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Deep neural networks are demonstrated to be vulnerable to adversarial examples. In this paper, starting
from the robustness analysis about the model ensemble, we propose a novel type of defense method
named ‘‘Self-Orthogonal Randomization Super-network” (SORS). More specifically, we think the main
robustness benefit from the model ensemble comes from two aspects: smaller adversarial subspace
and gradient orthogonality. However, the naive model ensemble has two fundamental limitations: 1)
Though ensembling more models will introduce more robustness, training too many models is infeasible
and resource-consuming. 2) Since these models are usually trained independently, the gradient orthog-
onality among them is often partial and weak. Motivated by this, we propose to train one single super-
network that consists of the exponential number of sub-networks, and explicitly constrain the gradient of
different sub-networks with respect to the same input to be orthogonal. In the inference stage, at each
forward pass, one sub-network will be randomly sampled. Through extensive experiments, we demon-
strate that the proposed method can achieve significantly better robustness than the vanilla single model
baseline and the naive model ensemble baseline. Moreover, this new type of defense strategy is also com-
plementary to other types of defense methods and achieves state-of-the-art performance.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Deep neural networks have revolutionized many sub-fields of
artificial intelligence and achieved significant success, such as
image recognition [21,16], neural machine translation [47], and
autonomous driving [19]. However, recent research [38,11] has
shown that deep neural networks can be easily fooled by adversar-
ial examples. By adding small perturbations to the original images,
they may be visually indistinguishable but are able to make the
target neural network get totally incorrect recognition results.
The existence of adversarial examples can pose severe security
threats for applications based on visual understanding, such as
autonomous driving [10,3] and face verification [37,12].

Recently, much attention has been drawn to study how to
defend adversarial examples. Generally, these defense methods
can be roughly categorized into four types: input transform-
based methods [7,29,24,20], adversarial training-based methods
[11,22,44], gradient mask-based methods [50,35] and model
ensemble [4,39]. The motivation of this paper is developed from
the naive model ensemble. Below let us first analyze ‘‘Why model
ensemble can be more robust?” and ‘‘What are its limitations?”.

Given an input image, model ensemble means getting the final
recognition results by considering multiple different models with
some naive or advanced voting strategies. In the analysis below,
we think the main robustness benefit from the model ensemble
comes from two aspects: smaller adversarial subspace and gradient
orthogonality. More specifically, as indicated in precedent works
[31,40,49], adversarial examples may exist in some continuous
subspace and adversarial attack is essentially finding this adversar-
ial subspace. For the model ensemble case, adversarial attack has
to find the overlapped adversarial subspace of all the models
involved. Therefore, as shown in Fig. 1, the shared adversarial sub-
space becomes much smaller if more models are ensembled. On
the other hand, we find the gradients from different models are
often partially orthogonal [28]. As shown in Fig. 2, when using
the gradient-based methods like FGSM or I-FGSM, they have to
iterate more steps to find a suitable adversarial example with such
partial orthogonal gradients.

To further verify the orthogonality observation, we conduct a
simple analysis experiment to reveal the relation between the
attack transferability and gradient orthogonality in Table 1. The
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Fig. 1. A schematic diagram of the adversarial subspace of ensemble-based model.
The shared adversarial subspace is smaller when multiple models are ensembled.

Fig. 2. Illustration of adversarial attacks that using partial orthogonal gradients are
harder than the original gradients.
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gradient orthogonality refers to that given an input image, the gra-
dients of different models with respect to it are partial orthogonal.
Specifically, we calculate the gradient orthogonality between dif-
ferent models and ResNet-152, and utilize the adversarial exam-
ples generated by ResNet-152 to attack these models. The results
confirm that a higher gradient orthogonality often leads to a lower
attack success rate.

Despite its robustness, naive model ensemble still has two lim-
itations: 1) Training too many models is resource-consuming, so
the number of models that can be ensembled is often limited. 2)
Since these models are usually trained independently, it is hard
to explicitly control the gradient orthogonality among them, thus
making the final gradient orthogonality relatively partial and weak.

To inherit the profitable properties of model ensemble while
circumventing the above limitations, this paper proposes a novel
scheme called ‘‘Self-Orthogonal Randomization Super-network”
(SORS). It aims to train one big super-network that consists of an
exponential number of sub-networks and explicitly restrict them
to being gradient-orthogonal. Specifically, we equip each layer of
SORS with m parallel operation blocks. At each forward pass in
the training and testing stages, we randomly sample one operation
block for each layer and connect them to form a specific forward
Table 1
The relationship between the attack success rate and gradient orthogonality. It shows tha

GoogLeNet VGG-16

Gradient orthogonality 0.99 0.98
Attack success rate 47% 60%

148
path, which can be regarded as a sub-network. Assuming the
super-network has a total of n layers, it can theoretically form
mn possible sub-networks. During the training stage, these sub-
networks will be sampled uniformly, and an explicit loss term is
used to constrain their gradient orthogonality.

To demonstrate the effectiveness, extensive experiments are
conducted with respect to different datasets and attack methods.
It shows that the proposed method is capable of obtaining better
robustness than both the vanilla single model baseline and model
ensemble baseline. Besides, we show this self-robust strategy is
also complementary to other types of defense methods and
achieves state-of-the-art performance.

To sum up, our main contributions are threefold as below:

� We have provided detailed analysis about the robustness of
ensemble based models and their limitations, which may
inspire researchers in this field.

� Motivated by the strengths and weaknesses of vanilla model
ensemble, we propose a novel type of defense method ‘‘Self-
Orthogonal Randomization Super-networks”. It theoretically
consists of exponential number of sub-networks whose gradi-
ents are explicitly guaranteed to be orthogonal during training.

� Experiments demonstrate that the proposed SORS can achieve
significantly better robustness than the vanilla single model
and model ensemble baseline. It can also be combined with
other types of defense methods and obtain state-the-the-art
defense performance.

The rest of the paper is organized as follows. In Section 2, we
describe the most related works to our proposed method. Then
in Section 3, we elaborate our SORS which aims to train one big
super-network and explicitly constrain each sub-network to be
gradient-orthogonal to get better robustness. To demonstrate the
effectiveness, Section 4 shows the experimental details and results
of our SORS compared with other baseline methods on MNIST,
CIFAR-10 and CIFAR-100 datasets. Next in Section 5, we conduct
extensive ablation studies to analyze our SORS and its variants
for better understanding. Finally, we draw the conclusion in
Section 6.
2. Related work

2.1. Adversarial attack

Despite the great success of deep neural networks, they can be
easily attacked by adversarial examples. For better efficiency and
effectiveness, various types of adversarial attack methods have
been proposed, which can be roughly divided into three categories:
optimization-based methods, gradient-based methods, and
generation-based methods. Optimization-based methods regard
the generation of adversarial examples as an optimization problem
and solve it by minimizing or maximizing one specific objective or
performance criteria. Classical methods include L-BFGS [38] and
C&W [6]. Compared to optimization-based methods, gradient-
based methods add perturbations iteratively by directly using the
gradients with respect to the input as guidance. Therefore they
are much faster, representative works include FGSM [11], BIM
[22], PGD [32] and MIM [9]. To further speed up the adversarial
t a higher gradient orthogonality often leads to a lower attack success rate.

ResNet-50 ResNet-101 ResNet-152

0.97 0.96 0
60% 65% 77%
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example generation process, generation-based methods
[2,36,43,15] directly train a generative model to learn how to
transform input images to adversarial examples.

2.2. Adversarial defense

Along with the rapid development of adversarial attack meth-
ods, many different types of adversarial defense methods
[7,45,29,11,22,44,50,35,33] have been proposed. For input
transform-based methods, they try to remove the adversarial dis-
turbance of an adversarial example by using pre-processing tech-
niques before feeding it into the target network. Popular
techniques include JPEG compression [7], BitSqueezing [45] and
DNN-Oriented JPEG Compression [29]. Adversarial training-based
methods [11,22,44] are more direct and improve the robustness
of the network by directly adding the adversarial examples into
the training set. Regarding the fact that gradient is the most impor-
tant clue in gradient-based attack methods, gradient mask-based
methods [50,35] construct models that have less available gradi-
ents for adversarial defense.

Model ensemble [4,39] is another widely used technique to
boost the robustness. As analyzed before, the key reason why the
model ensemble is more robust than the single model is the smal-
ler adversarial subspace and partial gradient orthogonality among
the models involved. However, the drawbacks of the ensemble-
based model exist: linearly increased resource consumption mak-
ing it harder to use too many models, and uncontrollable gradient
orthogonality among these models. Recently, RSE [27] proposed
one method that does not need to store extra models by adding
random noise layers, but it still requires explicit ensemble during
the runtime. Pang et al. [34] increases the ensemble diversity by
encouraging non-maximal predictions of each sub-network to be
mutually orthogonal in the adversarial setting. But the gradient
orthogonality we proposed is totally different with the orthogonal-
ity defined in [34]. [34] use prediction orthogonality but we use
gradient orthogonality, which is more natural and effective to
resist gradient based adversarial attack. From another perspective,
our gradient orthogonality is potentially complementary to predic-
tion orthogonality.

Recently, there have been works [13,8] that use neural network
search (NAS) to improve network robustness. [13] attempts to sys-
tematically analyze and understand the adversarial robustness of
neural networks from the perspective of neural network structure.
They searched and designed a series of robust network structures
called RobNets. Although we both have used NAS, there are several
differences between the SORS we proposed and RobNets: 1) Differ-
ent motivation. RobNets study attack-resistant network architec-
ture from an architectural perspective. The SORS we proposed is
based on the advantages of the model ensemble, taking advantage
of neural network search to ensemble these models into one model
and trained together. 2) Different network structure. RobNets’
search space is different from our SORS, and it is more difficult to
train and requires more computing resources. 3) Different calcula-
tion cost. RobNets need to generate adversarial examples during
training, which greatly increases the computational cost, while
we use gradient orthogonality to enhance robustness without
using specific types of adversarial examples. 4) Different types of
adversarial attack. RobNets focus on L1 attacks, while SORS is
effective against all common adversarial example attacks. [8] aims
to use the NAS framework to improve the network’s adversarial
robustness from an architectural perspective, and explores the
relationship among adversarial robustness, Lipschitz constant,
and architecture parameters. Although we have used neural net-
work search, the SORS we proposed and the RACL they proposed
have the following differences: 1) Different motivation. RACL ini-
tializes the network with robust architecture to further obtain
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adversarial robustness, while our proposed SORS starts from ana-
lyzing the advantages and disadvantages of the model ensemble.
2) Different constraints. RACL constructs new constraints to reduce
the Lipschitz constant to further improve robustness. SORS
improves robustness by constraining gradient orthogonality. 3)
Different calculation cost. RACL, like RobNets, needs to use adver-
sarial training, which greatly increases the computational cost. And
we use gradient orthogonality to enhance robustness, without
using specific types of adversarial examples.

In contrast, though our method utilizes one single large super-
network to cover an exponential number of sub-networks, it only
samples one specific sub-network randomly at each forward pass.
More importantly, our method is complementary to most afore-
mentioned defense methods.
2.3. Dynamic neural networks

Our super-network is partially inspired by the dynamic neural
network. In [26], Liu et al. propose to learn a gating module to drop
some network blocks adaptively. Lin et al. [25] propose a runtime
neural pruning (RNP) framework which can be dynamically pruned
at runtime. Yu et al. [46] propose a Slimmable-Net which can
dynamically adjust the network width at runtime based on accu-
racy and speed to achieve a balance between performance and effi-
ciency across different devices. Super-network has also been
widely used in neural architecture search [41,14,5].

Different from the above, we studies the super-network from
the adversarial robustness perspective and explicitly incorporates
a gradient orthogonality constraint among different sub-networks.
3. Self-orthogonal randomization super-network

3.1. Motivation

As analyzed before, ensemble-based models can significantly
boost the robustness against adversarial attacks based on the fol-
lowing two observations: 1) The shared adversarial subspace of
multiple models is much smaller than that of one single model,
hence it is more difficult for existing attack methods to find a suit-
able adversarial example that can fool all the models involved. 2)
Given an input image, the gradients of different models with
respect to it are partial orthogonal. Therefore, when using
gradient-based adversarial attack methods to attack it, more itera-
tion steps are needed.

Intuitively, if we can involve more models and guarantee that
the gradients of these models are orthogonal as much as possible,
the defense robustness will be significantly boosted. However, the
resource (storage and computation) consumption will be linearly
increased if more models are used. Moreover, in modern machine
learning systems, it is still difficult to explicitly guarantee the gra-
dients of many independent models to be orthogonal during the
training time. This is because, due to the memory and GPU number
limit, these models are often trained across different machines and
synchronizing across different machines often needs very complex
system optimization and infrastructure.

In this paper, we take a step further and think about the ques-
tion ‘‘Whether these models can be ensembled into one model and
trained together?” In fact, to accelerate the searching process of
neural architecture search (NAS), there is one single-path based
NAS method [14]. In this method, given a macro network structure,
in order to search for an optimal operator for each layer, they add
all the possible operators into each layer in parallel, and train the
big super-network as a whole by uniform sampling.

Inspired by [14], we propose a novel framework called ‘‘Self-
Orthogonal Randomization Super-network” (SORS). Basically, it
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follows the idea in [14] and build a special type of super-network
that has multiple operators for each layer. During the training and
inference stage, at each forward pass, one operator will be ran-
domly selected for each layer, and all the selected operators will
form one sub-network. Assuming that the total layer number is n
and m different operators exist for each layer, SORS can be decom-
posed into mn models considering all possibility. But actually, the
total model size is only m times bigger. Moreover, since only one
sub-network will be sampled and used at the forward pass, the
memory consumption and computation cost are both identical to
the single sub-network during runtime. Another advantage is that
all these sub-networks can be jointly trained and constrained with
the gradient orthogonality because they share a common weight
space.

It’s worth noting that although we are inspired by [14], the goal
of [14] is to search a good-performance network among different
candidate operators. It has no gradient orthogonality constraint
among sub-networks during training and no randomness during
inference, therefore it cannot defend against adversarial attack at
all.

3.2. Self-orthogonal randomization super-network

The overall framework of SORS is depicted in Fig. 3. Generally,
SORS is often built based on one specific macro network structure,
such as ResNet-18 and ResNet-34. This macro network structure
defines the overall network information, including the total layer
number n and some operator-specific parameters like channel
number, kernel size, and stride. Then for each layer i, we will
choose multiple suitable operator blocks to form an operator set

OPi:

OPi ¼ fopi
1; op

i
2; . . . ; op

i
mg: ð1Þ

Here m is the total number of operator blocks involved and can
be different for different layers. For each operator opi

k, it may be
identical or different from each other. Theoretically, opi

k can be
any type of operator once it can guarantee its output has the cor-
rect shape. But to achieve better recognition results, we often use
some popular operators like standard convolutional layer and
advanced blocks such as residual block [16] and shuffle block
[48,30].

Unlike vanilla deep neural networks, each forward pass will not
activate all the operators contained in SORS. Instead, only one
operator will be activated for each layer. Therefore, each forward
pass can be actually defined as a path P:
P ¼ fid1; id2; . . . ; idng; ð2Þ
where idi indicates the selected operator index. By sequentially con-
necting the operators along this path, a sub-network NP can be
defined:
Fig. 3. The overall framework of SORS. For each layer of SORS, it consists of multiple po
network can be built. Considering all the possibilities, an exponential number of sub-ne
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NP ¼ ðop1
id1
; op2

id2
; . . . ; opL

idn Þ: ð3Þ
As mentioned before, if all the layers have m operators, there

are mn possible sub-networks in total. And to make sure all these
sub-networks can learn good enough recognition capacity, each
operator will be uniformly sampled during the training stage.

Normalization Layer. In modern deep neural networks, the batch
normalization (BN) layer plays a key role in stabilizing the training
for better performance. However, using BN is not that easy in
super-network, because it uses different mean and variance statis-
tics for feature normalization in the training and testing stage. In
detail, during training, it uses the mean and variance calculated
by the batch statistics of that training iteration. But for testing, it
instead uses the moving average of mean and variance statistics
along the whole training process. Theoretically, each operator opi

k

in SORS is included in mn�1 different sub-networks and the feature
statistics of different sub-network may be significantly different, so
the moving average of BN statistics within each operator will be
meaningless.

To address this issue, existing NAS methods re-calculate the BN
statistics for each sub-network on a subset of training images
before testing or use a private BN for each operator in each sub-
network. However, the former method is very time-consuming
and the latter method is infeasible because of the exponential
sub-network number. In this paper, we propose to replace all the
BN layer with group normalization (GN) layer [42]. Compared to
BN, GN can achieve comparable recognition performance but nor-
malizes the features based on the mean and variance statistics of
the test image itself. Therefore, its behavior is consistent during
training and testing.
3.3. Objective loss function

To train the SORS, our objective loss function L consists of two
parts: the normal recognition loss Lrec that ensures each sub-
network can achieve great recognition performance by itself and
self-orthogonal loss Lort that constrains the gradients of different
sub-networks to be orthogonal as much as possible:

L ¼
X
i

LrecðN i
pÞ þ k �

X
i;j

LortðN i
p;N j

pÞ: ð4Þ

Here k is the weight to balance the importance of these two

terms, and N i
p;N j

p denote any possible sub-network. By default,
we directly adopt cross entropy loss for different sub-network:

LrecðN i
pÞ ¼

XC
k

� yk � logðN i
pðxÞÞ; ð5Þ

where x is the input image and y is its ground truth label. And yk is 1
if k ¼ y else 0. To calculate Lort , we will calculate the gradient of Lrec
ssible parallel operators. By randomly sampling one operator for each layer, a sub-
tworks can be obtained within such a single super-network.
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with respect to the input x for each sub-network then constrain the
gradients of any two networks are orthogonal for the same x.

GxðN i
pÞ ¼

@LrecðN i
pÞ

@x ;

LortðN i
p;N j

pÞ ¼
GxðN i

pÞ
kGxðN i

pÞk2
� GxðN j

pÞ
kGxðN j

pÞk2

� �2

:
ð6Þ

Here we normalize the gradient GxðN i
pÞ;GxðN j

pÞ before calculat-
ing their dot product. In fact, the dot product of two normalized
gradients is just the cosine similarity between them. And the smal-
ler cosine similarity also represents stronger orthogonality. As
mentioned in the Introduction part, we want the gradient of two
different sub-networks to be orthogonal, i.e, the cosine angle is
90 degree or the cosine similarity is 0. Using square of cosine sim-
ilarity, [0,1], makes sure the minimal loss value will be achieved
when orthogonal.
3.4. Training strategy

The training strategy of SORS is similar to training regular net-
works. But like other super-networks [14,5], SORS is generally
harder to train because all the sub-networks need to have good
performance. Therefore we also adopt some advanced training
strategies in [5]. In detail, we use three times epoch number than
the regular sub-network training. Moreover, we leverage the com-
mon teacher-student training strategy [17] to improve the recogni-
tion performance, i.e., add an extra loss term by using the soft label
predicted by the teacher model as the ground truth of the student
model. Therefore, the final loss function is the combination of L in
Eq. (4) and this extra loss term Lsoft:

Ltotal ¼ Lþ Lsoft; ð7Þ

where Lsoft adopts the same formulation as Lrec , but yk becomes the
soft logistic value of k-th class predicted by the teacher model. In all
the following experiments, the default teacher model is a pretrained
ResNet-18 for each dataset and the student model is just our target
model SORS.
Fig. 4. LeNet vs SORS-LeNet. Left:
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4. Experiment

Datasets. Due to limited computation resource, we use the pop-
ular MNIST, CIFAR-10 and CIFAR-100 datasets to conduct compar-
ison experiments with other defense methods. The training set of
MNIST contains 60,000 images, while CIFAR-10 and CIFAR-100
contain 50,000 images. All the datasets have 10,000 images for
testing.

Details of network architectures. For MNIST, we use LeNet-5
as the baseline model. As depicted in Fig. 4, the depth of SORS is
set exactly the same as LeNet-5 and four parallel operators are
added in each layer, whose kernel sizes remain unchanged as that
in LeNet-5.

For CIFAR-10 and CIFAR-100, ResNet-18 is used as the baseline
model. As shown in Fig. 5, similar to the setting on MNIST, the sin-
gle convolutional layer in the residual block of ResNet-18 is
replaced with several paralleled convolutional operators. For the
first convolutional layer of the residual block, four convolutional
operators with unchanged kernel size are provided for random
selection. For the second convolutional layer, the number of alter-
native convolutional operators reduces to three, and the kernel
sizes are 3, 5, 7 respectively. Moreover, in our SORS residual block,
we replace the batch normalization layer after each convolutional
layer in the original residual block with group normalization layer.

Training Details. In our experiments, for MNIST, the models
were trained using SGD optimizer with default settings in Pytorch.
The learning rate is set to 0.01. For CIFAR-10 and CIFAR-100, in
details, the models are trained using SGD optimizer with momen-
tum of 0.9, and weight decay is set to be 0.0001. The learning rate
is set to start at 0.1, then is divided by 10 at the 150th and 200th
epochs.

Evaluation metric. We adopt a series of adversarial attack
methods for evaluating the adversarial defense performance of
our method, including gradient-based methods and optimization-
based methods. For gradient-based methods, we adopt FGSM,
PGD and MIM under the L1 norm constraint. For MIM, we follow
the setting in [9], the attack iteration number T is 10 and the step
size is �=T , where � is the perturbation threshold. For PGD, we fol-
low the setting in [32], the attack iteration number T is 7 and the
LeNet-5. Right: SORS-LeNet.



Fig. 5. Residual Block vs SORS Residual Block. Left: Residual Block. Right: SORS Residual Block.
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step size is �=4. For optimization-based methods, we use C&W
under the L2 norm constraint. The confidence c of C&W is 0 and
the iteration number is 10000 for the MNIST dataset, the confi-
dence c is 0 and the iteration number is 100 for the CIFAR-10 data-
set, and the confidence c is 1 and the iteration number is 100 for
CIFAR-100 dataset. By default, we adopt the classification accuracy
as the evaluation metric in all following experiments.
4.1. Robustness evaluation on white-box attacks

We first evaluate the robustness of our SORS under the white-
box attack setting, where the network structure and weights are
fully exposed to the attackers. But under the common definition
mentioned in [1], for white-box attack, attackers cannot change
the underlying working principle. In other words, we will still keep
the randomness during the sub-network sampling process.

Defence on MNIST. As described above, we use the macro net-
work structure of LeNet-5 [23] to build our target SORS model for
MNIST. And the operator set is just built by repeating the operator
in each layer four times. Here we compare our method with three
simple baselines, i.e., the vanilla single model baseline (LeNet-5)
and two naive model ensemble baselines (LeNet-5�2, LeNet-
5�4). For each independent LeNet-5 involved for ensemble, differ-
ent initialization is used for training. As shown in Tables 2–4, RS
represents one variant of SORS without the gradient orthogonality
constraint during the training stage. RS* represents ensembling
two randomly selected sub-networks from RS at every turn. RS
and RS* are the randomization super-network baseline. SORS* rep-
Table 2
Classification accuracy (%) of both clean images and adversarial examples generated by dif
and MIM, we show the results with four different threshold � = 25, 50, 75 and 100.

Clean FGSM

LeNet-5 99.0 85.2/53.0/27.4/14.7
LeNet-5�2 99.1 88.2/62.0/36.8/20.5
LeNet-5�4 99.2 92.7/61.5/22.8/8.9

RS 98.9 88.1/63.3/41.0/26.0
RS* 99.0 84.3/56.6/34.8/22.5
SORS 96.7 94.4/86.3/70.4/48.6
SORS* 97.4 95.3/87.2/70.5/46.2
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resents ensembling two randomly selected sub-networks from
SORS.

As shown in Table 2, our SORS outperforms all the baselines by
a large margin for different adversarial attack methods. For exam-
ple, when threshold � ¼ 75, the accuracy of LeNet-5 is only 1:0%
under PGD attack. Even when four LeNet-5 models are ensembled,
the accuracy is still only 1:4%. Yet our SORS is 38:2%, which is
nearly thirty times higher. For the classification accuracy on the
clean data, though the accuracy of our SORS slightly degrades to
96.7%, it is still acceptable and on par with the baseline LeNet-5.
In our understanding, the slight performance decrease mainly
comes from the aforementioned training difficulty and the extra
gradient orthogonality constraint.

Defence on CIFAR-10 and CIFAR-100. Similar to the above
MNIST setting, three different baselines are considered: single
ResNet-18, model ensemble with ResNet-18 and ResNet-34 and
model ensemble with four ResNet-18 models. We also conduct
comparative experiments with RSE [27] with the default settings.

In Tables 3 and 4, we show the comparison results on the
CIFAR-10 and CIFAR-100 datasets respectively. Similar to the
results on MNIST, the performance of our SORS will be slightly
worse than the baseline methods on the clean data. But for adver-
sarial examples, the classification accuracy of our SORS surpasses
the baseline methods by about 30% � 50%. Compared to RSE, our
SORS is much more robust on both the CIFAR-10 and CIFAR-100
datasets. In addition, RSE needs explicit model ensemble as naive
ensemble method, their computation cost is linearly proportional
to the number of model ensembled. In contrast, our SORS only
needs one single sub-network during inference and is much more
ferent attack methods on the MNIST dataset under white-box setting. For FGSM, PGD

PGD MIM C&W

69.9/10.1/1.0/0.4 78.2/27.1/5.3/1.4 0
81.7/23.9/2.5/0.5 84.8/38.8/9.7/2.2 35.0
84.8/26.7/1.4/0.0 90.0/45.0/8.9/1.1 49.6
75.6/18.2/2.3/0.3 80.4/37.3/13.0/4.0 87.1
89.5/46.6/13.7/3.1 77.3/27.8/8.0/2.3 90.9
92.4/73.8/38.2/13.2 90.1/69.8/36.4/13.5 96.1
93.1/70.8/28.2/7.3 91.5/68.1/30.6/8.4 93.5



Table 3
Classification accuracy (%) of both clean images and adversarial examples generated by different attack methods on the CIFAR-10 dataset under white-box setting. For FGSM, PGD
and MIM, we show the results with four different threshold � = 1, 2, 4 and 8.

Clean FGSM PGD MIM C&W

ResNet-18 93.8 66.3/48.7/34.5/25.2 49.9/17.5/1.5/0.0 55.8/26.6/6.3/0.4 0
ResNet-18 + ResNet-34 94.8 76.7/60.8/45.4/32.8 60.6/25.6/4.2/0.1 67.3/35.4/9.3/0.7 33.0

ResNet-18�4 95.1 84.1/66.4/45.1/29.6 64.5/32.8/5.9/0.1 77.4/48.5/15.7/1.4 45.0
RSE 89.5 67.7/40.1/19.1/10.0 60.8/22.3/2.4/0.1 63.7/29.0/5.6/0.5 75.0
RS 92.6 77.1/60.2/44.4/33.0 59.1/23.4/2.9/0.0 63.3/33.4/9.9/1.3 77.9
RS* 93.1 74.2/55.9/38.8/27.2 62.4/26.7/4.1/0 61.6/29.8/7.2/5.4 76.6
SORS 91.3 90.1/83.8/72.5/55.8 86.9/71.7/41.5/9.4 83.1/67.4/40.2/12.6 79.9
SORS* 92.5 91.0/83.7/70.9/53.7 86.4/68.6/22.6/5.4 82.3/64.4/33.5/8.3 75.8

Table 4
Classification accuracy (%) of both clean images and adversarial examples generated by different attack methods on the CIFAR-100 dataset under white-box setting. For FGSM,
PGD and MIM, we show the results with four different threshold � = 1, 2, 4 and 8.

Clean FGSM PGD MIM C&W

ResNet-18 71.6 47.4/29.7/18.2/12.1 31.4/8.4/1.1/0.0 36.2/13.1/2.9/0.3 0
ResNet-18 + ResNet-34 75.21 62.7/46.1/30.6/18.3 44.9/48.7/3.6/0.3 52.4/26.7/7.7/1.1 3.0

ResNet-18�4 72.34 64.2/49.9/33.1/18.3 49.1/22.2/5.7/0.6 56.0/32.5/11.8/2.1 0.1
RSE 65.6 40.4/20.8/11.42/7.9 30.2/6.2/0.7/0.1 33.9/10.1/1.7/0.29 0.0
RS 69.17 58.7/42.2/27.5/17.4 46.1/17.4/2.8/0.2 42.8/17.8/4.0/0.3 67.0
RS* 70.68 56.1/37.7/23.7/15.4 41.7/13.5/1.8/0.0 40.1/15.5/3.0/0.2 29.1
SORS 69.0 79.0/69.0/55.3/40.7 71.6/50.2/23.5/5.3 65.2/44.3/22.6/6.8 71.4
SORS* 70.3 79.6/68.1/53.0/36.0 67.6/44.6/17.4/2.9 62.1/39.8/16.9/4.5 46.2
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efficient. Last but not least, our method is theoretically comple-
mentary to RSE, i.e., we can train multiple super-networks and
use super-network level ensemble to get better results.

Taking all the above results into consideration, we can draw the
conclusion that, though the naive model ensemble can boost the
robustness of the single model baseline, the performance gain from
our SORS is far more significant with the same amount of parame-
ters. We need to emphasize that, though our target SORS model is
built with existing networks by simply repeating their operators in
the above experiments, it is a general idea and supports combina-
tion of not only standard convolutional layer, but also different
types of blocks, such as shuffle block [30] and mobilenet block [18].

4.2. Robustness evaluation on black-box attacks

For black-box setting, we generate adversarial examples with
the ResNet-101 model then attack methods with other network
structures listed in Table 5. Similar to the results on white-box
attack, our SORS outperforms almost all the baselines by a large
margin for different adversarial attack methods when resisting
the black-box adversarial attack especially for large �.

4.3. Resources consumption analysis

For fair resource consumption analysis, we assume that our
SORS model has m parallel operators at each layer and the model
ensemble baseline also containsm independent models. Under this
setting, our SORS has the same model size as the ensemble base-
line. Regarding the training time, since each model is indepen-
Table 5
Classification accuracy (%) of adversarial examples generated by different attack methods o
results with four different threshold � = 1, 2, 4 and 8.

FGSM

ResNet-18 91.4/83.7/72.7/57.2
ResNet-18 + ResNet-34 91.6/82.7/68.5/52.6

ResNet-18�4 92.9/86.8/75.2/59.5
RS 91.4/84.1/71.3/55.1

SORS 92.6/86.7/77.1/62.3
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dently trained in the ensemble baseline, the total training time is
m times longer than the single model. But empirically, we find
SORS needs less than m�epochs to converge. Therefore, the train-
ing computation cost of SORS is smaller or at least comparable to
the ensemble baseline. However, at each forward pass in the infer-
ence stage, our SORS will only activate one sub-network, so its
memory consumption and computation cost are identical to the
single model. In contrast, the naive model ensemble baseline is
more expensive because the same input needs to be fed into m dif-
ferent models.
5. Ablation study

In this part, we will first conduct extensive ablation studies to
analyze the underlying working principles of SORS and its variants.
Then we demonstrate it is complementary to other types of adver-
sarial defense methods.

Importance of randomization and gradient orthogonality. As
analyzed in the introduction and motivation part, the robustness of
our method benefits from two aspects: the randomization super-
network consisting of an exponential number of sub-networks
and the gradient orthogonality constraint among these sub-
networks. To study these two components independently, we fur-
ther train another variant (RS) without the gradient orthogonality
constraint during the training stage. Its classification results are
also given in Tables 2–4. It can be seen that, compared to the single
model baseline, only using the randomization super-network can
already significantly boost the robustness against adversarial
n the CIFAR-10 dataset under black-box setting. For FGSM, PGD and MIM, we show the

PGD MIM

90.2/80.9/64.7/41.9 89.8/78.6/57.3/31.3
90.2/75.5/50.5/23.7 89.7/72.6/42.4/16.0
91.6/82.7/65.0/41.9 91.3/80.4/57.4/30.4
90.1/79.6/63.3/41.2 90.1/77.2/56.2/32.0
91.7/86.4/77.1/62.9 91.4/84.2/70.3/48.9



Table 6
Relation between operator number and model classification accuracy on the MNIST
dataset. We show the results with four different threshold � = 25, 50, 75 and 100.
Higher accuracy indicates better robustness. In most cases, when the operator
number is 4, the best results can be achieved.

Operator
number

FGSM PGD MIM

2 88.4/78.1/60.7/41.3 85.3/57.1/21.9/6.5 82.9/53.5/21.2/7.1
3 94.9/86.1/70.3/53.1 84.6/62.5/29.5/9.4 90.0/64.1/32.8/16.2
4 94.4/86.3/70.4/48.6 92.4/73.8/38.2/13.2 90.1/69.8/36.4/13.5
5 89.4/68.6/39.3/20.6 86.0/44.7/8.8/1.0 82.2/35.4/6.9/1.4
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attacks, and adding the gradient orthogonality constraint can pro-
mote robustness even more.

Furthermore, in order to verify whether the gradient orthogo-
nality among different sub-networks is explicitly boosted by add-
ing the self-orthogonal loss, we randomly sample some sub-
networks from RS and SORS and plot the gradient angle between
any two of them in Fig. 6 by using a small adversarial example
set. It can be easily observed that SORS obtains better gradient
orthogonality than RS. For the naive model ensemble baseline,
we find that their gradient orthogonality is pretty low, which
means all the involved models have very similar behavior even
though different initialization is used. By taking all the points into
consideration, the average gradient orthogonality of RS and SORS is
0.771 and 0.985 respectively.

Ensemble sub-networks of SORS. As demonstrated in Tables
2–4, the robustness of model ensemble is stronger than that of
one single model. Since our SORS can be decomposed into an expo-
nential number of sub-networks, it can be regarded as a special
type of model ensemble. But during runtime, only one sub-
network will be sampled and tested. So we are curious about
whether ensembling the classification results of multiple sub-
networks can bring extra robustness. To answer this question, we
conduct one experiment by ensembling two randomly selected
sub-networks at every turn, and also put its results in Tables 2–4
(marked as ‘‘SORS*”). Interestingly, we find SORS is even slightly
better than SORS* in most cases. In our understanding, it is because
using more sub-networks at each forward pass will leak more
model information and gradient direction to the attackers. A simi-
lar conclusion can also be drawn in the randomization super-
network baseline (RS and RS*).

Different number of operators. By default, in this paper, we
use four different operators for each layer. In the extreme case,
when the operator number decreases to one, SORS will degrade
into the single model baseline. In this experiment, we will study
the relationship between the defense robustness and the number
of parallel operators used. In details, we try the operator number
to be 2;3;4;5 respectively and compare their robustness, and the
Fig. 6. The scatter plot of the gradient angle on the unit circle. The x axis represents the gr
the angle of the gradient between any two randomly sampled sub-networks. For better v
circle (different values) indeed represent different gradient angles. Note that [0, 1]
orthogonality.
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results are shown in Table 6. It can be seen that when the parallel
operator number increases from 2 to 4, the classification accuracy
also increases. However, when the operator number becomes 5,
the classification accuracy degrades a lot. It is because the training
difficulty will significantly increase if too many operators are used
in the super-network.

Classification accuracy vs weight of self-orthogonal loss k. In
Eq. (4), k is used to control the strength of the gradient orthogonal-
ity among different sub-networks. By default, we set k as 10 in our
implementation. In this experiment, we want to study the influ-
ence of k on the final classification accuracy for both clean images
and adversarial examples. Intuitively, if k is too small, SORS will
degrade to RS and get worse gradient orthogonality and robust-
ness. However, if k is too large, the training difficulty will be much
higher and incur worse recognition results on clean images
because the constraint among different sub-networks is too strict.
In Fig. 7, we have shown the classification accuracy of different k
on the clean images and adversarial examples. It can be seen that,
as k increases, the classification accuracy on the clean images
decreases. But for the adversarial examples, it first increases then
decreases, which indicates the robustness gain is smaller than
the classification ability loss if k is too large. By contrast, when set-
ting k as 10, it can achieve good classification results on both clean
images and adversarial examples.
adient angle of two random sub-networks with range [�1, 1] and the point indicates
isualization, we plot each data point on the unit circle and different positions on the
of y axis represents [0, 90] degrees. Obviously, our SORS has the best gradient



Fig. 7. The relationship between classification accuracy and the self-orthogonal loss
weight k. For clean images, larger self-orthogonal loss weight will incur worse
classification accuracy. But for adversarial examples, the classification accuracy first
increases then decreases.

Table 9
Classification accuracy (%) of adversarial examples on the MNIST dataset under
adaptive attack. We show the results with four different threshold � = 25, 50, 75 and
100. Higher accuracy indicates better robustness. It’s easy to find out that gradient
ensemble attack cannot destroy the robustness of SORS.

Ensemble PGD

2 86.35/68.61/22.60/5.44
3 84.52/64.90/30.0/3.81
4 83.59/62.83/27.18/2.93
5 83.10/61.17/25.31/2.11
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Complementary to other adversarial defense methods. As
introduced before, many different types of adversarial defense
methods have been proposed in recent years, such as input
transform-based and adversarial training-based. Since the pro-
posed SORS is designed from the network structure design per-
spective, it can be regarded as one special type of self-robust
network and complementary to other types of defense methods.
To demonstrate it, we combine the proposed SORS in conjunction
with four input transform-based adversarial defense methods,
including MedianSmoothing [45], BitSqueezing [45], JPEG com-
pression [7], and DNN-oriented JPEG [29]. Before feeding the
adversarial examples into the final image recognition network,
they will be first processed by these transform methods. It can
be seen from Table 7 that the classification accuracy can still be
significantly boosted upon these transform-based defense
methods.

Robustness vs model parameters. In Table 8, we compare the
robustness of our SORS onMNIST dataset with the model ensemble
baseline LeNet-5�4, which has the same amount of parameters.
But obviously, our SORS has much better robustness. Moreover,
we compare our method to one bigger single model (VGG). Though
VGG has more parameters than our LeNet-5 based SORS, its robust-
ness is far behind us. Therefore, the robustness improvement of our
Table 7
Gray-box classification accuracy (%) of adversarial examples generated by different attack
based defense methods. Here we show the results with four different thresholds � ¼ 1;2;
significant extra robustness.

FGSM

MS 85.3/74.5/57.9/40.0
MS + SORS 88.6/85.5/77.7/62.9

BitS 70.7/51.1/35.2/25.6
BitS + SORS 89.9/84.0/72.8/55.7

JPEG 80.9/77.5/70.0/54.8
JPEG + SORS 82.1/80.2/76.9/69.5

DO-JPEG 82.7/77.7/67.1/43.6
DO-JPEG + SORS 83.3/81.7/77.0/66.5

Table 8
Classification accuracy (%) of adversarial examples generated by different attack methods o
results with four different threshold � = 25, 50, 75 and 100. Obviously, the robustness impr

Parameters FGSM

VGG 165.76M 77.7/39.6/19.1/11.2
LeNet-5�4 0.177 M 92.7/61.5/22.8/8.9

SORS 0.177M 94.4/86.3/70.4/48.6
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SORS does not attribute to the introduction of more model
parameters.

Robustness evaluation on adaptive attack. Adaptive attack
assumes that the attacker knows the working mechanism of SORS,
and then proposes adaptive attack methods to attack it. In this
experiment, we design a simple gradient ensemble adaptive attack
for SORS, which uses the ensemble gradient of multiple sub-
networks instead of a single sub-network for attacking. In details,
we consider the number of ensembled sub-networks as 2,3,4,5
respectively and compare the robustness of SORS against such
attacks. It can be seen from Table 9 that, when the ensemble
sub-network number increases from 2 to 5, the classification accu-
racy decreases, which shows more gradient leak will hurt the
robustness. However, considering the accuracy decline is relatively
small and computational complexity increases much in such adap-
tive attacks, the robustness of our SORS is still pretty satisfactory.

Influence of teacher-student training strategy. As mentioned
before, in order to improve the recognition performance of sub-
networks on clean images, we adopt the common teacher-
student training strategy. To verify how much robustness is from
teacher-student learning, we also use teacher-student learning
on baseline methods ‘‘ResNet-18” and ‘‘ResNet-18�4” (marked
with ‘‘*”). As shown in Table 10, the teacher-student learning itself
does not improve the baseline models’ robustness. In other words,
the robustness of SORS is from the underlying working principle
but not training strategy.

Convergence analysis. Though our SORS is more difficult to
train than the single model baseline, we find it can converge very
well in all the cases we tried. Based on some other super-
methods on CIFAR-10 dataset by combining SORS with four existing input transform-
4;8. Obviously, our SORS is complementary to these defense methods and can bring

PGD MIM

84.5/72.5/53.1/28.9 84.0/68.4/39.9/11.3
88.4/82.3/67.1/33.9 87.3/79.9/61.4/30.5

60.9/23.7/2.0/0.0 64.0/31.9/7.3/0.5
87.8/75.6/45.2/10.6 85.8/70.3/42.6/13.7

82.2/78.4/72.4/61.5 81.4/78.1/69.6/47.8
83.1/80.5/74.5/60.4 81.6/78.8/72.7/55.5

80.8/77.9/72.6/63.3 83.1/78.4/66.5/27.8
81.7/79.7/74.1/61.7 82.7/80.1/71.5/49.7

n the MNIST dataset and model parameter size. For FGSM, PGD and MIM, we show the
ovement of our SORS does not attribute to the introducing of more model parameters.

PGD MIM

62.2/48.5/0.4/0 70.0/17.8/6.9/4.7
84.8/26.7/1.4/0.0 90.0/45.0/8.9/1.1

92.4/73.8/38.2/13.2 90.1/69.8/36.4/13.5



Table 10
Classification accuracy (%) of adversarial examples on the CIFAR-10 dataset. We show
the results with four different threshold � = 1, 2, 4 and 8. ‘‘*” denotes the model
trained with teacher-student learning.

PGD

ResNet-18* 46.3/14.3/0.0/0
ResNet-18�4* 64.6/32.6/5.8/0.1
SORS 86.9/71.7/41.5/9.4

Fig. 8. The convergence curve of the training and validation loss. It shows that with
four operators at each layer, our SORS can converge at about 250 epochs.
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network results reported in [5,14], we think satisfactory results are
always achievable by following proper training strategy as [5,14].
In Fig. 8, we show the convergence curve of the SORS built upon
ResNet-18 for the CIFAR-10 dataset. It can be observed that our
SORS converges at about 250 epochs.
6. Conclusion and discussion

In this paper, we first analyze the superior robustness of the
model ensemble compared to the single model baseline and
observe two crucial points: 1) The shared adversarial subspace of
multiple models is much smaller than that of one single model.
2) The gradient orthogonality among different models will make
the adversarial attack more difficult. Based on these two observa-
tions, we then propose a new type of defense method named SORS,
which can be seen as a special type of self-robust recognition net-
work design scheme. It trains one single super-network that can be
decomposed into an exponential number of sub-networks. And
because these sub-networks share the same weight space, it is easy
to explicitly constrain the gradient orthogonality among them. In
the inference stage, one sub-network will be randomly sampled
at each forward pass. Experiments demonstrate that the proposed
method can achieve better robustness than the single model and
naive model ensemble baseline. Moreover, it is also complemen-
tary to other types of defense methods and further boosts their
robustness. However, some limitations need to be addressed in
the future. For example, we need to find more advanced training
strategies to achieve the comparable recognition performance as
the single model baseline on the clean data.
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