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Abstract. Scale variation has always been one of the most challeng-
ing problems for crowd counting. By using multi-column convolutions
with different receptive fields to deal with different scales in the scene,
the multi-column convolutional networks have achieved good perfor-
mance. However, there is still great potential waiting to be explored
for multi-column convolutional networks. To this end, we propose to
design a multi-column neural network that can more effectively adapt
to scene scale variations automatically, by applying Neural Architecture
Search technology. First, we combine Progressive Neural Architecture
Search scheme with crowd counting to construct our Progressive Multi-
column Architecture Serach (PMAS) framework. Furthermore, to reduce
the bias caused by the weight-share scheme, which is widely adopted in
efficient Neural Architecture Search, we propose a novel pre-architecture-
based weight-share scheme. Experiments on several challenging datasets
demonstrate the effectiveness of our method.

Keywords: Crowd counting · Neural architecture search ·
Multi-column convolutional network

1 Introduction

Crowd counting is one of the most important tasks of crowd scene understanding
and has attracted the interest of many researchers due to its practical applica-
tions, such as traffic monitoring, crowd flows analysis and other public safety
field. One of the most challenging difficulties of crowd counting is the extreme
variations in the size of people in the scene, as shown in Fig. 1. To obtain
multi-scale features that encode different scale information, previous works [1–3]
attempt to design their network as a multi-column form. However, [4–6] pointed
out that different columns of these architectures tend to generate similar fea-
tures, which contraries to the intention of the multi-column architecture design.
In other words, there are huge redundant parameters among columns. To solve
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Fig. 1. Examples from ShanghaiTech Part A dataset [1]. The extreme scale variation
caused by perspective distortion is one of the most challenging difficulties for crowd
counting.

this problem, McML [4] proposed a novel training strategy, which uses an auxil-
iary network to estimate the mutual information among columns. The estimated
mutual information measures the correlation between features learned by differ-
ent columns, so the learning target is to minimize counting errors and mutual
information between columns, which achieved by an iterative and mutual learn-
ing scheme. But what if we improve the multi-column architecture from the
architecture itself? In other words, we want to design a multi-column architec-
ture that can learn richer multi-scale features easier and each column can learn
the real characteristics of scenes of different scales. And with the development of
Neural Architecture Search (NAS) [8–10,18,19], we can design the ideal network
in an automatic and learnable way.

In this paper, we develop a novel Progressive Multi-column Architecture
Search (PMAS) framework. First, we develop a Progressive Multi-column Archi-
tecture Search framework with a novel multi-column search space and multi-
target search scheme. Furthermore, inspired by previous works [9,10,13–16], we
propose a novel weight-share strategy, pre-architecture-based weight-share. The
proposed strategy can improve the search result without increasing the cost of
the search process. The proposed framework is illustrated in Fig. 2.

The main contributions of this paper include:

1. A novel, NAS-based framework to improve the multi-column architecture
performance in crowd counting.

2. A novel weight-share strategy that achieves better search result than previous
weight-share strategy.

2 Related Work

2.1 Density Map Estimation-Based Crowd Counting

There are mainly three types of approaches in previous literature on crowd count-
ing: detection-based methods [21,22], regression-based methods [23,24] and den-
sity map estimation-based methods [1–6,12,17]. In recent years, density map
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estimation-based methods are dominant in related research, a lot of novel meth-
ods are proposed: MCNN [1] proposed to learn multi-scale features by multi-
column network for the first time. But CSRNet [5] criticized that the multi-
column architecture in MCNN cannot effectively learn different feature repre-
sentations for different scale, and then designed a deeper single-column network.
McML [4] turned back to multi-column architecture again, they started with the
discovery that there are lots of redundancy in the learned parameters in different
columns of the multi-column architecture, and proposed mutual learning scheme
assisted by a mutual information estimation network to reduce the redundancy.

Our work is inspired by McML [4], but we focus on the multi-column archi-
tecture itself.

2.2 Neural Architecture Search

In the past, because it would cost hundreds or thousands of GPU hours [13,18,19],
the research and application of NAS progressed slowly. But since ENAS [12]
adopted the weight-share scheme, such efficient NAS [9,10] only needs to cost a few
GPU hours to complete the search, which brings great convenience. With the rapid
development of efficient NAS technology, the application of NAS has expanded
from classification to other fields of deep learning. When talking about the design
and application of a NAS algorithm, three points are mainly considered:

Search Space. Existing methods can be categorized into searching the macro
space [13,19], which performs a global search and the search result is just the net-
work itself, the micro space [8–10], which presets the network to be constructed by
several cells, typically regular-cell and reduction-cell, and the search is performed
on the cell. The search space of our framework belongs to the macro space, which
means when the search is completed, we can directly get the searched network.

Search Algorithm. It is the key to designing an efficient and effective NAS
framework. So far, various search strategies based on different theories are pro-
posed, such as: evolutionary algorithm based [13], reinforcement learning based
[10,18,19], gradient-based [20], and the method we adopt: performance predictor
based [8,9].

Search Target. It is task-specific, for example, in classification, the accuracy
rate may be adopted as the search target [9,10,13,18,19]; In detection, mean
Average Precision (mAP) may be the search target [20]. As for crowd counting,
one of the most intuitive idea is taking Mean Absolute Error (MAE) as the
search target, but we additionally proposed using the weighted sum of MAE and
Multi-scale Structural SIMilarity (MSSIM) as the search target, and experiments
demonstrate that it performs better than only MAE used.

3 Progressive Multi-column Architecture Search

In this section, we present the proposed Progressive Multi-column Architecture
Search framework, as shown in Fig. 2. The definition of our search space is intro-
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Fig. 2. An illustration of our Progressive Multi-column Architecture Search frame-
work. Top: The paradigm of the multi-column network. The encoder is the first ten
layers of VGG-16 [9], and the decoder is searched by algorithm. Bottom: The sam-
ple → train → predict → sample circulation search progress, and we repeat it for S times
then select the top-5 to train from scratch. The blue circle nodes represent network
architectures, Ai

j represents the j-th network sampled for depth i, the search space for
depth i + 1 is derived by stacking convolutional layers on Ai

1 to Ai
K . More details on

Algorithm 1 (Color figure online)

duced in Sect. 3.1. Then the search target is defined in Sect. 3.2. The search
algorithm and the overview of the framework is described in Sect. 3.3.

3.1 Multi-column Decoder Search Space

Similar to CSRNet [5], all networks in our search space are constructed by a
front-end encoder and a back-end decoder. Regarding the front-end, we adapt
the first ten layers of VGG-16 network [7] and only use 3× 3 kernels, as settings
in CSRNet. The search process on the back-end decoder, which has maximum
depth L and maximum number of columns K. Six operations are allowed when
constructing a back-end decoder, and we identify them with the numbers {0, 1,
2, 3, 4, 5}:
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– 0 : identity mapping;
– 1 : 3× 3 convolution;
– 2 : 3× 3 dilated convolution with rate 2;
– 3 : 3× 3 dilated convolution with rate 4;
– 4 : 5× 5 depth-wise separable convolution;
– 5 : 7× 7 depth-wise separable convolution;

There have been three down-sampling in the front-end encoder [5], so all operations
above used in back-end decoder will preserve the spatial size of the feature maps.

Then, we can encode a back-end decoder into a numerical matrix, which has
maximum column L and maximum row K, corresponding to the maximum depth
and maximum number of columns. In our experiments, the counting baseline is
constructed as described in McML [4], we treat the four configurations of back-
end in CSRNet [6] as four columns, and we discard the column with mixed
dilation rate.

It is worth noting that in most previous NAS literature, the minimum unit
during the search process is a single convolution, which may not be suitable in
our multi-column search. The intention of the multi-column architecture is that
different columns deal with different scales, and they are complementary and
cooperating. But taking a single convolution as the minimum unit weakens the
correlation among columns and cannot explicitly meet the above requirements.
So, we take the K convolutions in the same depth l as the minimum search unit,
in which way, the expansion of network and weight-share will not process on a
single convolution, but K convolutions in the same depth.

3.2 Multi-objective Search

Typically, the so-called search target is the metric that evaluates how a network
performs on the target-task. Mean Absolute Error (MAE) is widely used in crowd
counting:

MAE =
1
N

N∑

i=1

∣∣Ci − Cgt
i

∣∣ (1)

Here N is the number of images in test-set, Ci is the estimated count and Cgt
i

is the ground truth count of the i-th image.
In addition to MAE, there are many other metrics to evaluate the quality

of estimated density map, such as PSNR, SSIM and so on. In these metrics,
Multi-scale Structural Similarity (MS-SSIM) [11] is easy to implement and can
effectively measure the similarity between the estimated density map and the
ground truth one. Here we use the ameliorated Dilated MS-SSIM [12]:

DMS · SSIM(X0, Y0) =
m−1∏

i=0

{SSIM(Xi, Yi)}αi (2)

Where X0 is the estimated density map and Y0 is the corresponding ground
truth, and Xi, Yi is the corresponding features in i-th level of DMS-SSIM net-
work, which is a dilated convolutional neural network with fixed Gaussian kernel,
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αi is the importance weight of SSIM(Xi, Yi). For more details, we recommend
to refer to [12].

Finally, our search target can be formulated as:

score = MAE + γ
1
N

N∑

i=1

[1 − DMS · SSIM(Ci, C
gt
i )] (3)

Here, γ is the importance weight of the mean DMS · SSIM on the test-set. It is
worth noting that the lower the score, the better the network performance.

3.3 Efficient Progressive Multi-column Architecture Search
Algorithm

Algorithm 1 shows the pseudocode, and Fig. 2 illustrates the whole search pro-
cess.

Our search algorithm incorporates the core idea of PNAS [8] and the
improved version EPNAS [9], there are two key points:

First, a progressive and sequential searching process. This means our search
starts with the simplest situation, for example, the networks that are constructed
by one convolutional layer, and expands the depth and complexity of networks
by stacking convolutional layers or blocks behind the former ones.

Second, network performance predictor. It is a neural network trained to learn
the mapping from network structure to performance on the target task [8,9]. If
the network performance predictor has a good prediction of the performance of
networks in search space, we can just simply give networks that are predicted
good higher probability to be sampled in next stage, and constrain the number
of networks to be sampled in each stage. In this way, we can control the search
cost without missing good networks.

But there are still some deficiencies in Algorithm 1. The reasonableness of
pruning the search space lies in the assumption that the predictor has a good
prediction of the performance of the networks. But in the initial stage, with-
out sufficient training, the predictor cannot predict well. Following EPNAS [9],
we adopted a temperature-driven sampling procedure, in which the sampling
probability πi of architecture i is amended to π

1/τ
i /

∑
j π

1/τ
j with temperature τ

decaying quickly to 1 as the search iterations increases. In this way, the sampling
is likely random at beginning, and we trust more the prediction results of the
predictor as it gets more training. More details will be introduced in Sect. 5.

4 Pre-architecture-Based Weight-Share

Weight-share scheme is key to conducting an efficient Neural Architecture
Search. This method was proposed in ENAS [10], but similar idea ‘weight inheri-
tance’ first appeared in [13], and the core of these two methods is “share whenever
possible”, in other words, as long as the two networks have the same shape in a
certain convolutional layer, the weights of this layer will share or inherit.
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Algorithm 1. Efficient Progressive Multi-Column Architecture Search
Input: K(max columns), L(max depth), N(numbers of arch sampled each time),

S(times the search repeats), P(the performance predictor),
A1(all possible arch that depth of back-end equal 1), trainSet, valSet.

1: for s=1:S do
2: for l=1:L do
3: if l==1 then
4: weight-share(A1) � Loads weight that saved before when s is not 1
5: train(A1,trainSet) � Train all depth-1 arch one epoch on trainSet
6: save-weight(A1) � Save network weights
7: MAE,MSSIM=eval(A1,valSet) � Evaluate performance on valSet
8: Calculate score according formula(3)
9: train(P,A1,score) � Train predictor with input-label pairs (arch, score)

10: end if
11: if l>1 then
12: Al=create-all-arch(Al−1) � Expand depthl search space based on

depthl−1 sampled architectures
13: P=inference(Al) � Predictor infers score of all architectures in the

depthl search space
14: π=SoftMax(−P) � Calculate sample probability distribution, higher

score, lower probability
15: Âl=sample(pi,N,Al) � Sample N architectures from the depthl search

space
16: weight-share(Âl) � Loads weights according to weight-share strategy
17: train(Âl,trainSet) � Train sampled networks one epoch on trainSet
18: save-weight(Âl) � Save network weights
19: MAE,MSSIM=eval(Âl,valSet) � Evaluate performance
20: Calculate score according formula(3)
21: train(P,Âl,score) � Train predictor
22: end if
23: end for
24: end for
25: Get top-5 architectures during the whole search space.

There is no doubt that weight-share can greatly speed up the search pro-
cess. But recently, some works [14–16] indicated that weight-share scheme may
degrade the performance because it may degenerate search-evaluation correla-
tion, for example, architectures with a better validation performance during
the search phase may perform worse in final evaluation. Specific causes of this
phenomenon are not clear, but it is obvious that the weights shared from one
network may not be suitable for another network, and the latter may perform
worse because of this. So, we can alleviate this negative impact of weight-share by
decreasing the amount of sharing. The proposed pre-architecture-based weight-
share scheme is illustrated in Fig. 3. If and only if the two networks have the
same structure from the 1-th layer to the i-th layer, and the (i + 1)-th layer is
inconsistent, there is a sharing of convolution weights from the 1-th layer to the
i-th layer between the two networks. The intention of the proposed method is
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Fig. 3. An illustration of our pre-architecture-based weight-share scheme. Gi denotes
index of convolutional layer type.

to strengthen the correlation among convolutional layers and thus alleviate the
degraded search.

5 Experiments

We perform search on ShanghaiTech Part A dataset [1], and then train the
searched model on other dataset [1,17] to demonstrate the robustness of our
searched model.

5.1 Evaluation Metrics

We use mean absolute error (MAE) and mean square error (MSE) to evaluate
the performance. MAE is defined as formula 1, and MSE is defined as:

MSE =

√√√√ 1
N

N∑

i=1

(Ci − Cgt
i )2 (4)

These two metrics indicate the accuracy and robustness of the model. We also
calculate Structural Similarity (SSIM) to evaluate the quality of estimated den-
sity map.

Table 1. Estimation errors on ShanghaiTech, UCF CC 50 datasets.

Method ShanghaiTech A ShanghaiTech B UCF CC 50

MAE MSE MAE MSE MAE MSE

MCNN [1] 110.2 173.2 26.4 41.3 377.6 509.1

ic-CNN [3] 72.5 118.2 13.6 21.1 291.4 349.4

CSRNet [7] 68.2 115.0 10.6 16.0 266.1 397.5

SANet [5] 67.0 104.5 8.4 13.6 258.4 334.9

McML [6] 59.1 104.3 8.1 10.6 246.1 367.7

Counting baseline 64.8 106.9 9.3 15.3 252.3 343.6

Best searched 61.2 98.3 8.1 13.0 246.6 351.2
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Table 2. Ablation study results on ShanghaiTech Part A dataset.

Configurations Performance

Top-5 mean MAE Best model MAE

Weight-share scheme Share-as-possible 64.01 ± 1.10 62.21

Pre-architecture-based 63.30 ± 0.52 62.65

Search target MAE 63.30 ± 0.52 62.65

MSSIM 63.67 ± 0.87 62.26

MAE+MSSIM 62.91 ± 1.35 61.19

vs. random search Random search 64.65 ± 0.98 63.46

Our full method 62.91 ± 1.35 61.19

Table 3. Comparison with other multi-column networks in Shanghai Part A dataset.

Method SSIM among columns SSIM between ET& GT

MCNN [1] 0.71 0.55

CSRNet [7] 0.84 0.71

ic-CNN [3] 0.72 0.68

McML [6] 0.70 0.82

Our best searched 0.60 0.76

5.2 Implementation Details

In architecture search experiments, the maximum column number is 3, and the
maximum depth is 8. During the search, except for depth1 in each stage, 25
architectures are sampled at each sampling step, and these sampled networks
are trained with MSSIM loss [12] and Adam optimizer with learning rate 1e-5
for one epoch. As for the predictor, we implement it as a fully-connection network
with two hidden layers. To deal with architecture with arbitrary columns and
depth, we encode all possible permutations in a single convolutional layer (in
the case 3 columns and 6 candidate-operations, there are 63 − 1 = 216 for a
single layer) as 100-dims vectors in a hash-embedding way, and save them as
a lookup-table. Then, 8 embeddings of 8 layers are concatenated as a 800-dims
vector, which is inputted into the predictor. For training the predictor, we use L2
loss and learning rate 1e-3. The whole search progress and training the searched
networks from scratch cost approximately 24 TITAN Xp GPU hours.

5.3 Ablation Study

Effectiveness ofPre-architecture-BasedWeight-Share.The result is shown
in Table 2. Besides the best architectures searched by two weight-share schemes,
which are somewhat random, we also calculate the mean MAE of the searched
top-5 architectures, which can indicate the overall performance of the architecture



390 J. Zhang et al.

Fig. 4. The best architecture found by our progressive multi-column architecture
search.

cluster and better reflect the ability of the search algorithm. As shown in Table 2,
because our pre-architecture-based weight-share scheme strengthens the correla-
tion between adjacent convolutional layers and the weights are shared in a more
reasonable way, so it can improve the search result in a great margin.

Effectiveness of Multi-objective Search. As shown in Table 2, the result of
taking MAE or MSSIM alone as search target are similar, and the combination of
these two makes it possible to evaluate the performance of a candidate network
during the search process from a more comprehensive metric, so that we can
search for better architecture cluster.

Effectiveness of the Whole Search Framework. Previous works [14,15] has
pointed out that the excellent performance shown by many NAS literature may
be attributed to the design of the search space, and has nothing to do with the
search algorithm. To validate the effectiveness of our search framework, we set
up a random search baseline as the control. As a fair comparison, we constrain
the random search costs the same GPU hours as our other search experiments,
we randomly sample 1000 architectures from the search space, and train them
for 1 epoch, then select the top-5 architectures and train them from scratch.
The result is shown in Table 2. Our search framework outperforms the random
search baseline by a great margin, and it indicates that our search framework
can search excellent networks in the huge search space effectively.

5.4 Performance and Comparison

The best architecture we searched is shown in Fig. 4. Besides ShanghaiTech
Part A, we also train the searched network on other public datasets, the result
and comparison with other multi-column architectures are shown in Table 1 and
Table 3. Notably, without complex training scheme, our searched architecture
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is comparable with the state-of-the-art multi-column architecture not only in
extremely crowd scenes (Shanghai Part A), but also in relatively sparse scenes
(Shanghai Part B) and small datasets (UCF CC 50). Besides, we evaluate the
similarity among columns as McML [4] in Shanghai Part A dataset. We can
observe that our searched architecture obtains lower SSIM among columns and
higher SSIM between estimated density map and ground truth than other multi-
column networks. Lower SSIM among columns indicates that different columns
of our searched architecture adapt well to different scale in the regular end-to-
end training manner. Higher SSIM between estimated density map and ground
truth indicates the success of the MSSIM metric in our multi-objective search
target, and our model can generate density map with higher quality.

6 Conclusion

In this paper, we integrate the Progressive Neural Architecture Search frame-
work with multi-column architecture, and develop a novel Progressive Multi-
column Architecture Search framework towards crowd counting task. To get
a more powerful multi-column network, we not only construct special search
space, but propose multi-objective search, which improve the search result and
estimated density map of searched model. Besides, to deal with flaws of the
weight-share scheme, we propose a novel pre-architecture-based weight-share
scheme, and the experiments demonstrate its effectiveness. Finally, our searched
model achieves comparable performance with the state-of-the-art multi-column
architecture without a complex train scheme.
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