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A B S T R A C T

CNN (Convolutional Neural Network) steganalyzers achieve enormous improvements in detecting stego images.
However, they are easily deceived by adversarial steganography, which combines adversarial attack and
steganography. Currently, there are two kinds of adversarial steganography, function separation and cover
enhancement. ADV-EMB (ADVersarial EMBedding) is a typical function separation method. It forces the
steganographic modifications along side the gradient directions of the target CNN steganalyzer on partial
image elements. It results in relatively low deceiving success rate against the target model. ADS (ADversarial
Steganography) is the first adversarial steganography, which is based on cover enhancement. It introduces
much distortions, so it can be easily detected by non-target steganalyzers. To overcome such defects of
the previous works, in this paper, we propose a novel cover enhancement method, denoted as SPS-ENH
(SParSe ENHancement). Through sparse ±1 adversarial perturbations, we effectively compress the distortions
caused in cover enhancement. In addition, a re-trying scheme is introduced to further reduce the distortion
scale. Extensive experiments show that the proposed method outperforms the previous works in the average
classification error rates under non-target steganalyzers and deceiving success rates against target CNN models.
When combining with the min–max strategy, the proposed method converges in less iterations and provides
higher security level than ADV-EMB.
1. Introduction

Steganography is a technique of covert communication [1–4]. It
aims to embed the secret messages into the cover while arousing min-
imal suspicions of the detector. Content-adaptive steganography [5] is
considered the most secured steganographic approach. It formulates the
steganography problem as source coding with fidelity constraint. Two
tasks under the optimization problem of it: (1) defining modification
cost of each cover element, (2) designing steganographic codes that
embed the secret messages into the cover while minimizing the costs
defined before. Several approaches have realized near-optimal coding
performance, i.e. syndrome-trellis codes (STC) [6] and steganographic
polar codes (SPC) [7].

Defining the cost function has become a research hotspot recently.
In spatial domain, HUGO [8] defines modification costs by referring to
SPAM feature changes between cover and stego images. WOW (Wavelet
Obtained Weights) [9] and UNIWARD (UNIversal Wavelet Relative
Distortion) [10] defines costs based on the residual map obtained
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by a bank of directional filters. Li et al. proposed the spreading rule
in HILL [11]. Aside from aforementioned heuristic-defined cost func-
tions, several model-driven cost functions have been proposed, such as
MG [12], MVG [13], and MiPOD [14]. In JPEG domain, Holub et al.
extended S-UNIWARD to JPEG domain and side-informed domain.
Considering the intra- and inter-block dependency, Guo et al. proposed
UED (Uniform Embedding Distortion metric) [15] and improved it to
UERD (Uniform Embedding Revised Distortion metric) [16]. Recently,
inspired by the success of GANs (Generative Adversarial Networks) in
computer vision area, several GANs-based cost functions were devel-
oped, e.g. ASDL-GAN [17], UT-6HPF-GAN [18] and SPAR-RL [19]. The
security of steganography increases significantly with more subtle cost
functions being proposed.

Along side with the development of steganography, extensive works
have been proposed in steganalysis [20]. The researchers mostly fo-
cused on designing handcrafted features that capture the stegano-
graphic distortions in high-dimensional spaces. The diversity
vailable online 2 October 2021
047-3203/© 2021 Published by Elsevier Inc.

https://doi.org/10.1016/j.jvcir.2021.103325
Received 30 June 2021; Received in revised form 14 September 2021; Accepted 25
 September 2021

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:qc94@mail.ustc.edu.cn
mailto:zhangwm@ustc.edu.cn
mailto:dlight@mail.ustc.edu.cn
mailto:zhahongyue@163.com
mailto:ynh@ustc.edu.cn
https://doi.org/10.1016/j.jvcir.2021.103325
https://doi.org/10.1016/j.jvcir.2021.103325
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2021.103325&domain=pdf


Journal of Visual Communication and Image Representation 80 (2021) 103325C. Qin et al.

2

e
g
𝐿

𝜼

s
w
s

of steganographic methods and source images drives the steganalyzer
to assemble the sub-models generated from various high pass filters.
SRM [21], TLBP [22], GFR [23] and DCTR [24] are all constructed
based on such logic. To cooperate with high-dimensional features,
sophisticated machine learning tools are adopted, such as FLD (Fisher
Linear Discriminant) ensemble classifier [25].

Inspired by enormous progress of CNNs (Convolutional Neural Net-
works) in computer vision area [26–30], various studies were made on
CNN-based steganalyzer. Qian et al. [31] and Xu et al. did some early
works in designing CNN-based steganalyzers. YeNet [32] is the first
one that outperforms handcrafted feature-based steganalyzers. More
recently, Boroumand et al. [33] proposed SRNet for both the spatial and
JPEG domain. Some other advanced CNN structures were also adopted
and effectively improve the detection accuracy of CNN steganalyzers,
such as co-variance pooling [34,35], depth-wise separable convolu-
tion [36,37], Siamese structure [38,39]. CNN-based steganalyzers now
significantly outperform handcrafted feature-based ones.

Despite the success of CNNs in many areas, they are found to be
vulnerable against imperceptible and subtly crafted adversarial pertur-
bations [40–43]. Such perturbations could be added on any samples
and deceive CNNs to output incorrect results. Vast number of re-
searches are made on the generation of adversarial perturbations. The
discovery of adversarial perturbations motivates the study of steganog-
raphy. But, directly adding adversarial perturbations on stego images
would destroy the message extraction. Zhang et al.’s work called ADS
(ADversarial Steganography) [44] is the first one that successfully
combines adversarial perturbations and steganography. They utilize
FGSM (Fast Gradient Sign Method) to enhance cover images until they
are still classified as the cover by the target CNN steganalyzer even
after the secret messages embedded. Tang et al. proposed ADV-EMB
(ADVersarial EMBedding) [45], which accomplishes the adversarial
attack by synchronizing the modification directions with the gradient
signs. To reduce the excessive modifications caused by imbalanced
plus and minus cost maps, ADV-EMB controls the amount of the cost-
adjusted elements through a iteration process. Similar to the iteration
process of ADS, ADV-EMB also requires embedding the secret mes-
sages to evaluate whether the adversarial attack is accomplished. We
call these two as the basic adversarial steganography, since there are
several works inspired by them or directly adopted them as tools to
generate more secured stego images under the detection of non-target
steganalyzers. One typical example is min–max strategy [46]. It was
built upon a game between the steganographer and the steganalyst. The
most secured stego images are selected as the ones that obtains highest
cover class probabilistic outputs of the steganalyzers in the previous
iterations. Meanwhile, the optimal steganalyzer of the current iteration
is trained with the cover images and the corresponding most secured
stego images. The candidate set of the most secured stego images are
updated by generating adversarial stego images targeting the stegana-
lyzer in the last iteration. Hence, an adversarial steganographic method
that can deceive the CNN steganalyzer and improve the security from
the basic method is the basics of min–max strategy.

However, both ADS and ADV-EMB have defects in different perspec-
tives. During the cover enhancement, ADS introduces a large amount of
distortions. It significantly reduces its security under non-targeted ste-
ganalyzers. ADV-EMB effectively controls the excessive distortions by
forcing part of modifications along the gradient signs. While the cover
image is randomly divided into two groups. This operation introduces
two defects: (1) Relatively low deceiving success rates against target
CNN steganalyzers will be observed. The amount of the steganographic
modifications that can be adjusted for adversarial attack is limited.
Sometimes, they are not enough to ‘‘erase’’ the steganographic trace.
One can observe that the deceiving success rate of ADV-EMB is lower
than ADS and SPS-ENH, and it drops when the relative payload de-
creases. (2) Neglecting the absolute values of gradients would introduce
2

excessive modifications. The modification on the element with larger t
absolute gradient values would bring about more significant changes
on the predictions. Yet this is not considered by ADV-EMB.

Summarizing the defects of ADS and ADV-EMB above, one can con-
clude that current adversarial steganographic methods cannot obtain
a balance between high deceiving success rate against a target CNN
steganalyzer and the holistic security that is measured by non-target
steganalyzers when the steganalyzers are trained with the stegano-
graphic method. In this paper, we propose a sparse cover enhancement
method, which obtains high deceiving success rate and high holistic se-
curity. To achieve satisfactory deceiving success rate, we take the cover
enhancement framework to combine the adversarial perturbations with
steganographic embedding. To reduce the large distortions introduced
when enhancing the cover images, we propose a novel sparse adver-
sarial perturbation method. By restricting the perturbation amplitude,
it can easily minimize the 𝐿1 distances. The distortions it introduces
are significantly smaller than the previous methods against steganalysis
models. Since the steganographic modifications are random, we repeat
the steganographic embedding with new random seeds several times
when the prediction probabilities are large enough. Such mechanism
effectively reduce the amount of adversarial perturbations.

The contributions of this paper are summarized as follows:

1. We propose a novel adversarial steganographic method, which
obtains comparable holistic security as ADV-EMB while higher
deceiving success rates against target CNN steganalyzers.

2. A novel sparse adversarial perturbations is introduced to deceive
CNN steganalyzers. It is specifically designed for steganography
task and introduces much smaller distortions than the previous
works.

3. In the similar cover enhancement framework, we introduce a
restarting and repeating mechanism. It effectively reduces the
adversarial perturbations.

The rest of this paper is organized as follows. In Section 2, sev-
eral typical adversarial perturbation methods and adversarial stegano-
graphic methods are briefly reviewed. We detail the proposed method
in Section 3. In Section 3, the proposed method is detailed. Extensive
experiments are carried out in Section 4. The paper is concluded in
Section 5.

2. Related work

2.1. Adversarial perturbations

Let 𝒙 be a input image, with 𝑦true being the ground-truth label.
In steganalysis, 𝑦true ∈ {0, 1}, where 0 and 1 represent cover and
stego class respectively. 𝑃 (𝑥, 𝜃) represents a CNN model with hyper-
parameters 𝜃. The loss of the CNN model with 𝑦 set as the ground-truth
label is denoted as 𝐿(𝑃 (𝒙, 𝜃), 𝑦).

.1.1. FGSM
FGSM (Fast Gradient Sign Method) is proposed by Goodfellow

t al. [40], which generate adversarial perturbations by multiplying
radient maps with a scalar. With 𝜃 being fixed, the gradient map of
(𝑃 (𝒙, 𝜃), 𝑦true) with reference to the input image 𝒙 is denoted as 𝜼:

=
𝜕𝐿(𝑃 (𝒙, 𝜃), 𝑦true)

𝜕𝒙
. (1)

By multiplying the gradient map 𝜼 with a proper scalar 𝜖, the adversar-
ial perturbations 𝜹 = 𝜖 ⋅ 𝜼 would alter the predicted label of the target
model.

2.1.2. DDN (Decoupled Direction and Norm)
Rony et al. [43] proposed to project the perturbations onto a 𝐿2-

phere of the clean image. Then the norm will be changed based on
hether the adversarial attack is successful or not. DDN introduces

ignificantly smaller 𝐿2 distortions and requires fewer iterations than

he previous works.



Journal of Visual Communication and Image Representation 80 (2021) 103325C. Qin et al.

t
l
i

𝜹

e
i
T
f
e
m

𝑞

𝑞

w
t

2.2. Adversarial steganography

2.2.1. ADS (ADversarial Steganography)
ADS [44] is the first adversarial steganography. It utilizes FGSM

o iteratively enhance the original cover image until the predicted
abel would remain cover after the secret messages embedded. In each
teration the modification is generated by:

𝑖 = 𝜖 ⋅
𝜕𝐿(𝑃 (𝒛𝑖−1, 𝜃), 1)

𝜕𝒛𝑖−1
, (2)

where 𝒛𝑖−1 is the stego image generated on the enhanced cover image of
the last iteration. Assuming the final iteration is 𝑛, the enhanced cover
image is:

𝒄′ = 𝒄 +
𝑛
∑

𝑖=1
𝜹𝑖. (3)

2.2.2. ADV-EMB (ADV ersarial EMBedding)
ADV-EMB [45] generates adversarial stego images by forcing the

mbedding cost fit the gradient sign. It divides the elements of the cover
mage into two disjoint groups, common group and adjustable group.
he embedding costs in common group are defined by the base cost
unction, such as UNIWARD [10], HILL [11], UERD [16], and etc. The
mbedding costs in adjustable group are adjusted based on the gradient
ap of the stego image generated in the last iteration:

+
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜌+𝑖,𝑗∕𝛼, if 𝜂𝑖,𝑗 < 0,
𝜌+𝑖,𝑗 , if 𝜂𝑖,𝑗 = 0,
𝜌+𝑖,𝑗 ⋅ 𝛼, if 𝜂𝑖,𝑗 > 0,

(4)

−
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜌−𝑖,𝑗∕𝛼, if 𝜂𝑖,𝑗 > 0,
𝜌−𝑖,𝑗 , if 𝜂𝑖,𝑗 = 0,
𝜌−𝑖,𝑗 ⋅ 𝛼, if 𝜂𝑖,𝑗 < 0,

(5)

here the gradient value, base cost value and adjusted cost value at
he element with position index 𝑖, 𝑗 are denoted as 𝜂𝑖,𝑗 , 𝜌𝑖,𝑗 and 𝑞𝑖,𝑗 .

3. The sparse adversarial enhancement scheme

3.1. The gradient distribution of CNN steganalyzers

Given an input image 𝒙, the gradient map of the CNN steganalyzer is
denoted as 𝜼 = 𝜕𝐿(𝑃 (𝒙,𝜃),𝑦true)

𝜕𝒙 . It indicates how to modify the input image
could change the prediction. Both ADV-EMB [45] and ADS [44] utilize
the gradient map to deceive CNN steganalyzers. We plot the gradient
maps and their histograms of several typical stego images generated by
S-UNIWARD [10] from BOSSBase 1.01 [47] in Fig. 1.

It can be observed from the histogram that the standard deviations
of the gradient distributions are high. Most elements are with low gra-
dient values. The modifications on them could not effectively change
the predictions. Meanwhile, it can be observed from the second row,
which is the 3-D gradient value maps, the gradient values peak at some
elements. Modifying them could effectively help deceive the target
CNN steganalyzer. Interestingly, these pixel points with high gradient
values are sometimes located in smooth area, making them difficult
to be exploited by cost adjustment methods, such as ADV-EMB. This
phenomenon may be due to the randomness of steganographic modi-
fications, i.e. though steganographic modifications cluster in textured
area where the modification costs are set low, the elements with high
modification costs could still be changed.

Using cost adjustment method as ADV-EMB cannot precisely control
where modifications are made. Thus, we adopt cover enhancement as
the general framework of the proposed method.
3

Table 1
The average proportion and steganographic modifications of common group and
adjustable group of ADV-EMB.

Payload (bpp) Group Proportion Modification

0.1 Common 79.90% 773.47
Adjustable 20.10% 219.35

0.2 Common 73.76% 1599.87
Adjustable 26.23% 655.87

0.3 Common 73.43% 2572.71
Adjustable 26.56% 1094.53

0.4 Common 73.61% 3651.31
Adjustable 26.38% 1564.69

0.5 Common 75.74% 4949.23
Adjustable 24.25% 1925.11

3.2. Formulating a 𝐿0 and 𝐿∞ constraint optimization problem

In cover enhancement, the steganographer enhances cover images
before embedding secret messages. As analyzed before, the defects of
ADS, i.e., low holistic security, are caused by large distortions intro-
duced during enhancing cover images. In this section, we compress
such distortions by formulating adversarial attack as a 𝐿0 and 𝐿∞
constraint optimization problem.

The adversarial attack is often regarded as a 𝐿𝑝-norm constraint
optimization problem.

min
𝛿

‖𝜹‖𝑝 s.t. arg max 𝑃 (𝒙 + 𝜹, 𝜃) ≠ 𝑦true

and 0 ≤ 𝒙 + 𝜹 ≤ 𝑀,
(6)

where 𝑀 denotes the upper bound of image element value and 𝜹
denotes the modification matrix. 𝐿0-norm leads to sparse perturbations,
which meets the requirement of improving holistic security. Solving
𝐿0-constraint optimization problem is NP-hard to solve. Fortunately,
CNN steganalyzers are easily deceived by ±1 adversarial perturbations.
Thus, we add 𝐿∞ constraint and resort to a greedy algorithm to find
a local optimal solution. Before introducing the detailed algorithm, we
analyze the vulnerability of CNN steganalyzers against ±1 adversarial
perturbations.

The spatial steganographic modifications are rather small and exist
in highly textured areas, which can be considered as high frequency
signals. In CNN steganalyzers, stacking unpooled layers, pre-processing
the input images with a HPF (High Pass Filter) and etc. are taken
to preserve the high frequency signals. Intuitively, the perturbations
of small amplitude would effectively influence the prediction of CNN
steganalyzers.

Specifically, a phenomenon from ADV-EMB inspired us. The modi-
fications in the adjustable group are alongside with the gradient direc-
tions. One can consider that the modifications in the adjustable group
‘‘erase’’ the steganographic trace in the common group. In Table 1,
we exhibit the proportions and the average modification numbers in
each group under relative payloads from 0.1 bpp (bit per pixel) to 0.5
bpp. One can see that the ±1 adversarial perturbations with the half of
the common steganographic modification number can deceive the CNN
steganalyzer.

Hence, we restrict the modification amplitude to 1 and formulate
the optimization problem we are solving as follows:

min
𝛿

‖𝜹‖0 s.t. arg max 𝑃 (𝒙 + 𝜹, 𝜃) ≠ 𝑦true

and ‖𝜹‖∞ = 1 and 0 ≤ 𝒙 + 𝜹 ≤ 𝑀,
(7)

Now solving such problem becomes much easier. We aim to minimize
the number of ±1 modifications. The detailed algorithm is discussed in

the next section.
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Fig. 1. The first row exhibits the stego images. The second row exhibits the corresponding gradient maps. The third row exhibits the histograms of the gradients.
3.3. Generating adversarial stego images

We propose to iteratively enhance the cover image to generate
adversarial stego images. The general process is shown in Fig. 2. We
simultaneously modify the original stego image with the same adver-
sarial perturbations and calculate the gradient map with reference to it
in each iteration:

𝜼𝑖 =
𝜕𝐿(𝑃 (𝒔𝑡𝑖, 𝜃), 1)

𝜕𝒔𝑡𝑖
, (8)

where 𝒔𝑡𝑖 represents the modified stego image in the current iteration.
Specifically, in the first iteration, 𝒔𝑡𝑖 is the original stego image. The
intuition behind such operation is the perturbations that lower the
loss 𝐿(𝑃 (𝒔𝑡𝑖, 𝜃), 0), i.e., making the original stego image more and more
‘‘cover’’, could ‘‘erase’’ the steganographic modification traces on a
slightly modified cover image generated by the same method.

In each iteration, we enhance the image elements that are with top-
𝑘 gradient values and not modified before. Specifically, we leverage a
mask 𝒎 to control whether elements can be enhanced. If the element
𝑥𝑝,𝑞 was modified before, the corresponding flag 𝑚𝑝,𝑞 will be set 1.

𝜼′𝑖 = 𝜼𝑖 ⋅ (1 −𝒎). (9)

𝑑1, 𝑑2,… , 𝑑𝑘 = argtopk (|𝜼′𝑖|). (10)

𝒎 = 𝟏. (11)
4

𝑑1 ,𝑑2 ,…,𝑑𝑘
Formally, we enhance the cover image in each iteration as follows:

𝒆𝑖+1 = clip𝑀
0 (𝒆𝑖 +

𝜼′𝑖
|𝜼′𝑖|

), (12)

where the enhanced cover image in 𝑖th iteration is denoted as 𝒆𝑖. The
steganographic modifications will be totally different if the LSB or 2LSB
of image elements are changed. So, the modified stego image 𝒔′𝑖 being
predicted cover is not the terminal condition of the iteration. It will
continue until the stego image that generated from the enhanced cover
image is predicted cover.

To further reduce the enhancement modifications, we introduce a
repeat embedding scheme. When the probabilistic output 𝑝(𝒔𝑖|0, 𝜃) is
larger than a threshold 𝜏, we scramble the secret message and re-
generate steganographic modifications until the adversarial stego image
𝒔𝑗𝑖 is predicted cover or the repetition reaches the maximum. The
complete generation process is shown in Algorithm 1.

4. Experiments

4.1. Setups

Datasets. The datasets in this paper, we select BOSSBase 1.01 [47]
and BOWS2 [48]. Each contains 10 000 grayscale image of 512 × 512.
To match the settings of most CNN steganalyzers, we resize the original
images using 𝐢𝐦𝐫𝐞𝐬𝐢𝐳𝐞() of MatLab to resize the images to 256 × 256.

Steganalyzers. The state-of-the-art CNN steganalyzers SRNet [33]
is adopted as the target model in this paper. It is trained with 14 000
randomly selected cover images and the corresponding stego images
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Fig. 2. The process of SPS-ENH. 𝒄, 𝒔𝑖, 𝒔′𝑖 , 𝒆𝑖 and 𝒂 represent the cover image, stego image, the modified stego image, the enhance cover image and the adversarial stego image
respectively. In each iteration, the gradient value is calculated with reference to the stego image towards the cover class. We enhance the top-𝑘 high gradient value elements. Since
the steganographic modifications would be totally different if the LSB or 2LSB are changed, whether 𝒔′𝑖 is predicted as cover does not matter. (c) represents the repetition scheme.
Sometimes the stego image generated from the enhanced cover image is close to the classification hyper-plane (the probabilistic output is close enough to 0.5). We scramble the
secret messages to produce a legal adversarial stego image.
Algorithm 1 SPS-ENH (SParSe ENHancement)
Input: The input image 𝒙, target model 𝑃 (𝒙, 𝜃), ground-truth label 𝑦true.
Parameter: Max iteration 𝑡, modification number 𝑘, modification map
𝒎, secret messages 𝒎𝒔𝒈.
Output: Adversarial example 𝒙𝑎𝑑𝑣.
1: Initialization: 𝒆0 ← 𝒄, 𝒎 ← 𝟎, 𝑖 ← 0, 𝑘 ← 1 𝝆 ← CostDef(𝒄),

𝒔0 ← StegEmb(𝒆0,𝝆,𝒎𝒔𝒈), 𝒔𝑡0 ←;
2: while 𝑖 < 𝑡 and 𝑝(𝒔𝑖|0, 𝜃) < 0.5 do
3: 𝜼𝑖 ←

𝜕𝐿(𝑃 (𝒔𝑡𝑖 ,𝜃),𝑦true)
𝜕𝒔𝑡𝑖

4: 𝜼′𝑖 ← 𝜼𝑖 ⋅ (1 −𝒎)
5: 𝑑1, 𝑑2, ..., 𝑑𝑘 ← argtopk (|𝜼′𝑖|)
6: 𝒎𝑑1 ,𝑑2 ,...,𝑑𝑘 ← 𝟏

7: 𝒆𝑖+1 ← clip𝑀
0 (𝒆𝑖 +

𝜼′𝑖
|𝜼′𝑖 |

)

8: 𝒔𝑡𝑖+1 ← clip𝑀
0 (𝒔𝑡𝑖 +

𝜼′𝑖
|𝜼′𝑖 |

)
9: 𝒔𝑖+1 ← StegEmb(𝒆𝑖+1,𝝆,𝒎𝒔𝒈)

10: if 𝜏 < 𝑝(𝒔𝑖|0, 𝜃) < 0.5 then
11: 𝒔𝑖+1 ← StegEmb(𝒆𝑖+1,𝝆, Scramble(𝒎𝒔𝒈))
12: 𝑖 ← 𝑖 + 1
13: 𝑘 ← 𝑘 + 1
14: if 𝑝(𝒔𝑖|0, 𝜃) > 0.5 then
15: 𝒙𝑎𝑑𝑣 ← 𝒔𝑖
16: else
17: 𝒙𝑎𝑑𝑣 ← 𝒔0

from BOSSBase 1.01 and BOWS2. To fully evaluate the holistic security
of stego images, we include SRM+EC (the ensemble classifier trained
with the Spatial Rich Model) and YeNet [32] as reference models. The
steganalyzers are trained with cover images and their corresponding
5

stego images. We set SRM+EC by default to minimize the total clas-
sification error rate while a lower false alarm rate 𝑃FA is prior 𝑃E =
min𝑃FA

1
2 (𝑃FA+𝑃MD), where 𝑃FA and 𝑃MD are false alarm rate and missed

detection rate respectively.
Base Cost Functions. To make fair comparisons with conventional

steganography and the previous works (ADS and ADV-EMB), we keep
consistent the base cost function of adversarial steganographic methods
and the target CNN steganalyzers are trained with. Specifically, in this
paper, we utilize a widely-used cost functions S-UNIWARD [10].

4.2. Holistic security

Steganography endeavours to increase its holistic security. Specifi-
cally, it is measured when the steganalyst is fully aware of the stegano-
graphic method and deploy a specific steganalyzer. In this section, the
average classification error rate 𝑃𝐸 of cover images and S-UNIWARD
(baseline), ADS, ADV-EMB, SPS-ENH are compared under the detection
of CNN models and handcrafted-feature models.

From Table 2, one can observe that SPS-ENH obtains higher 𝑃𝐸
than ADS and ADV-EMB, especially under the detection of handcrafted-
features. ADS sacrifices its holistic to deceive CNN steganalyzers. ADV-
EMB and SPS-ENH could increase the holistic, while SPS-ENH obtains
superior performances. The largest improvement is made under relative
payload 0.2 bpp. The 𝑃𝐸 of SRM+EC increases with 0.0099.

For NonADV-ENH, though it does not aim to deceive CNN models,
by enhancing the cover images with the perturbations that can ‘‘erase’’
the steganographic modifications on the original cover, it improves
the holistic of base steganographic method. Under the detection of
SRM+EC, the most significant improvement 0.0255 is made under rela-
tive payload 0.3 bpp. Under the detection of SRNet and YeNet, the most
significant improvements 0.0770 and 0.0683 are made under payload
0.2 and 0.3 respectively. The performance of SPS-ENH is better than
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Table 2
The performance (𝑃𝐸 ) comparison between the proposed scheme and previous works.
The target model is set as SRNet.

Payload (bpp) Algorithm SRM+EC SRNet YeNet

0.1

Baseline 0.4364 (±0.0038) 0.3247 0.3637
ADS 0.3743 (±0.0023) 0.2437 0.2846

ADV-EMB 0.4433 (±0.0027) 0.3960 0.4082
SPS-ENH 0.4519 (±0.0037) 0.3909 0.4142

0.2

Baseline 0.3579 (±0.0030) 0.2013 0.2648
ADS 0.3094 (±0.0036) 0.1538 0.1934

ADV-EMB 0.3711 (±0.0038) 0.2830 0.2920
SPS-ENH 0.3810 (±0.0029) 0.2783 0.3303

0.3

Baseline 0.2894 (±0.0036) 0.1325 0.1623
ADS 0.2438 (±0.0035) 0.1204 0.1547

ADV-EMB 0.3143 (±0.0025) 0.1997 0.2485
SPS-ENH 0.3149 (±0.0041) 0.2016 0.2306

0.4

Baseline 0.2315 (±0.0027) 0.0866 0.1135
ADS 0.1954 (±0.0048) 0.0826 0.0993

ADV-EMB 0.2462 (±0.0040) 0.1297 0.1629
SPS-ENH 0.2541 (±0.0029) 0.1406 0.1731

0.5

Baseline 0.1834 (±0.0021) 0.0604 0.0746
ADS 0.1439 (±0.0035) 0.0710 0.0847

ADV-EMB 0.1992 (±0.0024) 0.1024 0.1410
SPS-ENH 0.2021 (±0.0032) 0.0970 0.1133

ADV-EMB under the detection of handcrafted feature-based SRM+EC,
and comparable with it under the detection of CNN steganalyzers. But,
it is found SPS-ENH can achieve higher security when combining with
min–max [46] strategy than ADV-EMB. Such experiment is shown in
Section 4.4.

4.3. Deceiving target CNN steganalyzers

In this section, we evaluate the performance of SPS-ENH in de-
ceiving target CNN steganalyzers when the steganographer grasps the
complete settings and hyper-paramters of the target model. The same
as Tang et al. [45], we set steganalyzers with two types: (1) adversary-
unaware, the steganalyzers are trained with conventional stego images.
(2) adversary-aware, the steganalyzers enhance their robustness with
adversarial training, where the adversary-aware steganalyzers utilize
the weights of adversary-unaware steganalyzers for initialization and
replace the stego images in the training set with the adversarial stego
ones.

4.3.1. Adversary-unaware steganalyzers
In Table 3, It can be observed that the success rate of ADV-EMB is

lower than ADS and SPS-ENH, and it drops with the relative payload.
Specifically, the success rates of ADV-EMB are lower than 90% when
the relative payloads are less than 0.3 bpp. It is mainly because that the
pixels with high gradient values are not necessarily locate in textured
areas. Such phenomenon can be observed in Fig. 5. Though ADV-
EMB forces the modification directions along side with the gradient
signs in the adjustable group. Critical modifications at the pixels with
high gradient values could be skipped. Even with the whole cost map
being modified, there are still probability that the modifications are
not sufficient to alter the prediction. Such phenomenon would be
more severe when the relative payload drops. Since the quantity of
modifications would significantly reduced with the relative payload. It
would be harder for ADV-EMB to achieve adversarial attacks by only
guide the modification directions.

4.3.2. Adversary-aware steganalyzers
In Table 4, such adversarial training strategy brought little robust-

ness against ADS and SPS-ENH. ADV-EMB receives clear drops on
deceiving success rate across all the tested payloads. The largest drop
of ADV-EMB is 28.55% under relative payload 0.4 bpp. Meanwhile,
The largest success rate decrease of SPS-ENH is only 0.03% under
relative payload 0.1 bpp. SPS-ENH exhibits superior robustness against
6

adversarial trained CNN steganalyzers.
Table 3
The success rate of ADS, ADV-EMB and SPS-ENH in the white-box scenario against a
adversary-unaware steganalyzer under the relative payload (bpp) from 0.1 to 0.5. The
adversarial steganographic method is abbreviated as ‘‘ADV’’ in the table.

Target model ADV 0.1 0.2 0.3 0.4 0.5

SRNet
ADS 100.00% 99.99% 99.98% 100.00% 99.86%

ADV-EMB 88.12% 88.78% 89.92% 95.00% 94.78%
SPS-ENH 100.00% 99.96% 99.68% 99.66% 99.36%

Table 4
The success rate of ADS, ADV-EMB and SPS-ENH in the white-box scenario against a
adversary-aware steganalyzer under the relative payload (bpp) from 0.1 to 0.5.

Target Adversarial 0.1 0.2 0.3 0.4 0.5model steganography

SRNet
ADS 98.99% 96.59% 99.13% 97.08% 97.06%
ADV-EMB 76.39% 78.14% 70.71% 68.53% 72.36%
SPS-ENH 99.97% 99.97% 99.99% 99.85% 99.96%

Fig. 3. The holistic (𝑃𝐸 ) in each iteration. (Round 0 is consists of all stego images
enerated via base cost function).

.4. Under min–max strategy

Bernard et al. [46] proposed the min–max strategy, in which they
tilized ADV-EMB to attack the CNN steganalyzers in each iteration.
s SPS-ENH is a more securer adversarial steganographic method,
ne could anticipate that it can achieve higher holistic security than
DV-EMB when cooperating with the min–max strategy. In Fig. 3, we
ompare the holistic security of SPS-ENH-min–max with ADV-EMB-
in–max under the detection of SRNet. We run 4 iterations to collect

statistics. It can be observed that SPS-ENH converges faster than ADV-
EMB and achieves superior security performances under the detection
of the optimal steganalyzer. The average detection error rate on SPS-
ENH-min–max peaks at the third iteration with 21.63%, while the
holistic security of ADV-EMB-min–max converges at the fourth iteration
with 18.55%. SPS-ENH obtains superior performance when combining
with the min–max strategy.

Moreover, min–max strategy could be utilized by the steganalyst to
enhance the steganalyzers’ robustness against adversarial steganogra-
phy. We compare the deceiving success rate of ADV-EMB and SPS-ENH
in each iteration in Fig. 4. The success rate of ADV-EMB against min–
max retrained models drops significantly. It steadies at about 60%
lastly, while the success rate of SPS-ENH even increases a little with the
iteration. Hence, ADV-EMB can be defended via min–max retraining.
But such strategy does not work against SPS-ENH.
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Fig. 4. The attacking success rate of SPS-ENH and ADV-EMB in each iteration (starting
rom round 1).

Table 5
The comparison of distortions among FGSM, DDN and HiD-PeT when targeting
CNN-based steganalyzer SRNet.

FGSM DDN HiD-PeT

𝐿0 65 241.80 24 610.98 𝟓𝟐.𝟕𝟏
𝐿∞ 4.0 1.0 𝟏.𝟎
𝐿2 1017.62 16.20 𝟔.𝟐𝟎

4.5. Ablation study

4.5.1. Distortions caused by the adversarial enhancement
The sparse enhancement is one of the key elements in guaranteeing

the holistic security of SPS-ENH. The adversarial perturbation of SPS-
ENH is denoted as HiD-PeT (HiDden PerTurbation). In this section, we
compare the distortions caused by the proposed method, HiD-PeT, with
adversarial attacks in computer vision area, e.g. FGSM (𝐿∞-based, uti-
lized in ADS), DDN (𝐿2-based, introducing the least 𝐿2 distortions). To
make full-scale comparison, we compare 𝐿0, 𝐿2 and 𝐿∞ distortions of
them. SRNet is trained using S-UNIWARD under the payload of 0.4 bpp.
Note that the goal of the adversarial enhancement and other adversarial
attacks is set to alter the predictions of the target steganalyzer on stego
images regardless whether the secret message can be extracted.

𝐿0 distortions could represent the sparsity of perturbations. Through
the greedy search process, HiD-PeT could alter the prediction of target
CNN-based steganalyzer with average 52.71 pixels being modified.
Since we restrict the modifications to only ±1, HiD-PeT obtains the
least 𝐿∞ than all the other adversarial perturbations. With the least
𝐿0 and 𝐿∞ distortions, 𝐿2 distortions introduced by HiD-PeT would be
less than other methods. The results are shown in Table 5.

Moreover, to exhibit the visual performance of HiD-PeT, we display
the modification maps of it on three randomly selected images from
BOSSBase 1.01 in Fig. 5. The original stego images, the steganographic
modifications on them, FGSM perturbations, DDN perturbations and
the HiD-PeT perturbations are listed in columns respectively. The modi-
fied pixels are colored in white, while the unmodified ones are in black.
FGSM modifies most of the pixels, except the ones in the most smooth
areas, such as the pedestrian in black in the first image and the white
car at the corner in the third image. The modification map of DDN is
much sparser than that of FGSM, but there are still some modifications
made in smooth areas. It can be clearly observed that the number of
HiD-PeT modifications is so small. Only a few pixels are modified.
Furthermore, there are only a few pixels in the gradient map are
highlighted, which means only a few pixels make remarkable impact on
the predictions while the modification on other pixels are insignificant.
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Based on the statistics and the visualization above, one can conclude s
Table 6
The average classification error rates of SRM on adversarial modified stego images.

Payload (bpp) Average classification error rate (𝑃𝐸 )

0.1 0.4899 (±0.0028)
0.2 0.4811 (±0.0026)
0.3 0.4806 (±0.0036)
0.4 0.4608 (±0.0045)
0.5 0.4355 (±0.0056)

Table 7
The average modification numbers and holistic security of different modification
amplitudes.

Amplitude ±1 ±2 ±4

Average 390.00 344.82 3542.71modifications
Holistic 0.2409 (±0.0041) 0.2142 (±0.0032) 0.1251 (±0.0036)security 𝑃𝐸

that the proposed HiD-PeT introduces much less distortions than the
previous works for adversarial steganography.

4.5.2. Holistic security of the adversarial enhancement
From the perspective of steganography, low 𝐿0, 𝐿2 and 𝐿∞ distor-

ions do not necessarily mean high holistic security. Since the modifi-
ation positions also influence it.

To further exhibit the holistic security of the proposed cover en-
ancement, HiD-PeT, we try to detect it using SRM+EC. In Table 6, it
s observed that the adversarial modified stego images remains unde-
ectable for the steganalyzers. The adversarial modified stego images
re predicted by the target model as stego and cover. About 50% train-
ng accuracy means the steganalyzer is not capable to differentiate the
amples. Hence, the security of HiD-PeT targeting CNN steganalyzers is
uite high, which guarantees the performance of SPS-ENH.

.5.3. The amplitude of adversarial perturbations
The terminal condition of SPS-ENH is the adversarial stego images

an deceive the target CNN steganalyzer. But, when conducting the
ollowing ablation study, changing the adversarial perturbation ampli-
udes or the calculation gradient maps in each iteration will consume
ignificantly more time. Thus, for the convenience, we change the
erminal condition of standard SPS-ENH to 𝑝(0|𝒔𝑡𝑗 ) > 𝜏′. Such modified

version of SPS-ENH is denoted as NonADV-ENH (Non-ADVersarial
ENHancement). The later discussed hyper-parameters in NonADV-ENH
are the same and play the same roles as in SPS-ENH. Without loss of
generality, we substitute SPS-ENH with NonADV-ENH to discuss the
impact of adversarial perturbation amplitude in this section and the
calculation of gradient maps in the next section.

The steganographic modifications are mostly restricted as ±1. It
motivates us to enhance the cover images with ±1. We compare the av-
erage modification numbers and holistic of NonADV-ENH with different
enhancement amplitudes. The target model and the base cost function
we adopt SRNet and S-UNIWARD. The results in Table 7 show that
the minimal amplitude ±1 is most effective and provides the optimal
holistic security.

It can be noted that larger modification amplitudes significantly
reduce the holistic security of SPS-ENH. Though ±2 spends less modifi-
cations to alter the predictions, its holistic security is much lower than
±1, even lower than the baseline (0.2315 (±0.0027)). Meanwhile, the
modification number of ±4 is almost 9 times more than that of ±1. Not
urprisingly, its holistic security is also much lower than the standard
PS-ENH and the baseline. Hence, using ±1 to enhance cover images
ould compress the modification number and improve the holistic

ecurity of adversarial stego images.
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Fig. 5. The exhibition of the original stego images (the first column), steganographic modifications (the second column), FGSM perturbations (the third column), DDN perturbations
(the fourth column), HiD-PeT modifications (the fifth column) and the gradient map (the sixth column). If a pixel is modified, it will be painted white. Otherwise, it will be in
black.
Table 8
The average modification numbers and holistic security comparison between using the
gradients of 𝒔𝑡𝑖 and 𝒔𝑖.

SPS-ENH Average modifications 390.00
Holistic security (𝑃𝐸 ) 0.2409 (±0.0041)

Ref to 𝒔𝑖
Average modifications 551.27
Holistic security (𝑃𝐸 ) 0.2283 (±0.0037)

4.5.4. The calculation of gradient maps
Different from ADS and ADV-EMB, SPS-ENH leverages the gradi-

ent maps with reference to adversarially modified stego images 𝒔𝑡𝑖.
In this section, we analyze the modifications and holistic security of
the proposed scheme and if the gradient maps is generated as 𝜼𝑖 ←
𝜕𝐿(𝑃 (𝒔𝑖 ,𝜃),𝑦true)

𝜕𝒔𝑖
. We take SRNet as the target model, S-UNIWARD as the

base cost function. The detailed statistics is shown in Table 8.
It can be observed from Table 8 that utilizing the gradients of

𝒔𝑡𝑖 produces much less perturbations to deceive the target model. As
a result, the holistic security of the proposed scheme is higher than
using the gradients of 𝒔𝑖. The reason behind the performance gap is
the steganographic modifications on the modified stego images in each
iterations are totally different. The gradients that is effective to ‘‘erase’’
the steganographic trace of the last iteration could be useless for the
new steganographic modifications. Hence, the accumulated adversarial
perturbations are often useless or even could be against the effective
directions. While the adversarial perturbations that drive the original
stego images further away from the classification hyper-plane, i.e., gain
high probabilistic outputs, could be transferable sometime for the final
steganographic modifications.

4.5.5. The terminal threshold of NonADV-ENH
The terminal threshold of NonADV-ENH is the parameter that in-

fluences the holistic security of NonADV-ENH. A higher threshold
introduces more perturbations but could potentially brings about more
transferability, which could improve the holistic security of NonADV-
ENH. Hence, in this section, we analyze the specific influence of the
terminal threshold 𝜏′ on the holistic security, which is measured by
SRM+EC. Without loss of generality, we take relative payload 0.4 bpp
and target model SRNet as an example to exhibit the influence of 𝜏′.
The results are shown in Table 9.
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Table 9
The holistic security (𝑃𝐸 ) and average modification numbers of NonADV-ENH with
different terminal thresholds 𝑡𝑎𝑢′.

Threshold 𝜏′ SRM+EC Average modifications

𝜏′ = 0.5 0.2376 (±0.0035) 48.49
𝜏′ = 0.6 0.2389 (±0.0041) 52.59
𝜏′ = 0.7 0.2404 (±0.0034) 57.68
𝜏′ = 0.8 0.2387 (±0.0039) 65.07
𝜏′ = 0.9 0.2409 (±0.0041) 78.58
𝜏′ = 0.99 0.2354 (±0.0035) 131.26

The average classification error rate fluctuates from 0.2354 to
0.2409. It peaks when 𝜏′ = 0.9. It basically increases with 𝜏′ until
𝜏′ = 0.99. Since 𝜏′ = 0.99 is quite high, the modification number
significantly increases, almost doubled than 𝜏′ = 0.9. Thus, the transfer-
ability brought by the increase of 𝜏′ is overwhelmed by the excessive
perturbations.

5. Conclusions

In this paper, we propose a novel adversarial steganography, SPS-
ENH. Through a novel sparse steganalysis-specific perturbations, we
successfully use sparse ±1 perturbations to enhance the holistic security
from the base cost function and deceive target CNN steganalyzers. Com-
pared with the state-of-the-art adversarial attack, DDN (Decoupled Di-
rection and Norm), the proposed cover enhancement method achieves
significant less distortions to deceive the target CNN steganalyzers.
SPS-ENH achieves comparable holistic security as the state-of-the-art
method, ADV-EMB, even better under the evaluation of traditional
steganalyzers. Meanwhile, the deceiving success rates of SPS-ENH are
higher than these of ADV-EMB.
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