to learn “what is it”, which is also
consistent with the “critical subset” observation in [15].

Moreover, because of the overall quality constraint, most
existing adversarial attack methods also focus on perturbat-
ing such local parts to mislead the recognizer. In order to
defend such local feature based adversarial attack methods,
we believe that it will be helpful if we can find some local
adversarial indicators that tell us which local parts are sig-
nificantly perturbated. Based on the above local property
of adversarial attack, we further argue that such indicators
must have one important property, i.e., they should highly
relate to local features so that it can identify the local adver-
sarial perturbations.

So how to find such an adversarial indicator? To answer
this question, let us recap the internal property of 3D adver-
sarial samples and 3D object again. As mentioned before,
3D adversarial samples are often based on local perturba-
tions while keeping the global structure, thus the global cen-
ter position of a 3D adversarial sample is overall identical to

11518



(b) Adv Point Cloud
Figure 3. (a) Clean point cloud and its estimated centers for each
local part(red points). (b) Adversarial point cloud and its estimated
centers for each local part (blue points). It can be seen that the
estimated centers of clean points are all near the global center. But
for adversarial point cloud, some of them will deviate from the
global center by the local adversarial perturbation.

(é) Clean Point Cloud

that of the original clean point cloud. Further considering
the rigid property of 3D objects and the discriminativness
of their local parts, it may be possible to learn the relative
position of each local part to the global center based on the
local features. In this paper, we call the “relative position to
the global center” of each local part as its “gather-vector”.

To verify our hypothesis, we first use a PointNet++ like
network that tries to learn such “gather-vector” for each lo-
cal part based on its local features. The experiment results
demonstrate that it is definitely learnable. In Figure 2, we
show the gather-vectors of two local parts of one “Table”
point cloud. It can be seen that for a clean point cloud, the
place where gather-vectors point to is within the global cen-
ter. To further verify it can indicate the local adversarial per-
turbation, we deliberately change the local features of these
two parts. By visualization, we find their gather-vectors are
significantly changed and point to other positions far from
the correct global center.

Now another question appears, i.e, How to leverage the
gather-vector for robust point cloud recognition? To answer
this question, let us first review how existing 3D recognition
network aggregate the local features. Take PointNet++ as
an example, after extracting local features, PointNet++ treat
these features equally with a max-pooling layer to get the fi-
nal prediction. Such “equal” means if some local features
are changed by adversarial perturbations, the final recogni-
tion result will be significantly affected. Motivated by this,
we consider using the gather-vector as the aggregation guid-
ance and designing a new gather-vector guided aggregation
module in this paper.

Specifically, given the local features of each part, it will
first calculate the corresponding gather-vectors and then
move the center point of each part based on its gather-vector
to get the estimated centers. Finally, only the local features
whose estimated center is close enough to the global center
will be aggregated. In this way, we can potentially ignore
some adversarial features and keep the correct prediction.
In Fig. 3, we visualize the estimated centers of a clean point

cloud in (a) and that of an adversarial sample in (b). It can
be observed that all the estimated centers of the clean point
cloud are very close to the object global center. But for
an adversarial sample, some estimated centers will deviate
from the global center and move to incorrect places. More
importantly, equipped with this gather-vector guided aggre-
gation module, if attackers want to realize target attack, they
must not only make sure the perturbed features can be clas-
sified to the target label, but also ensure the corresponding
gather-vectors to be unchanged and still point to the global
center. Otherwise, these adversarial features will be ignored
and the target attack will not succeed.

3.3. Gather-vector Guided PointNet++

Based on the above observation, we propose the first
self-robust point recognition network “GvG-PointNet++”
by combining PointNet++ along with the above gather-
vector guided module. The overall pipeline of “GvG-
PointNet++” is shown in Fig.4, which mainly consists of
three parts: the local feature generation network &, the pro-
posed gather-vector guided feature aggregation module G,
and the final recognition part C. Given an input point cloud
P, € will utilize a series of sampling and group operations
and PointNet based feature extracting operation to progres-
sively extract the local features of P based on each local
group. Then all these learned local features will be atten-
tionaly aggregated by G to obtain the final representative
global feature F;, which will be fed into C to get the recog-
nition result. Below we will elaborate each part in details.

Local Feature Generation Network £. For a point cloud,
feature extraction is the key component to get better recog-
nition results. It also directly determines the accuracy of
the following gather-vector estimation. To obtain better lo-
cal features, we use PointNet++ [16] as the default back-
bone, which is demonstrated to be superior than the original
PointNet[15] by the introduction of local features. It builds
a hierarchical grouping of points and progressively abstracts
larger and larger local regions along the hierarchy. Depend-
ing on the problem complexity, the hierarchy number may
be different, and we use two levels by default.

The processing pipeline of each hierarchy level consists
of three different operations: sampling, grouping and fea-
ture extraction. Given an input feature of shape N x (d +
C'in), the first sampling and grouping step are designed to
find N’ central points and the neighboring points around
them. Then for each local point group, PointNet is utilized
as the basic block to encode its local structure pattern into
feature vectors of shape N’ x (d + C,yt). Here d is the
coordinate number and equals 3, C;,, and C,,; are the in-
put and output feature dimension respectively. It is easy to
find that the original point coordinate will be concatenated
as the extra feature after every hierarchy level.

11519



PointNet

Input Point Cloud
Nxd

Local Feature
N'x (d+C)

Clean :

Aggregation

Adv

Aggregation

F-———_—_—— e ———————— 1
1 1
1 1
1 1
1 1
1 1
1 e 1
1 1
L —» 1
1 1
| : |
| 1
: Global Feature Prediction :
1 1xC I xK
1 1

Figure 4. Pipeline of Gather-vector Guidance Recognition Model. We first use e the Local Feature Generation Network to extract the local
features from the input point cloud. Then we use a Gather-vector Guided Feature Aggregation Module to aggregated these local features
to the global feature attentionally. As shown in the figure, our method can automatically ignore adversary local features by the guidance of
gather-vector. At last, we feed the global feature to the Final Recognition Part to get the recognition result.

Specifically, for the sampling operation, the iterative far-
thest point sampling (FPS) algorithm is used to choose a
subset of central points. It starts from an empty set and
iteratively choose one point x5, from the input point set
{1, x2,..,2,} so that it is the most distant point from all
the points in the current set {xs1, Zs2, ..., Tsk—1}. In this
way, the sampled points can cover the whole point space
better. For the group operation, it uses the ball query to
find the neighboring points that are within a radius (r) to
each central point. Then each central point together with
its neighboring points is defined as a local group. Depend-
ing on the local density, the neighboring point number may
be different for different central point. Compared with k
nearest neighbor search, ball query is able to make the local
feature more generalizable across the space. For the final
groupwise feature extraction, PointNet will apply input and
feature transformation and aggregate all the point features
by max pooling for this group.

Gather-vector Guided Feature Aggregation Module
G. Given the local feature set X consisting of
{Zs1,Ts1, ..., sk }, they will be firstly used by the adver-
sarial indicator to get the aggregation mask M, and further
aggregated to get the global feature F, based on the guid-

ance of M. More formally:
Fg=X@M(X). @)

Here ® represents the aggregation operator. From this for-
mulation, it is easy to observe that the proposed gather-
vector guided feature aggregation module is essentially a
kind of self-attention mechanism.

Specifically, to get M, we follow the general logic of
Section 3.2, i.e., first use one simple multi-layer perceptron
Ny, to regress the gather-vector g; € R? based on its corre-
sponding local feature f;, then calculate the estimated cen-
ter ¢; by moving the central point x.; based on the relative
offset g;, finally check whether each ¢; is close to the global
center ¢, enough, i.e.

C; = Te; + Gi

Mi = ]l(Cg, Ci) (2)

where x.; is the coordinate of the ith local part. In this
paper, we simply define M as a hard value mask with the
indicator function 1 which judges whether the ith local fea-
ture is usable or not. Following the above group opera-
tion, we use the default ball query to define 1(z,y), i.e.,
1(z,y) = 1[|z — y||* < r]. Intuitively, if the estimated
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center ¢; is within the spherical neighborhood of the global
center ¢, within radius r, the corresponding local feature
z4; will be regarded as effective.

As we discussed in Sec.3.2, for a clean point cloud,
all the gather-vectors should locate near the global center.
Therefore, to train the gather-vector regressor, the follow-
ing simple [1-norm loss is used:

N/
£gather = ZHCZ - CQH1 &)
i=1

For the aggregation operator ®, since M is defined as
a simple hard mask, we simply adopt a simple multi-layer
perceptron network to transform the selected features fol-
lowed by a simple max pooling layer by default. However,
other advanced operator can also be considered for better
recognition performance.

Final Recognition Module C. Following the design phi-
losophy in [15, 16], we simply use a simple sub-network
consisting of multiple fully connected layers as the recog-
nizer. By feeding the global feature F,, C will predict its
final recognition category. For simplicity, the cross entropy
loss is used as the default training objective function.

3.4. Network Details.

For the local feature generation network, we use
Multiple-Scale Grouping (MSG) propose in [16] to cap-
ture multiple scale patterns. In details, it applies grouping
operation with different scales and extracts the feature for
each scale separately. Then different scale features are con-
catenated as a multi-scale feature. For the gather-vector re-
gressor Ng,, it consists of three fully connected layers with
640, 640, 3 hidden units respectively. And the ball query
radius in this module is set as 0.08 by default. In order
to further improve the robustness, we set a limitation s as
the number of features used in the aggregation and we set
s = 96 by default.

4. Experiments
4.1. Experimental Setup

Dataset and data augmentation. We use Model-
Net40 [21] dataset to evaluate the performance of our GvG-
PointNet++. ModelNet40 contains 12,311 CAD models
from 40 object categories, where 9,843 objects are used for
training and the other 2,468 for testing. As done by Qi et
al. [16, 15], before feeding point clouds into models, we
first uniformly sample 2048 points from the surface of each
object and rescale them into a unit cube. Then we aug-
ment the point cloud with random scale, random rotate, ran-
dom perturbation and random point dropout. For our GvG-
PointNet++, we set the global object center ¢, = [0,0, 0]
before the data augmentation.

Table 1. Recognition accuracy on clean point clouds. For our
GvG-P, we vary the hyper-parameters feature limitation s and ball
query radius r to have a comprehensive comparison.

Model | Accuracy
PointNet[15]| 85.58 — — — _
SSG-P[16] | 88.13 — — — _

MSG-P[16] | 89.67 — — — —

r = 0.05r = 0.08|r = 0.10|r = 0.15
s=32| 87.40 89.02 88.33 88.49
s=64| 87.68 88.65 88.86 88.70
s=96| 88.01 88.65 88.74 88.78

s = 128| 87.36 89.34 89.22 89.38
Table 2. White-box attack success rate of different attack method.
The lower success rate indicates the model is more robust.

GvG-P

Threshold § | Adv Method ‘ PointNet | SSG-P ‘ MSG-P ‘ GvG-P

FGM 4.46 2.59 2.84 3.20
0.08 I-FGM 85.53 | 94.33 | 87.64 | 69.00
PGD 86.06 | 93.76 | 88.45 | 69.41
MI-FGM 87.12 | 50.65 | 45.38 | 37.88

FGM 3.00 1.74 2.92 2.63
0.16 I-FGM 92.02 | 96.64 | 94.37 | 75.96
PGD 92.06 | 96.88 | 9591 | 74.76

MI-FGM 96.52 | 1548 | 31.69 | 2536

FGM 2.55 243 2.27 2.07

032 I-FGM 95.50 | 92.67 | 93.88 | 74.47
PGD 94.61 | 93.23 | 94.25 | 75.08

MI-FGM 98.66 2.63 4.09 6.73

- P&P 100 68.16 | 64.32 | 17.79

Training Details. For both PointNet++ and our GvG-
PointNet++, we train the model with 200 epochs with
batch size 12. The initial learning rate is 0.01 and we use
Adam [9] as optimizer for training.

4.2. Recognition Performance.

Before evaluating the robustness, we first prove that the
insertion of our gather module only has a very slight influ-
ence on the recognition performance on clean point clouds.
To have a comprehensive comparison, we show the recog-
nition accuracy of our method with different feature limi-
tation s and ball query radius r. To describe briefly, here
we use SSG-P and MSG-P as the abbreviation of single-
scale grouping PointNet++[16] and multi-scale grouping
PointNet++[16]. For our gather-vector guidance Point-
Net++, we assign it as GvG-P in the following experiments.

Result shows in Table.1. The first three rows are the ac-
curacy of previous method and we can find that MSG-P
performs best. When it comes to our GvG-P with differ-
ent settings, we can find that all of them perform relatively
well. With the increase of r, which means selecting gath-
ered features from a larger spherical neighborhood, the ac-
curacy increases slightly. Meanwhile, with the increase of
s, which means selecting more gathered features from the
neighborhood, the accuracy increase slightly. Comparing
with MSG-P, our methods have a slight accuracy decay of
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about 0.29% for the best case with r = 0.15 and s = 128.
Even for the worst case with » = 0.05 and s = 128, the ac-
curacy decreases less than 3%. Our explanation for such a
decrease is the limitation of feature selection. As introduced
in Sec.3.3, instead of using all local features, we only select
s features in the spherical neighborhood to make the final
prediction. It is inevitable that the partial selection will af-
fect the recognition accuracy on clean point clouds slightly.

4.3. White-Box Robustness.

Then we evaluate the white-box robustness via both

gradient-based methods and optimization-based methods.
In this paper, we mainly concern two kind of adversarial
attacks to evaluate the robustness of our method. First is
the gradient-based attack, here we extend FGSM [6], I-
FGSM [10], PGD [13] and MI-FGSM [3] to point clouds
under the [o-norm constrain, the threshold of the [o-norm
€ is calculated by 5v/M, where M = N x d is the di-
mension of input point cloud. In the following experi-
ments, the attack iterations 7" is 50 for all iterative attacks
and the attack strength per step is 0v/M /T. Here we set
0 = 0.08,0.16,0.32 respectively. The second kind of ad-
versarial attack is the optimization-based attack, here we
use the basic point perturbation method proposed(P&P) by
Xiang et al. [22], the attack iterations are 1000 with 5 bi-
nary search steps. In the following experiments, we use the
target attack success rate as the robustness metric.
Pure White-Box Robustness. We first evaluate the robust-
ness of our method without any defense trick such as input
preprocessing, such “pure” result shows the robustness im-
provement benefited from our network architecture.

Results are shown in Table.2. We can find that in most
cases, our method outperforms previous methods by a large
margin. For the single step attack FGM, the attack success
rates are nearly zero, this indicates that it is hard to realize
effective target attack via only one query step. For the multi-
step attack methods, we can find I-FGM and PGD are very
effective that when the attack strength is small(d = 0.08),
the attack success rates of the baseline models are all higher
than 85%, while the success rates to our GvG-P are still
lower than 70%. As the attack strength increases, the suc-
cess rates of the baseline models increase to nearly 95%,
while our method still outperforms them by at least 15%.
Take the result of I-FGM with 6 = 0.32 as an example,
the attack success rates of PointNet, SSG-P and MSG-P are
95.50%, 92.67%, 93.88% respectively, while the attack suc-
cess rates to our GvG-P are only 74.47%, nearly 20% better
than previous methods.

But when it comes to MI-FGM and P&P, we are sur-
prised to find that they can only realize effective attack to
PointNet. When it comes to more complex models such as
SSG-P, MSG-P, and our GvG-P, it performs worse than I-
FGM and PGD. However, our method still performs better
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Table 3. Black-box attack success rate. Lower success rate indicate
the model is more robust. MSG-P; and MSG-P2 means models
with the same architecture but different training initial. * indicates
the identical-architecture attacking.

Threshold | Model | PointNet ‘ SSG-P | MSG-Po | GvG-P,

5 =008 MSG-P; 7.19 720 | 14.22% 10.78
GvG-P; 5.88 6.37 8.67 14.05*
§=0.16 MSG-P; 5.07 10.95 | 16.34* | 24.51
GvG-P; 3.92 5.88 10.13 18.63*

in most cases. For example, with 6 = 0.08, the success
rate of MI-FGM to PointNet is 87.12%, while to SSG-P
and MSG-P, it decreases to 50.65% and 45.38%. When
attacking our GvG-P, it can only perturb 37.88% samples
successfully. To explain this weird result, we propose an
explanation from the view of model architecture: different
from PointNet that every feature have a constant position,
the randomness and uncertainty of feature position intro-
duced in MSG-P and our GvG-P make the gradient changes
greatly within different iterations. This conflicts with the
idea of previous gradients memorization used in both P&P
and MI-FGM. So these methods perform even worse than
the most basic I-FGM.

White-Box Robustness with Input Preprocessing. Then
we evaluate the robustness of our method with an easy but
effective defense method: random point dropping. During
each iteration, before we feed the point cloud to the model,
we randomly drop D points.

Results are shown in Fig.5. We can find that the decrease
of recognition accuracy for both MSG-P and GvG-P are
less than 1%, such robustness to missing points also sat-
isfies the idea of critical points proposed in [15]. When it
comes to the attack success rate, we find that random point
dropping is a general defense method that performs well
on both MSG-P and GvG-P. With the increase of the drop
points number, the attack success rates of both models de-
crease. But compared with MSG-P, our GvG-P decreases
more rapidly when D is small. For example, from D = 0 to
D = 100, the success rate of MSG-P only decreases 3.37%,
while GvG-P decreases 5.94%.
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Black-Box Robustness. In this part, we evaluate the black-
box robustness under a cross-architecture setting and an
identical-architecture setting. For cross-architecture setting,
we generate adversarial samples from SSG-P, PointNet,
MSG-P and GvG-P to attack each other. For the identical-
architecture setting, we generate adversarial samples from
models with the same architecture but different training ini-
tial to attack each other.

Result shows in Table.3. Here MSG-P; and MSG-P,
means models with the same architecture but different train-
ing initial. In general, the attack success rates are relatively
low, this also conforms to the conclusion of previous works
that the transferability of point cloud adversarial samples is
very weak. For the identical-architecture setting, we find
that the attack success rate increases when the black-box
model has the same architecture as the white-box model.
However, for the cross-architecture setting, our method still
performs better than MSG-P in all cases. For adversarial
samples generated by attacking SSG-P, only 5.88% adver-
sarial samples can fool our GvG-P, while the success rate to
MSG-P is 10.95%, nearly two times than our GvG-P.

4.4. Ablation Study

In the following experiments, we explore the influence
of different hyper-parameters on both recognition accuracy
and model robustness. The attack method used in this part
is I-FGM with § = 0.16.

Feature Limitation Number s. For every local feature, the
limited number of feature forces model to learn more robust
and diverse features. But on the contrary, it also limits the
number of candidate information for aggregation. We think
the robustness is based on a good balance between the local
feature robustness and global feature numbers. In this part,
we evaluate the influence of the feature limitation number
used in the feature aggregation module. Here we use the fail
rate of target attack as the metric of robustness. We fix the
query radius 7 as 0.1 and vary the feature limitation s from
32 to 128 with a step 16. Results are shown in Fig.6(a). As
s increases, the recognition accuracy increases slightly as
more features are used for recognition. But for adversarial
samples, when s is smaller than 96, model robustness in-
creases with the increase of s. When s is larger than 96, it
decreases. Through the result, we think s = 96 is a good
balance point for getting better robustness.

Ball Query Radius r. Here we explore the influence of
the ball query radius 7 used in the feature aggregation mod-
ule. We also use the fail rate of target attack as the met-
ric of robustness. We fix the feature limitation number s
as 96 and vary the radius r from 0.03 to 0.2. Obviously,
as r increases, the sensitivity of adversarial features de-
creases while the accuracy of clean samples increases, so it
is a trade-off between the accuracy and robustness. Results
are shown in Fig.6(b). As analyzed above, as r increases,
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Figure 6. (a)Influence of feature limitation s on recognition accu-
racy and adversarial robustness. (b) Influence of ball query radius
r on recognition accuracy and adversarial robustness.

the accuracy increases from 86.59% to 89.18% while the
robustness decreases from 25.61% to 15.44%. Especially
when r increases from 0.1 to 0.15, it decreases a lot. Under
the trade-off, we set » = 0.08 in our main experiments.
Gray-box Defense via Input Preprocessing. In this sec-
tion, we evaluate the gray-box robustness of our method.
As summarized in Sec.1, the robustness of our method is
a kind of structure robustness, so we can further improve
the robustness by combining our model with other methods.
Here we use DUP-Net [25] as the input preprocessing mod-
ule. After we generate adversarial samples, we process the
adversarial samples with DUP-Net and then feed them into
the target model. Results show that the attack success rate
of DUP-Net with MSG-P is 10.59%, while our DUP-Net
with GvG-P is 8.69%), still better than previous methods.

5. Conclusion

In this paper, with the analysis of the internal proper-
ties of point clouds and that of 3D adversarial samples,
we propose Gather-vector Guided PointNet++, a novel self-
robust 3D point recognition model. The key idea of our
method is a gather module that learns from the local features
of the point cloud, and output corresponding gather-vector
which are sensitive to the change of local features. With
the gather-vector as an adversarial indicator, our model can
automatically ignore adversarial noises. Extensive experi-
ments demonstrate that the proposed method achieving su-
perior robustness to target adversarial attack with only a
slight decrease of original recognition accuracy. Mean-
while, our method is complementary with other types of
defense methods and can be combined to achieve better de-
fense results.
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