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a b s t r a c t 

Recently, a novel scheme called grayscale-invariance reversible data hiding (RDH) has been developed, 

in which the generated color marked image will have the same grayscale as that of the host color 

image. Due to the property of grayscale invariance, for many cases, the further applications and im- 

age processing of the marked image will not be interfered with. However, the performance of current 

grayscale-invariance RDH is unsatisfactory, and the corresponding theoretical model is also lacking. For 

grayscale-invariance RDH, the modifications of the three color channels are interrelated. By decomposing 

the joint modification and associating the modification distortions of the green scales and blue scales 

with those of the red scales, we first approximate the modification-independent rate-distortion model 

for grayscale-invariance RDH. Subsequently, the optimal transition probability matrix can be estimated, 

according to which we implement the theoretically proven optimal modification, i.e., recursive code con- 

struction (RCC), to finish message embedding. The experimental results show that the presented method 

extends the applications of RCC and can significantly improve the performance of grayscale-invariance 

RDH. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Reversible data hiding (RDH) is a special type of data hiding,

hereby both the host signal and the embedded data can be re-

tored from the marked signal without loss. Such technology is

ypically used for data annotation of highly valuable files, such as

edical [1] , military and judicial files [2] , where minor modifica-

ions are not allowed. Recently, studies have shown that RDH may

ave various valuable applications including image authentication

nd self-recovery [3] , covert storage [4,5] , medical and military im-

ge processing [6] , video error-concealment coding [7,8] , multime-

ia archive management [9] , image transcoding [10] , data coloring

n the cloud [11] , and so on. 

Many RDH algorithms have been proposed in the past decade,

sually consisting of two steps. The first step is to generate a se-

uence with a histogram that is as steep as possible. For an image,

he prediction errors (PEs) of pixels are the most commonly used

ost sequence. The second step is to reversibly modify the host

equence to finish message embedding by introducing as little dis-

ortion as possible. Based on the modification manner, RDH can be

lassified into three fundamental strategies: difference expansion
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12–19] , histogram shift [20–25] and recursive code construction

RCC) [5,26–31] . 

Due to the modification, compared to the original host im-

ge, the generated marked image will be deemed a noisy image,

nd thus, its further processing will be interfered with. Taking

ig. 1 (a) as an example, after message embedding, we match the

arked image and the host image based on scale invariant feature

ransform (SIFT) descriptors, giving rise to occurrence of false SIFT

atches. In many cases, especially for medical and military image

rocessing, the decrease in processing accuracy may be disappoint-

ng. Of course, the host image can be losslessly restored from the

arked image and then is free for any further processing. However,

n addition to the computation cost for recovery, the embedding

lgorithm and secret key are both mastered by the steganographer,

o it is nearly impossible for the processors to restore the host im-

ge prior to each processing. Indeed, the processors even cannot

nderstand whether or not the input image is a marked image. 

Therefore, RDH that does not affect further processing of the

arked image is desired. Hou et al. [33] observe that transforming

 color image into a gray image is rather general in practical ap-

lication because the computational cost of gray image processing

s strongly reduced compared to that of color image processing.

ome algorithms even only operate on the luminance channel of

 color image such as the well-known Haar-like descriptors [35] ,

istogram of oriented gradients (HOG) descriptors [36] , SIFT de-

criptors [37] , and almost all of their applications. Therefore, many

https://doi.org/10.1016/j.sigpro.2020.107562
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Fig. 1. SIFT matching between the host image and marked image. 
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algorithms convert a color image into a gray version and then op-

erate on the latter. For this reason, Hou et al. propose grayscale-

invariance RDH [33] that embeds messages into the color image

without changing the corresponding grayscale. 

For grayscale-invariance RDH, as long as the current pixel (in-

cluding three scales in red, green and blue channels) is modified,

it will yield a one-bit error correction message for recovery. Using

Hou et al.’s method [33] , each red scale accommodates a one-bit

secret message, and each blue scale accommodates a one-bit error

correction message; correspondingly, the green scale is adaptively

adjusted to keep the grayscale unchanged. It is clear that each pixel

can only carry a one-bit secret message with the three scales be-

ing modified, resulting in a low embedding efficiency. Later, Gao

et al. [34] enlarge the embedding capacity by adaptive embedding

pattern. However, the distortion controls are unsatisfactory in the

existing schemes due to the lack of the optimal strategy. 

Indeed, in the field of RDH, RCC is a modification method that

originated from studying the bound of a rate-distortion model

[26] formulated as: 

min 

m −1 ∑ 

x =0 

n −1 ∑ 

y =0 

P X (x ) P Y | X (y | x ) d(x, y ) 

s.t. H( Y ) = ρ + H( X ) 

, (1)

where P X ( x ) is the probability distribution of host sequence X , d ( x,

y ) is the distortion metric for modifying x to y, P Y | X ( y | x ) is the tran-

sition probability matrix, and ρ is the embedding rate. As observed

from Eq. (1) , to realize the optimal modification, we must first

solve the optimal transition probability matrix (OTPM). Based on

the OTPM, many RCC schemes have been developed, among which

recursive histogram modification (RHM) [29] has been proved to

reach the rate-distortion bound in both experiment and theory. 

An OTPM implying the optimal modification of host sequence

is essential to coding and decoding processes of RCC schemes. For

consistent distortion metrics, the solutions of the OTPM are sum-

marized in [30,31] , and for inconsistent distortion metrics, we can

also find the corresponding solutions in [5] . However, all existing

solutions are based on the assumption that the modifications of

different elements are independent. For grayscale-invariance RDH,

the green channel is adaptively adjusted according to the modi-

fications of the red and blue channels, and the modified indices

of blue scales are determined by the modifications of red scales.

That is, while the modifications of the three color channels are

interrelated, the existing RCC schemes cannot be applied to solve

modification-dependent optimization. 

For the grayscale-invariance scheme, the natural problem is to

develop the rate-distortion model and a method for its solutions.

By analyzing the interrelation among the red, green and blue chan-

nels, we define the joint modification cost for the red, green and

blue channels and give the rate-distortion model for grayscale-
nvariance RDH. To solve this rate-distortion model, we build the

ssociations between the modification distortions of the green and

lue scales and those of the red scales. Thus, the modification-

ependent model is estimated with a modification-independent

odel, and then, the corresponding OTPM can be solved by the

xisting algorithms. The OTPM implies the optimal modification

pproach, based on which we implement RHM to finish message

mbedding. By the proposed model, both the capacity and the

ate-distortion curve of the grayscale-invariance RDH can be sig-

ificantly improved. 

The rest of the paper is organized as follows. We introduce re-

ated works in Section 2 . Section 3 introduces separable grayscales

or prediction and elaborates the presented rate-distortion model

or grayscale-invariance RDH. The experimental results are given

n Section 4 to demonstrate the advantages of our method rela-

ive to the previous methods. Finally, the paper is concluded with

 discussion in Section 5 . 

. Related works 

Throughout the paper, matrices and vectors are denoted by

oldface fonts. We denote the host sequence as X with its elements

elonging to X = { 0 , 1 , · · · , m − 1 } , and the marked sequence as Y

ith its elements belonging to Y = { 0 , 1 , · · · , n − 1 } . A pixel con-

ists of three scales { r, g, b }, and host sequence means the PEs of

elected host scales for accommodating messages. 

.1. Hou et al.’s grayscale-invariance RDH 

The most widely used algorithm for converting a color image to

he corresponding gray image is described by 

f c2 v (r, g, b) = � 0 . 299 r + 0 . 587 g + 0 . 114 b� , (2)

here � x � rounds the element x to its nearest integer, and r, g, b

re scales from the red, green, and blue channels, respectively. 

Different from all of the previous color RDH algorithms [32,38–

3] pursuing a high peak signal-to-noise ratio (PSNR), after em-

edding messages through modifying { r, b } to { r ′ , b ′ }, Hou et al.

33] adaptively adjust g to g ′ to keep grayscale v unchanged by us-

ng 

 

′ = f v 2 g (r ′ , b ′ , v ) = � (v − 0 . 299 r ′ − 0 . 114 b ′ ) / 0 . 587 � . (3)

f course, by Eq. (3) we obtain 

f c2 v (r, g, b) = f c2 v (r ′ , g ′ , b ′ ) = v . (4)

At the receiver’s end, { r, b } can be restored from { r ′ , b ′ } after

xtracting the embedded messages, combined with the unchanged

rayscale v , and g can be roughly calculated as 

 

c = f v 2 g (r, b, v ) . (5)
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Fig. 2. Recursive embedding of RHM. 
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Fig. 3. Primary steps of designing an RHM scheme. 
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Fig. 4. Overview of the proposed operations. 
here may exist an offset between g c and g due to the round func-

ion, but the magnitude of such offset can be only 1 or 0 because

he weight of the green scale is more than 0.5. To restore the green

cale exactly, we need one-bit error correction message to record

he offset, denoted by m 

c , as 

 

c = | g − f v 2 g (r, b, v ) | . (6)

m 

c represents the magnitude of the offset between g c and g so

hat g = g c + 1 or g = g c − 1 . Since the weight of the green scale is

ore than 0.5, there must exist f v 2 g (r, g c + 1 , b) � = v or f v 2 g (r, g c −
 , b) � = v , and only the true one will keep v unchanged. Therefore,

ith the help of m 

c , the receiver can exactly restore g according to

, b, v , and g c . 

.2. Recursive code construction 

For RDH, we embed L -bit messages into the host sequence X =
(x 1 , · · · , x N ) by slightly modifying its elements to yield the marked

equence Y = (y 1 , · · · , y N ) . The average distortion between X and Y

nder the embedding rate ρ ( ρ = L/N) should be as small as pos-

ible. 

After obtaining the rate-distortion bound in Eq. (1) , researchers

aturally hope to find the optimal embedding method minimiz-

ng the embedding distortion, that is, the optimal coding. It is ob-

erved from the model Eq. (1) that the OTPM implies the optimal

odification of the host sequence. Based on the OTPM, many RCC

chemes have appeared, among which Zhang et al.’s RHM [29] has

een proven to reach the rate-distortion bound in both experiment

nd theory, whose core idea is as follows. 

Prior to embedding, we first divide the host sequence X =
(x 1 , · · · , x N ) into p subsequences denoted by x i , 1 ≤ i ≤ p . For

 i , the messages M i are decoded according to the OTPM P Y | X ( y | x )

o generate the marked subsequences y i , and then, x i is com-

ressed as O ( x i ) according to the OTPM P X | Y ( x | y ). Note that the

TPM P Y | X ( y | x ) from X to Y and the OTPM P X | Y ( x | y ) from Y to X

an be mutually converted. O ( x i ) is added to the remaining M i 

o form a new message stream M i + 1 for the next subsequence

o embed. Because the entropy of P Y | X ( y | x ) is higher than that of

 X | Y ( x | y ), the volume of consumed message stream for generating

 i is larger than O ( x i ). Thus, the secret messages can be embedded

ubsequence by subsequence, and the capacity of each x i is the re-

uced volume from M i to M i + 1 . The recursive embedding diagram

f RHM is shown in Fig. 2 , and the reader is referred to [29] for

he details. 

RHM is one of the optimal modification methods that is based

n the OTPM. For consistent distortion metrics, the solutions of the

TPM are summarized in [30,31] , and for inconsistent distortion

etrics, we can also find the corresponding solutions in [5] . The

rimary steps of designing an RDH scheme approaching the rate-

istortion bound can be described as shown in Fig. 3 . 
. Proposed schemes 

.1. Algorithm overview 

For RDH, RHM is a theoretically and experimentally proven

odification method that is expected to be applied for optimiz-

ng the modification of grayscale-invariance RDH. To achieve this,

e must establish the rate-distortion model of grayscale-invariance

DH and solve it. Before establishing the rate-distortion model, we

rst describe our framework by introducing RHM. 

For grayscale-invariance RDH, we must select green scales for

daptive adjustment to keep grayscale invariance because only the

eight of the green scale is greater than 0.5, yielding a one-

it error correction message for recovery. The tasks of red scales

nd blue scales for accommodating secret messages and error cor-

ection messages can be exchanged. For convenience, following

ou et al.’s work [33] , we select red scales to accommodate se-

ret messages and blue scales to accommodate error correction

essages; then, green scales are adaptively adjusted to maintain

rayscale invariance. However, instead of the pixel-by-pixel em-

edding method, in our framework, the host color pixels are di-

ided into p disjoint subsequences according to RHM, and the mes-

ages are embedded subsequence by subsequence. 

The overview of the proposed operations is described as Fig. 4 .

iven the payload, we first embed all of the secret messages into

ed scales subsequence by subsequence through RHM. After finish-

ng modification on red scales, we start error correction messages

mbedding by modifying blue scales subsequence by subsequence.

n detail, for r i , g i and b i , 1 ≤ i ≤ p , we locate the indices of mod-

fied red scales in r i and collect the blue scales in b i at the mod-

fied indices. The error correction messages from g i −1 denoted as

C i −1 will be embedded into the collected blue scales. To maintain

rayscale invariance, the green scales at the modified indices of g i 
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Fig. 5. Checkerboard pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Tested color images of size 510 × 510. 
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will be adaptively adjusted. Of course, at the same time, EC i will

be obtained from the modified indices of g i for the next b i + 1 to

accommodate. 

As seen in the above framework, the modified indices and mag-

nitudes of green scales and blue scales are determined on the

modifications of red scales. To minimize the total modification dis-

tortion, the number of red scales should be modified, and the

method for the optimal modification of red scales is the key to the

successful implementation of the algorithm. 

3.2. Linear predictor based on separable grayscales 

As shown in Eq. (1) , for RDH, a smaller entropy of the host se-

quence, i.e., a sharper host histogram, leads to better RDH perfor-

mance. Similar to most RDH algorithms, the PEs of image pixels

are the most commonly used host sequence. Invariant grayscales

are strongly correlated with each color channel so that a sharper

host histogram can be generated by exploring such correlations.

The pixels of the host image are divided into two parts, as seen

in Fig. 5 , and the messages are embedded part by part. If white

pixels are used to carry messages, dark pixels will not be modified

and vice versa. 

Based on invariant grayscales, Hou et al. utilize a 2nd-order

polynomial to predict the red and blue scales. Taking the predic-

tion of red scale r i,j as an example, its prediction value ˆ r i, j is 

ˆ r i, j = a + bv i, j + cv 2 i, j , (7)

where the polynomial coefficients are optimized by minimizing

the fitting errors with { v i +1 , j , v i −1 , j , v i, j+1 , v i, j−1 } as inputs and

{ r i +1 , j , r i −1 , j , r i, j+1 , r i, j−1 } as outputs. 

However, we find that there is no need to use a 2nd-order poly-

nomial, and a linear polynomial is sufficient. The reason is that the

squared scales are usually very large and a small fluctuation in c

will result in a large deviation so that for a 2nd-order polynomial,

the calculated coefficient c is usually close to 0. Based on the above

observations, we adopt a linear predictor to reduce the computa-

tional complexity as given by 

f l (v i, j ) = a + bv i, j . (8)

Of course, the coefficients { a, b } are determined by the least

squares method, similar to Hou et al.’s method. 

From Eq. (2) we get that grayscales are the weighted combina-

tions of red, green and blue scales, which can be applied to predict

red scales and blue scales. To predict the red scale r i,j , grayscales

{ v i +1 , j , v i −1 , j , v i, j+1 , v i, j−1 } are inputs and { r i +1 , j , r i −1 , j , r i, j+1 , r i, j−1 }
re outputs. After obtaining the optimal polynomial coefficients { a,

 }, we obtain ˆ r i, j = f l (v i, j ) . 

At the receivers side, we first restore red scales. After red

cales are determined, the correlations between grayscales and

lue scales can be further improved. Before predicting blue scales,

e eliminate the effects of red scales from grayscales as 

 

s 
i, j = � (v i, j − 0 . 299 r i, j ) / (1 − 0 . 299) � , (9)

here v s 
i, j 

is called separable grayscale. For the prediction

f the blue scale b i,j , different from the strategy [33] , we

se the separable grayscales { v s 
i +1 , j 

, v s 
i −1 , j 

, v s 
i, j+1 

, v s 
i, j−1 

} and

 b i +1 , j , b i −1 , j , b i, j+1 , b i, j−1 } as references. It is clear that the

orrelations between separable grayscales and blue scales are

tronger. After obtaining the optimal polynomial coefficients, we

btain the prediction scale ˆ b i, j as ˆ b i, j = f l (v s i, j 
) . 

By subtracting { ̂ r i, j , ̂
 b i, j } from the original scales { r i,j , b i,j }, we

btain their PEs { e r 
i, j 

, e b 
i, j 

} as 

e r 
i, j 

= r i, j − ˆ r i, j , 

e b 
i, j 

= b i, j − ˆ b i, j . 
(10)

To demonstrate the advantages of the linear predictor based on

eparable grayscales, we compare it with Hou et al.’s 2nd-order

olynomial predictor and the average filter predictor. The average

Es from airplane, Barbara, Lena, baboon are shown in Fig. 7 . 

As mentioned above, it is not necessary to use a 2nd-order

olynomial, and a linear polynomial is sufficient. The distribution

f red scales’ PEs from the linear polynomial will be even slightly

etter than that of the 2nd-order polynomial, as illustrated in

ig. 7 (a), while the computational complexity is reduced. Because

e eliminate the effects of red scales and obtain a better refer-

nce, i.e., separable grayscale, the distribution of the blue scale PEs

s much sharper than that from Hou et al.’s predictor, as seen in

ig. 7 (b). 

After obtaining PEs, we embed the message by modifying

 e r 
i, j 

, e b 
i, j 

} to { e ′ r 
i, j 

, e ′ b 
i, j 

} , and then, the marked scales will be obtained

ccording to 

r ′ 
i, j 

= 

ˆ r i, j + e ′ r 
i, j 

b ′ 
i, j 

= 

ˆ b i, j + e ′ b 
i, j 

. (11)

At the receiver’s end, we first calculate the marked PEs of the

ed scales based on the invariant grayscales from which we restore

ed scales and secret messages. Next, we eliminate the effects of

ed scales and obtain separable grayscales, based on which we cal-

ulate the marked PEs of the blue scales, and further restore the
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Fig. 7. PE distributions of three predictors. 
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lue scales and error correction messages. Finally, green scales will

e also restored according to error correction messages. 

.3. Rate-distortion bound of grayscale-invariance RDH 

.3.1. Rate-distortion bound for general distortion metric 

As shown in Fig. 4 , red scales are utilized to accommodate se-

ret messages. For N selected host pixels ( r i , g i , b i ), 1 ≤ i ≤ N , we

rst collect the PEs of the host red scales as X R = (E r 1 , · · · , E r N ) ,

hich can be obtained by subtracting the prediction values from

he original scales. Once the embedding rate ρ is given, based

n the defined distortion metric for red scales and the proba-

ility distribution of X R denoted as P X R (x ) , the OTPM P Y R | X R (y | x )
an be well estimated. According to P Y R | X R (y | x ) , X R is modified

o Y R = (E r ′ 
1 
, · · · , E r ′ 

N 
) , correspondingly R = (r 1 , · · · , r N ) is modi-

ed to R 

′ = (r ′ 1 , · · · , r ′ N ) . 
Next, we determine the modified indices as MI = (id 1 , · · · , id K ) ,

or which r id j � = r ′ 
id j 

, 1 ≤ j ≤ K . According to MI , we extract

reen scales as G M 

= (g id 1 , · · · , g id K ) , and blue scales as B M 

=
(b id , · · · , b id ) , to be modified. The error correction messages are
1 K 
mbedded by modifying B M 

to B 

′ 
M 

= (b ′ 
id 1 

, · · · , b ′ 
id K 

) ; then, G M 

will

e adaptively adjusted to G 

′ 
M 

= (g ′ 
id 1 

, · · · , g ′ 
id K 

) to keep grayscales

 M 

= (v id 1 , · · · , v id K ) unchanged. 

After the modification is carried out, the distortion only occurs

n the located modified indices so that the average distortion for

he N host pixels denoted by J ave is 

 a v e = 

1 

N 

N ∑ 

i =0 

(d(r i , r 
′ 
i ) + d(g i , g 

′ 
i ) + d(b i , b 

′ 
i )) 

= 

1 

N 

( 

N ∑ 

i =0 

d(r i , r 
′ 
i ) + 

K ∑ 

j=0 

(d(g id i , g 
′ 
id i 

) + d(b id i , b 
′ 
id i 

)) 

) 

= 

1 

N 

N ∑ 

i =0 

(d(r i , r 
′ 
i ) + f s (| r ′ i − r i | )(d(g i , g 

′ 
i ) + d(b i , b 

′ 
i ))) , (12) 

here 

f s (a ) = 

{
0 , if a = 0 , 

1 , if a > 0 . 
(13) 

The modifications on such three color scales are interrelated,

nd Eq. (12) shows the joint distortion. The optimization of the

nterrelated modification manner such that this joint distortion

s minimized gives a modification-dependent model. The exist-

ng RCC schemes can be only applied to solve modification-

ndependent optimization, where the modifications of different

lements are independent. In the following, we will decompose

oint modification and associate the modification distortions of

reen and blue scales with those of the red scales so that the

odification-dependent distortion can be appropriately formulated 

s a modification-independent distortion. 

Since each modified index will yield a one-bit error correction

essage, the volume of the error correction messages is the same

s the volume of the determined blue scales, i.e., equal to the vol-

me of the modified red scales. Assuming the PEs’ probability dis-

ribution of B = (b 1 , · · · , b N ) is P X B (x ) , we will execute RHM on

Es by the embedding rate ρ = 1 . Of course, there may exist some

ases that host blue sequence cannot provide enough embedding

ate. In such cases, we just need to reduce the embedding rate,

nd reserve more invariant pixels to accommodate the extra error

orrection messages. Once embedding rate and P X B (x ) are deter-

ined, the OTPM P Y B | X B (y | x ) can be calculated, based on which the

verage distortion for the blue scales denoted as J B a v e will be also

etermined such that 

 B a v e = 

m −1 ∑ 

x =0 

n −1 ∑ 

y =0 

P X B (x ) P Y B | X B (y | x ) d(x, y ) . (14)

According to the indices of modified red scales, we sample

he sequence B M 

= (b id 1 , · · · , b id K ) from B = (b 1 , · · · , b N ) . B M 

and

 come from the same distribution, thus their PEs tend to share

he same probability distribution P X B (x ) . Once the current red scale

s modified, regardless of its modification amplitude, the summed

istortion will be proportional to the volume of B M 

, i.e., K , so that

N 
 

i =0 

f s (| r ′ i − r i | ) d(b i , b 
′ 
i ) = 

K ∑ 

j=0 

d(b id j , b 
′ 
id j 

) = KJ B a v e . (15)

Therefore, we associate the modification distortion of blue

cales with that of the red scales. Such distortion is not related to

he red scales’ modification amplitudes and instead depends only

n the number of their modified indices, i.e., K . For different distor-

ion metrics and host sequences, J B a v e may be different, but it can

e exactly calculated according to P X B (x ) and the given distortion

etric. 
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For each green scale, its modification is determined by the

modifications of the red scale and the blue scale at the same in-

dex. Because secret messages are embedded into red scales, to es-

tablish the rate-distortion model for grayscale-invariance RDH and

solve it, we must decompose the joint modification and associate

the modification distortions of green scales with those of the red

scales. Assume that the association can be formulated by a map-

ping function with r i and r ′ 
i 

as the variables, that is, 

d(g i , g 
′ 
i ) = f s (| r ′ i − r i | ) f m 

g (r i , r 
′ 
i ) . (16)

For different distortion metrics, the mapping functions may

have different forms. In the next section, we will specify the ap-

propriated mapping function f m 

g in terms of the square error dis-

tortion metric. After finding such a mapping function, we obtain

K ∑ 

j=0 

d(g id j , g 
′ 
id j 

) = 

N ∑ 

i =0 

f s (| r ′ i − r i | ) f m 

g (r i , r 
′ 
i ) . (17)

According to the RCC scheme, OTPM P Y R | X R (y | x ) implies the

modification manner, according to which we modify X R to Y R , i.e.,

R to R 

′ 
, and the modified indices can be also observed by the

OTPM. Based on Eqs. (15) and (17) and through the substitution

of variables, Eq. (12) can be reformulated as 

J a v e = 

m −1 ∑ 

x =0 

n −1 ∑ 

y =0 

P X R (x ) P Y R | X R (y | x )(d(x, y ) + f s (| y − x | )(J B a v e + f m 

g (x, y ))

(18)

where x, y are in the sets of host red scales and marked red scales

respectively. 

Secret messages are embedded into red scales, and the embed-

ding rate ρ satisfies 

H(Y R ) = ρ + H(X R ) . (19)

Based on the above discussion, the rate-distortion bound of

grayscale-invariance RDH can be formulated as 

Model I 

Min 

m −1 ∑ 

x =0 

n −1 ∑ 

y =0 

P X R (x ) P Y R | X R (y | x ) d jt (x, y ) 

s.t. H(Y R ) = ρ + H(X R ) 

, (20)

where the joint distortion metric for red scales is given by 

d jt (x, y ) = d(x, y ) + f s (| y − x | )(J B a v e + f m 

g (x, y )) . (21)

If we can successfully establish the relationship between the

modification distortions of the green scales with that of the red

scales, the modification-dependent optimization becomes a prob-

lem of how to optimize the modification of red scales in or-

der to minimize the total distortion, i.e., Model I. Model I is a

modification-independent model that can be solved by the exist-

ing RCC schemes. 

3.3.2. Rate-distortion bound for square error distortion metric 

For different distortion metrics, the average distortion J B a v e oc-

curring from blue scales can be calculated exactly, while that from

green scales may vary. For RDH, the most commonly used metric

is the squared error distortion metric, i.e., d(x, y ) = (x − y ) 2 . Taking

d(x, y ) = (x − y ) 2 as an example, we elaborate on how to appropri-

ate the mapping from the green scales’ modification distortion to

the red scales’ modification distortion. 

After modifying { r id j , b id j } to { r ′ id j , b ′ id j } , g id j must be adjusted to

g ′ 
id j 

to maintain the grayscale invariance according to 

g ′ id j = f v 2 g (r ′ id j , b 
′ 
id j 

, v id j ) . (22)
herefore, 

(g id j , g 
′ 
id j 

) = d(g id j , f v 2 g (r ′ id j , b 
′ 
id j 

, v id j )) . (23)

Assuming �r id j = r ′ 
id j 

− r id j and �b id j = b ′ 
id j 

− b id j , according to

q. (22) , we have 

 �g id j | = | g ′ 
id j 

− g id j | 
= | (v id j − 0 . 299 r ′ 

id j 
− 0 . 114 b ′ 

id j 
) / 0 . 587 

−(v id j − 0 . 299 r id j − 0 . 114 b id j ) / 0 . 587 | 
= | (0 . 299�r id j + 0 . 114�b id j ) / 0 . 587 | 
= | (0 . 51�r id j + 0 . 19�b id j ) | . 

(24)

For green scales, their total distortion is 

K 
 

j=0 

| �g id j | 2 = 

K ∑ 

j=0 

(0 . 26�r 2 id j 
+ 0 . 036�b 2 id j 

+ 0 . 194�r id j �b id j ) . 

(25)

ince the distributions of �r id j and �b id j are randomly centered at

, 

K 
 

j=0 

�r id j �b id j = 0 . (26)

ombined with 

K 
 

j=0 

�b 2 id j 
= KJ B a v e , (27)

e obtain 

K 
 

j=0 

| �g id j | 2 = 0 . 26 

N ∑ 

i =0 

f s (| r ′ i − r i | )(r ′ 
i 
− r i ) 

2 + 0 . 036 KJ B a v e . (28)

hat is, the mapping function Eq. (16) is given by 

(g i , g 
′ 
i ) = f s (| r ′ i − r i | )(0 . 26(r ′ i − r i ) 

2 + 0 . 036 J B a v e ) . (29)

Now, we associate the modifications of the green scales with

hat of the red scales. Compared to the total distortion, 0 . 036 J B a v e 
an be neglected; thus, the joint distortion metric for red scales

ecomes 

 jt (x, y ) = 1 . 26(x − y ) 2 + f s (| y − x | ) J B a v e . (30)

Based on the above discussion, Model I can be reformulated for

he squared error distortion metric as 

odel II 

in 

m −1 ∑ 

x =0 

n −1 ∑ 

y =0 

P X R (x ) P Y R | X R (y | x )(1 . 26(x − y ) 2 + f s (| y − x | ) J B a v e ) 
.t. H(Y R ) = ρ + H(X R ) 

. 

(31)

.4. Recursive embedding and extracting algorithms 

To extract the embedded messages and restore the host image

osslessly, the receiver needs some auxiliary parameters, including

he probability distribution of the red scales’ PEs P X R (x ) , the prob-

bility distribution of the blue scales’ PEs P X B (x ) , J B a v e , the embed-

ing rate ρ , and the residuals of the overflow/underflow pixels.

imilar to that with most RDH algorithms, we reserve some in-

ariant pixels for recording these parameters, where the invariant

ixel means that Eq. (32) holds for the current pixel { r, g, b }. 

f c2 v (r, g, 2 � b 
2 

� ) = f c2 v (r, g, 2 � b 
2 

� + 1) (32)

These auxiliary parameters will be embedded into the least sig-

ificant bits (LSBs) of blue scales of reserved invariant pixels, and
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hese substituted LSBs will be regarded as a part of the secret mes-

ages to be embedded. 

Based on the above discussion, we elaborate on the embedding

nd extracting algorithms as follows. 

Recursive embedding algorithm 

1. Reserve some invariant pixels and add LSBs of the blue scales

from reserved pixels to the secret messages. 

2. Based on grayscales and red scales, calculate separable

grayscales and further obtain blue scales’ PEs; based on

grayscales, obtain red scales’ PEs. 

3. According to P X B (x ) and d ( x, y ), calculate the OTPM B for blue

scales and subsequently obtain J B a v e . 

4. Define joint distortion metric d jt ( x, y ) for red scales according

to Eq. (21) ; combined with P X R (x ) and the embedding rate ρ ,

obtain OTPM R . 

5. Divide the host pixels into p subsequences and obtain the sub-

sequences r i , g i and b i , for i = 1 , 2 , ..., p. 

6. Finish embedding secret messages into red scales’ PEs subse-

quence by subsequence according to OTPM R through RHM. 

7. For each subsequence, locate the modified indices in r i and col-

lect the blue scales in b i at the modified indices. According to

OTPM B , embed EC i −1 from g i −1 into the collected blue scales’

PEs with RHM. 

8. Green scales in g i at the modified indices will be adaptively ad-

justed, and at the same time EC i , will yield from the modified

indices for the next b i + 1 to accommodate. 

9. Embed the auxiliary information into the LSBs of reserved blue

scales. 

Recursive extracting algorithm 

1. Extract auxiliary information from the reserved blue scales. 

2. Based on the invariant grayscales, obtain the marked PEs of red

scales. 

3. Define d jt ( x, y ), combined with P X R (x ) and ρ , obtain OTPM R . 

4. Divide the marked pixels into p subsequence and decode secret

messages from marked red scales’ PEs subsequence by subse-

quence according to OTPM R . 

5. Based on grayscales and restored red scales, calculate separable

grayscales and further obtain the marked PEs of blue scales. 

6. For each subsequence, determine the modified indices in r i and

collect the blue scales in b i at the modified indices. According

to OTPM B , decode EC i −1 from the collected marked blue scales’

PEs. 

7. Readjust green scales at the modified indices of g i according to

the restored red scales and blue scales and the EC i . 

8. Reconstruct the reserved blue scales using the extracted LSBs. 

. Experimental results 

.1. Validity of the proposed model 

The proposed model is an extended RCC scheme applied for

rayscale-invariance RDH, and its key is to establish the associa-

ion of modification distortions of the green scales and the blue

cales with that of the red scales. By associating the modifica-

ion distortions of their color scales, we define the joint distortion

etric for red scales. Taking the square error distortion metric as

n example, to confirm the validity of the joint distortion metric

 jt = 1 . 26(x − y ) 2 + f s (| y − x | ) J B a v e , we compare it with four differ-

nt distortion metrics, including 
 

 

 

 

 

d 1 (x, y ) = (x − y ) 2 

d 2 (x, y ) = 1 . 26(x − y ) 2 

d 3 (x, y ) = 0 . 26(x − y ) 2 + f s (| y − x | ) J B a v e 
d 4 (x, y ) = (x − y ) 2 + f s (| y − x | ) J B a v e 

. (33) 
The rate-distortion performances under different distortion

etrics and payloads are plotted in Fig. 8 , where the assessment

ndicator is PSNR. To show the joint modification more clearly, we

escribe the distortion distribution separately for the red, green

nd blue scales. As seen in Table 1 , the percentile data are given

y 

J R a v e 
J R a v e + J G a v e + J B a v e 

, 
J G a v e 

J R a v e + J G a v e + J B a v e 
, 

J B a v e 
J R a v e + J G a v e + J B a v e 

}
, (34) 

here J R a v e , J G a v e , J B a v e are the average distortions from the red,

reen, and blue scales, respectively. 

As observed in Fig. 8 , except for House, RHM with d 1 (x, y ) =
(x − y ) 2 will perform poorly, proving that the current RCC schemes

sually cannot be applied directly for grayscale-invariance RDH.

owever, by extending RHM with d jt (x, y ) = 1 . 26(x − y ) 2 + f s (| y −
 | ) J B a v e , its performance can be significantly improved. 

If we neglect the modification distortion of blue scales and

efine d 2 (x, y ) = 1 . 26(x − y ) 2 , the performance will be nearly the

ame as d 1 (x, y ) = (x − y ) 2 because they belong to the same dis-

ortion metric without considering the blue scales’ modification.

etrics not considering blue scales’ modification will usually cause

ew distortions for the red and green scales but will introduce a

ery large distortion for the blue scales, as seen in Table 1 for d 1 ( x,

 ) and d 2 ( x, y ). By the same token, metric d 3 ( x, y ) barely consider-

ng red scales’ modification distortion will usually cause large dis-

ortion for red scales, as seen in Table 1 for d 3 ( x, y ). 

On the other hand, if we neglect the modification distortion

f the green scales and define d 4 (x, y ) = (x − y ) 2 + J B a v e , its perfor-

ance will be just slightly less than d jt ( x, y ). The reason is that the

istortion arising from the green scales accounts for a small part of

he total distortion, as seen in Table 1 for d jt ( x, y ) and d 4 ( x, y ). 

Note that, as for House, the performances under d 1 ( x, y ), d 2 ( x,

 ), d 4 ( x, y ) and d jt ( x, y ) are similar, because the PE histogram form

lue scales of House is very sharp so that the corresponding J B a v e is

s small as 0.5 and is nearly negligible. Therefore, the metrics d 1 ( x,

 ), d 2 ( x, y ), d 4 ( x, y ) and d jt ( x, y ) show nearly the same performance.

Through RHM under d jt ( x, y ), the modification can be adap-

ively optimized, thus achieving the best rate-distortion perfor-

ance. Now, we proved the validity of the proposed rate-distortion

odel for grayscale-invariance RDH in experiments. 

.2. Rate-distortion performance 

In this subsection, we compared the proposed method with

ou et al.’s method [33] and Gaoet al.’s method [34] . The schemes

n [33,34] embed messages by difference expansion without rea-

onable distortion-control strategy. By finding the optimal modifi-

ation minimizing the total distortion theoretically, we achieve en-

ouraging rate-distortion performances for all of the test images

isted in Fig. 6 . 

As shown in Fig. 9 , the rate-distortion performances can be sig-

ificantly improved compared to Hou et al..’s method [33] and Gao

t al.’s method [34] . Of course, all the above methods will keep

he graysales unchanged and thus do not disturb the marked im-

ges’ further applications in many cases. Our advantages own to

wo aspects: The first one is that we utilize separable grayscales as

he references to predict the blue scales, therefore, yielding much

harper host histogram as seen in Fig 7. For RDH, the sharper the

ost histogram is, the better the performance of RDH. The second

eason is that we find the optimal modification theoretically mini-

izing the total distortion for grayscale-invariance RDH, while the

xisting methods can not. 

We also show the time complexities for the above three al-

orithms implemented in MATLAB 2014, and the test machine is

 Lenovo personal computer with an i3-4130 CPU @ 3.40 GHz

nd 4.00 GB of RAM. Taking embedding 10, 0 0 0 bits as examples,
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Fig. 8. Rate-distortion performances under different distortion metrics. 
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Fig. 9. Rate-distortion performances of Hou et al.’s method and the proposed method. 
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Table 1 

Distortion distributions for red, green and blue scales. 

Payloads (bits) 40 0 0 0 80 0 0 0 120 0 0 0 

Lena d 1 {3%, 5%, 92%} {5%, 5%, 90%} {10%, 6%, 84%} 

d 2 {3%, 5%, 92%} {5%, 5%, 90%} {10%, 6%, 84%} 

d 3 {62%, 17%, 21%} {63%, 17%, 20%} {63%, 17%, 20%} 

d 4 {43%, 12%, 45%} {41%, 12%, 47%} {42%, 13%, 45%} 

d jt {40%, 12%, 48%} {37%, 11%, 52%} {37%, 11%, 52%} 

Barbara d 1 {10%, 10%, 80%} {10%, 10%, 80%} {20%, 12%, 68%} 

d 2 {10%, 10%, 80%} {10%, 10%, 80%} {20%, 12%, 68%} 

d 3 {63%, 19%, 18%} {63%, 19%, 18%} {63%, 19%, 18%} 

d 4 {40%, 16%, 41%} {43%, 16%, 41%} {44%, 16%, 40%} 

d jt {33%, 15%, 52%} {37%, 15%, 49%} {38%, 15%, 48%} 

Airplane d 1 {13%, 12%, 75%} {12%, 11%, 77%} {20%, 12%, 68%} 

d 2 {13%, 12%, 75%} {12%, 11%, 77%} {20%, 12%, 68%} 

d 3 {61%, 20%, 19%} {62%, 19%, 19%} {62%, 19%, 19%} 

d 4 {39%, 17%, 44%} {35%, 15%, 50%} {42%, 16%, 42%} 

d jt {36%, 16%, 48%} {35%, 15%, 50%} {36%, 15%, 49%} 

Baboon d 1 {2%, 4%, 95%} {5%, 5%, 90%} {14%, 6%, 80%} 

d 2 {2%, 4%, 95%} {5%, 5%, 90%} {14%, 7%, 79%} 

d 3 {41%, 17%, 18%} {65%, 17%, 18%} {65%, 17%, 18%} 

d 4 {42%, 12%, 46%} {42%, 12%, 46%} {43%, 13%, 44%} 

d jt {37%, 11%, 52%} {38%, 11%, 51%} {40%, 12%, 48%} 

Pepper d 1 {3%, 5%, 93%} {9%, 6%, 85%} {23%, 9%, 69%} 

d 2 {3%, 5%, 92%} {9%, 6%, 85%} {23%, 9%, 69%} 

d 3 {64%, 17%, 19%} {65%, 17%, 18%} {65%, 17%, 18%} 

d 4 {42%, 13%, 44%} {42%, 13%, 45%} {46%, 13%, 41%} 

d jt {36%, 11%, 52%} {39%, 12%, 49%} {43%, 13%, 44%} 

House d 1 {36%, 27%, 37%} {35%, 25%, 40%} {35%, 25%, 40%} 

d 2 {36%, 27%, 37%} {35%, 25%, 40%} {35%, 25%, 40%} 

d 3 {60%, 26%, 14%} {58%, 26%, 16%} {60%, 25%, 15%} 

d 4 {36%, 27%, 37%} {35%, 25%, 40%} {40%, 25%, 35%} 

d jt {36%, 27%, 37%} {34%, 26%, 40%} {39%, 25%, 36%} 

Table 2 

Speed comparisons of three algorithms. 

Image Lena Barbara Airplane Baboon Pepper House 

Hou et al. [33] 66 60 66 170 122 64 

Gao et al. [34] 108 130 84 420 365 120 

Proposed method 70 70 71 72 68 65 
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the embedding times (measured in seconds) of three algorithms

are listed in Table 2 . From this Table we observe that the time

complexities of Hou et al.’s method [33] and Gao et al.’s method

[34] for images with rich texture, such as Baboon, will be much

higher due to their pixel selection strategies. However, by the pro-

posed method, the time complexities are relatively stable for the

test images. 

5. Conclusion 

By converting the modification-dependent model to the

modification-independent model, we successfully applied the the-

oretically proven optimal RHM in grayscale-invariance RDH and

achieved encouraging results. Our method is advantageous for two

reasons. First, we propose a linear predictor based on separable

grayscales to yield a sharper host histogram, and more importantly,

we establish a rate-distortion model for grayscale-invariance RDH

in order to find the optimal joint modification method and mini-

mize the total distortion theoretically. 

For different distortion metrics, the distortion mapping from

the green scales to red scales may be different. In this paper, we

only provide the appropriated mapping for the squared error dis-

tortion metric. Determining how to establish the distortion map-

ping for general distortion metrics is still a challenging problem. 
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