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Abstract

The intellectual property (IP) of Deep neural networks
(DNNs) can be easily “stolen” by surrogate model attack.
There has been significant progress in solutions to protect
the IP of DNN models in classification tasks. However, little
attention has been devoted to the protection of DNNs in im-
age processing tasks. By utilizing consistent invisible spa-
tial watermarks, one recent work first considered model wa-
termarking for deep image processing networks and demon-
strated its efficacy in many downstream tasks. Nevertheless,
it highly depends on the hypothesis that the embedded wa-
termarks in the network outputs are consistent. When the at-
tacker uses some common data augmentation attacks (e.g.,
rotate, crop, and resize) during surrogate model training,
it will totally fail because the underlying watermark con-
sistency is destroyed. To mitigate this issue, we propose a
new watermarking methodology, namely “structure consis-
tency”, based on which a new deep structure-aligned model
watermarking algorithm is designed. Specifically, the em-
bedded watermarks are designed to be aligned with physi-
cally consistent image structures, such as edges or semantic
regions. Experiments demonstrate that our method is much
more robust than the baseline method in resisting data aug-
mentation attacks for model IP protection. Besides that, we
further test the generalization ability and robustness of our
method to a broader range of circumvention attacks.

1. Introduction
Deep learning has made tremendous success in many

application domains, including computer vision [1, 2, 3],
natural language processing[4, 5], and autonomous driving
[6, 7, 8], to name a few. However, it is often not that easy
to train a good DNN model because of the demand for mas-
sive training data and computation resources. Recently, for
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business consideration, protecting the intellectual property
(IP) of DNN models has attracted much attention from both
academia and industry. However, it is still a seriously under-
explored field because of its inherent challenges.

The challenges indeed come from the powerful learn-
ing capacity of DNN, which is a double-edged sword. On
the one hand, it makes discriminative feature representation
learning easy in different tasks once sufficient high-quality
data is granted. On the other hand, the attacker can use one
surrogate model to imitate one target network’s behavior
even if the network structure and weights are both unknown.
For example, through the model API at the cloud platform,
the attacker can first feed a lot of input into the API and ob-
tain its output. The attacker then regards these input-output
pairs as training samples and distill a good surrogate model,
similar to the teacher-student learning scheme. This attack
mode is called “surrogate model attack” or “model extrac-
tion attack ” [9, 10].

In order to protect the model IP, many methods [11, 12,
13] have been proposed. However, most of them focus on
the classification task and only consider modification-based
attacks like “fine-tuning” and “network pruning”. Recently,
the pioneering work [14] began to consider the IP protec-
tion problem for image processing networks and surrogate
model attack. The motivation of this work is very straight-
forward. As shown in the left part of Figure 1, they em-
bed a unified watermark (e.g., same embed position, wa-
termark size, etc.) into the target model output. When the
attacker learns a surrogate model by using the input-output
pairs from the target model, the surrogate model will also
learn this unified watermark into its outputs to minimize the
training loss. Considering their watermarks are essentially
a unified watermark image in different embedded outputs,
we regard it as “whole-image consistency”.

Notwithstanding its success, the “whole-image consis-
tency” can be easily destroyed by common augmentation
techniques such as random crop and rotation, which is ex-
plained as a big limitation in the extension work [15]. The
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Figure 1. Left: the working principle of [14], which embeds a
unified (consistent) watermark into network outputs; Right: its
fragility to regular augmentation techniques like random crop,
which will destroy the watermark consistency.

reason is illustrated in the right part of Figure 1. In this aug-
mented case, because the surrogate model does not know
the specific augmentation information, it cannot find a con-
sistent watermark pattern, thus directly ignoring the embed-
ded watermarks by considering all the training samples.

To address the above limitation, we propose a new wa-
termarking methodology in this paper, which is inherently
robust to data augmentation. Rather than pursuing the
above whole-image consistency, we design “structure con-
sistency”, which couples the watermark patterns with the
image structures. It is inspired by the fact that some global
structures such as edges or local semantic structures such
as eyes can keep their physical meaning after augmenta-
tion. If we embed the watermark information into such
structures, the watermark consistency can be naturally pre-
served. Based on this observation, we design a structure-
aligned watermark scheme, which encodes the watermark
information into constant color values and fills them into
the above structure regions as a special type of watermark.

The overall model watermarking framework is shown in
Figure 3. It basically consists of four modules: a watermark
bit encoder to encode watermark bits into structure-aligned
watermarks, an embedding network that learns to embed
structure-aligned watermarks into the cover images with-
out sacrificing the original visual quality, an extracting net-
work that tries to extract hidden watermarks out from water-
marked images, and a final decoder to decode the recovered
bits. For effective forensics, the extracting network will not
output any kind of watermarks for unwatermarked images.
However, training such a framework to achieve great per-
formance is not a trivial task, because the hidden watermark
information will be easily destroyed under diverse augmen-
tations. To overcome this issue, we further design an incre-
mental training strategy, which adds new augmentation op-
erators or loss constraints gradually. Extensive experiments
demonstrate the superior performance and robustness of our
method. Our contributions are four-fold:

• We provide detailed analysis regarding the fragility of
the watermarking scheme proposed in [14, 15], and ex-

plain why the whole-image consistency is not robust to
data augmentation.

• We propose a new methodology called “structure con-
sistency”, based on which a structure-aligned model
watermarking framework is designed.

• To circumvent the learning difficulty, an incremental
training strategy is designed by gradually involving
new augmentation operators or loss constraints.

• We demonstrate the superior robustness of our method
in different application scenarios and a broader range
of circumvention attacks.

2. Related work

Model IP Protection. The powerful learning capacity of
deep neural networks brings a potential security threat to the
copyright of deep learning models. In recent years, for the
classification task, several algorithms [11, 12, 13, 16, 14]
have been proposed. In [11, 16], a special weight regular-
izer is leveraged so that the distribution of model weights
can be resilient to attacks such as fine-tuning and prun-
ing. However, they only work in a white-box way and need
to know the original network structure and parameters for
retraining. By contrast, Adi et al.[12] establish a track-
ing mechanism for watermarking DNN in a black-box way,
which uses a particular set of inputs as the indicators and
lets the model deliberately output specific incorrect labels.
Despite their success, most of these methods only concen-
trate on simple modification-based attacks like fine-tuning.
In [17], Szyller et al. first consider the more challenging
surrogate model attack but still only focus on the classifica-
tion task. Recently, the work of [14] starts to consider the
watermarking problem for image processing networks and
innovatively leveraged spatial invisible watermarking algo-
rithms for model watermarking. However, as pointed out
in their extension work [15], it will totally fail when the at-
tacker utilizes some data augmentation during the surrogate
model’s training, as the underlying working principle relies
on the whole-image watermark consistency. Our method
is motivated by this method, but designs the new structure
consistency to obtain augmentation robustness.

Data Augmentation. Data augmentation plays a crucial
role in learning better generalized deep neural networks.
Basic data augmentation techniques include rotation, flip-
ping, cropping, and adding noises. Depending on whether
they affect the original image quality, we divide them
into two categories: quality-harmless and quality-harmful.
For deep image processing tasks, since the attacker wants
the surrogate to get high-quality output, we mainly con-
sider the common quality-harmless data augmentation tech-
niques such as flipping, rotation, cropping, and resizing.



If the attacker uses quality-harmful ones such as adding
noises, the quality of the surrogate model itself will be bad.
Nevertheless, we still consider 6 quality-harmful augmenta-
tions (namely, noise, blur, hue, saturation, contrast and style
transfer) as an ablation study to test the robustness.

Image-to-Image Translation. Image-to-image translation
is a typical image processing task of which the input and
output are both images. It is widely adopted in many ap-
plications such as edge to the image synthesis, deraining,
and X-ray Chest image debone. In recent years, Genera-
tive Adversarial Network (GAN)[3] has brought significant
progress to image-to-image translation. Generally, there are
three typical settings: paired, unpaired, and semi-paired.
Regarding the pair setting, Isola et al. [18] propose a condi-
tional translation framework named “pix2pix” to learn the
mapping from input to output, which is improved by many
following works[19, 20, 21]. For the unpaired setting, Zhu
et al. [22] leverage the cycle consistency and propose a gen-
eral unpaired translation framework CycleGAN. In [23], a
semi-supervised learning algorithm is proposed. Similar as
[14, 15], because paired data is more difficult and expensive
to collect, and many high-quality deep processing models
are also trained in a supervised way, we mainly consider the
pairwise translation as the example applications.

3. Pre-analysis and Motivation
Recap of the “whole-image consistency”. Given an input
domain A = {a1, a2, ..., an} and a target output domain
B = {b1, b2, ..., bn}, pairwised deep image processing is to
learn a good target model M so that M(ai) can approach bi
under some pre-defined distance metric L:

L(M(ai), bi)→ 0. (1)

For surrogate model attack, it means that given a target
M, the attacker does not know its detailed network structure
and weights but can access M to get a lot of input-output
pairs. Because attacker may use an input set different from
that used by M, we denote the generated input-output pairs
as {a′1, a′2, ..., a′m} and {b′1, b′2, ..., b′m} respectively. Then
the attacker will use such pairs to train a surrogate model
SM. The working principle of [14, 15] is based on the
hypothesis that if SM can learn a good mapping between
{a′1, a′2, ..., a′m} and {b′1, b′2, ..., b′m}, then if a unified wa-
termark δ is added to all the output b′i, SM will also absorb
δ into its output, which can be extracted out for forensics.
This is based on the fact that:

L(SM(a′i), b
′
i)→ 0⇔ L(SM′(a′i), b′i + δ)→ 0

when SM′ = SM+ δ.
(2)

Because of the fitting and loss minimization property of
deep networks, SM can be easily learned to be SM′ by

Figure 2. Two repetitive watermark patterns tried to preserve the
whole-image consistency in the baseline method. But still no wa-
termark can be extracted from the surrogate model’s outputs.

adding a skip connection δ. Since δ is essentially a unified
watermark image embedded in the network outputs, we call
it “whole-image consistency”.

Fragility to Data Augmentation. Despite the effective-
ness, it has a serious limitation as admitted in [15], i.e., the
above “whole-image consistency” is not robust to data aug-
mentation techniques, which are commonly used in training
DNNs. Because data augmentation will destroy the under-
lying watermark consistency, which is the basis of [14, 15].
To preserve the consistency, one intuitive way is to use
repetitive watermark patterns as shown in Figure 2 instead
of one simple logo image, and train the framework with
different augmentation operators. However, we find it still
does not work and no watermark pattern can be extracted
from the surrogate model’s outputs. Because even though
the watermark pattern is repetitive, it will still change during
the augmentation process, e.g. position shift during crop-
ping and orientation change during rotation.

In fact, we will show that the whole-image consistency
is indeed methodologically difficult to hold under data aug-
mentation. Specifically, denote the data augmentation op-
eration of each {a′i, b′i + δ} as Ti, the surrogate model SM
trained with augmentation is to learn the mapping between
the domain {T1(a′1), T2(a′2), ..., Tm(a′m)} and {T1(b′1 +
δ), T2(b

′
2 + δ), ..., Tm(b′m + δ)}. Let us simplify the ex-

planation by assuming Ti to be a linear operation, i.e.,
Tm(b′m + δ) = Tm(b′m) + Tm(δ). For pair-wised image
processing, since there exists underlying content relation-
ship between a′i and b′i, if the same constant T0 (Ti = T0) is
applied to all the (a′i, b

′
i), once the target model M can learn

such a mapping relationship, it should be feasible for SM.
However, if different Ti is used for different i and δ is not
content-related to a′i or b′i, then Ti(δ) will lose its consis-
tency across different i and is not related to a′i, b′i either. In
this case, it is almost impossible for SM to learn δ into its
output anymore. This is because, without the consistency
constraint or content relationship, given Ti(ai), there is no
information available for SM to predict what Ti(δ) looks
like, thus SM directly regards it as independent noise and
ignores it by considering the whole training set.

Structure Consistency. As analyzed above, if we want
SM to absorb the watermark δ, δ must be able to keep its
consistency under data augmentation. A trivial solution is to
let δ be a pure-color image with constant pixel values. How-
ever, such a pure-color watermark image is unfriendly to



the convolutional watermark extracting network. Because
if the extracting network needs to extract such a constant
δ out for different watermarked images, the convolutional
weights will be learned to all zeros while only bias term be-
ing non-zeros. In this way, even given an unwatermarked
image, it will also output δ too, which loses the forensics
meaning. Therefore, we resort to a more advanced way:
making the watermark pattern consistent with image struc-
tures.

It is inspired by the observation that some global struc-
tures like edges or some local semantic structures like
“eyes” of the face are content-related and can keep their
physical meaning under the common data augmentation
techniques, we call this type of consistency “structure con-
sistency”. By further encoding the watermark information
into specific color values and filling them into these con-
sistent structures, we can generate structure-aligned water-
mark δi for each a′i, b

′
i. During the augmentation Ti, δi will

adaptively change along with a′i, b
′
i and keep its alignment

with structures of a′i, b
′
i. Therefore, it is still possible for

SM to absorb δi based on such structure consistency.

4. Structure-aligned Model Watermarking

Overview. Based on the above structure consistency anal-
ysis, we propose the structure-aligned model watermarking
algorithm in Figure 3. The basic goal is to learn a good em-
bedding network HNet and a corresponding extracting net-
work EXNet . HNet is responsible to embed the structure-
aligned watermarks into the cover images to generate wa-
termarked images while EXNet is responsible to extract the
embedded watermarks out. To make HNet and EXNet ro-
bust to different augmentation operations, an augmentation
layer is inserted between them and jointly trained. After the
training, given a target model to protect, we feed its out-
put to HNet before exposing to the public. In such a way,
the outputs obtained by the attackers are watermarked. And
if one surrogate model is trained with such input and wa-
termarked output pairs, EXNet can still extract the target
watermarks out from surrogate model’s outputs for foren-
sics. Besides, one bit encoder and decoder are leveraged to
encode/decode the watermark bits respectively. Below we
will elaborate each part in details. For ease of presentation,
we will use bi below as the substitute of b′i.

Watermark Bit Encoder and Structure Extractor. We
propose to fill constant RGB values into these structures to
ensure consistency in the physical structures during the aug-
mentation process. Taking the common 8-bit color space as
an example, the value range of each color channel (“Red”,
“Blue,” and “Green”) would be [0, 255]. Assuming the color
step used for encoding is t, then the total number of possi-
ble pixel values n equals 255

t ∗
255
t ∗

255
t (255 left as un-

watermarked indicator). Therefore, the max watermark bit

sequence length is log2(n). In real applications, the water-
mark bit sequence S represents the IP information we want
to embed, such as company name, model ID and version.

Given the S, we can use some simple mathematical en-
coding schemes (eg., hash functions) to map S into one spe-
cific color value Ci. And the detailed physical structure for-
mat may be different depending on the specific task. For
example, we can use the global edges for general natural
images and local semantic regions like “eyes” or “noses”
for face images. In the following experiments, we will try
three different types of physical structures to demonstrate
the generality of our method. By default, we use the well-
known Sobel edge algorithm to extract the global edges as
the physical structure.

Structure-aligned Model Watermarking. After getting
the encoded color Ci and structure map Mi, we fill Mi

with Ci to produce a structure-aligned watermarkWi:

Wi = Ci ⊗Mi. (3)

Here,⊗means filling Ci into the regions ofMi whose mask
values are 1 and filling a blank color (R:255,G:255,B:255)
otherwise. As we want HNet be capable of handling differ-
ent Ci rather than use an independent HNet for each possi-
ble Ci, we randomly sample different Ci during training.

After obtaining Wi, we concatenate it with the original
cover image bi along the channel dimension and feed them
into HNet to get the watermarked image bwi . To ensure the
robustness to different augmentation operators {T1, ..., Tk},
bwi will be randomly processed by one or multiple augmen-
tation operators before being fed into the extracting network
EXNet . Then, we will recover the hidden color values from
the extracted watermarkW ′i by using the physical structure
of the watermarked image as the position guidance. Finally,
the original watermark bit sequence will be decoded from
the recovered color values.

Network Structures. For fair comparison, we follow [14]
and adopt the UNet [24] as our HNet . It is an auto-encoder
like network structure and adds multiple skip connections
between the encoder and decoder part, which is a widely
used design in many image translation tasks. For the ex-
tracting network EXNet , we also adopt an auto-encoder
like network structure. Specifically, three convolutional lay-
ers are used as the encoder and one deconvolutional layer
along with two convolutional layers are regarded as the de-
coder. Several residual blocks are further inserted between
the encoder and decoder to enhance its learning capacity.
To help achieve better visual quality, we leverage one patch
discriminator network D [18] for adversarial training.

Loss Functions. The training loss consists of two parts: the
embedding loss LH and the extracting loss LEX :

L = LH + λ ∗ LEX . (4)
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Figure 3. The proposed structure-aligned model watermarking framework, which consists of four modules: watermark bit encoder and
decoder, one embedding network HNet and an extracting network EXNet , where the augmentation layer is inserted between HNet and
EXNet . For better performance, a discriminator network D is also appended.

where λ is the hyper parameter to balance their importance.
LH is to ensure the visual quality of watermarked images
while LEX is to ensure that the hidden watermarks can be
successfully extracted out. Therefore, a too large λ will
cause inferior visual quality but higher extracting success
rate, and too small λ will obtain high visual quality wa-
termarked images but the hidden watermark would be too
weak to be extracted out.

The embedding loss LH has two parts: a simple L2 loss
`2 and an adversarial loss `adv , i.e.,

LH = λ1 ∗ `2 + λ2 ∗ `adv. (5)

The L2 loss `2 measures the pixel-wise difference between
the input cover image bi and the watermarked output image
bwi . That is to say, we want the watermarked images to be
visually similar to the original unwatermarked images so
that the attacker even cannot know whether the output of
the target model is watermarked or not.

`2 = E
bi∈B,bwi ∈Bw

‖bi − bwi ‖2. (6)

Here B and Bw represent the unwatermarked and water-
marked image set respectively. And the adversarial loss
`adv will encourage the embedding network HNet to hide
watermarks better so that the discriminator D cannot distin-
guish its output from real unwatermarked images bi,

`adv = E
bi∈B

log(D(bi)) + E
bwi ∈Bw

log(1−D(bwi )). (7)

For effective forensics, besides the requirement that
EXNet can extract the hidden watermarks out from the wa-
termarked images, we also need EXNet not to extract any
watermark out for unwatermarked images. Therefore, the
extracting loss consists of two terms: one for watermarked
images `wm and one for unwatermarked images:

LEX = λ3 ∗ `wm + λ4 ∗ E
bi∈B
‖EXNet(bi)−O‖2, (8)

whereO represents the constant image with all pixels values
as (R:255,G:255,B:255) for unwatermarked images. To bal-
ance the loss contributions from the watermarked and unwa-
termarked regions, an adaptive weight λ5 will be added for
watermarked regions. Formally, `wm is defined as:

`wm =λ5 ∗ E
bwi ∈Bw

‖EXNet(bwi )⊗Mi −Wi‖2

+ E
bwi ∈Bw

‖EXNet(bwi )⊗Mi −O‖2.
(9)

As defined before,Mi represents the physical structure re-
gion, Mi is the background region and Wi denotes the
ground-truth watermark. The weight λ5 depends on the ra-
tio of the physical structure area to the total image area. The
smaller the ratio, the larger the weight λ5. In our imple-
mentation, λ5 is pre-calculated on a set of training images
to ensure λ5 ∗

∑
i sum(Mi) ≈

∑
i sum(Mi).

To enhance the ability of EXNet in extracting water-
marks from the surrogate models’ output, we also add an
adversarial training stage as [14]. Specifically, one simple
surrogate network is used to mimic the attacker’s behavior,
then EXNet is finetuned by adding outputs of this surrogate
model into its training set. This stage can be regarded as one
special augmentation operation from model processing.

Incremental Training Strategy. Unlike [14] where the
watermarked images are assumed unchanged, watermarked
images in our case will be processed under different types of
data augmentation. And some augmentation operations will
significantly change the original statistics of hidden water-
marks and make it more difficult to be extracted. To resist
different augmentation operations, we add these augmenta-
tion operators into the training process, forming an augmen-
tation layer.

We find training such a system with all operators to-
gether from scratch is challenging. To reduce the learning
difficulty, we propose an incremental training strategy by
adding augmentation operators one by one into training un-



til the previous one converges. For the objective loss func-
tion, we only use the `2 loss term in LH to constrain the
HNet until all the augmentation operators are added, and
then add the adversarial loss `adv to fine-tune the HNet for
achieving better visual quality. In the ablation study, effec-
tiveness of this training strategy will be studied.

Relationship to [14]. Our method and [14] both focus on
the model IP protection problem for deep image processing
networks and surrogate model attack. We also follow the
common watermarking framework [25, 26]: one embedding
sub-network for watermark embedding and one extracting
sub-network for watermark extraction. There are two sig-
nificant differences between our method and [14]. First,
the underlying watermarking methodology is totally differ-
ent, i.e., [14] relies on the whole-image consistency, which
embeds a unified watermark image into the network out-
puts and fails if common data augmentations are used. The
aforementioned analysis has shown that changing the water-
mark patterns cannot fundamentally solve this problem. By
contrast, our “structure consistency” innovatively proposes
to embed watermark information into semantic structures,
whose consistency are inherently robust to data augmenta-
tions. The following experiments will demonstrate the su-
perior robustness of our method. Second, training the water-
marking framework with diverse augmentation operators is
not a trivial task, and we design a new incremental training
strategy to achieve the convergence. We tried to integrate
the augmentation layer into the original framework of [14],
but it does not work. This is because the whole-image con-
sistency will be destroyed during the augmentation process.

5. Experiments

The proposed method can be broadly used in many dif-
ferent commercial systems for IP protection, such as med-
ical image processing and remote sensing image enhance-
ment. And the extracted watermarks can be viewed as legal
evidence for IP forensics. Due to the lack of large public
datasets, we tried the two example image processing tasks
(deraining, X-ray Chest image debone) used in [14] and a
new artistic portrait generation task to demonstrate our ef-
fectiveness. Because of the resource and space consider-
ation, we mainly use the derain task for comparison and
ablation, more results can be found in supplementary ma-
terials. For comparison, as the baseline method [14] is the
only effective method to date and other traditional water-
mark types have already been proved ineffective in [14], we
only compare our method with [14]. Source code will be
released upon acceptance.

Dataset. For image deraining, we use 11000 clean images
from the PASCAL VOC dataset [27] and 5000 clean images
from the COCO dataset [28] as the target domain, and use
the synthesis algorithm in [29] to generate rainy images as

the input domain. VOC images are split into three parts:
5000 for the initial training stage, 5000 for the adversarial
training stage, and 1000 for testing, while COCO images
are used for surrogate model training. For debone, we adopt
the rib suppression algorithm proposed by [30] to generate
the training pair based on 6500 X-ray Chest images from
the chestxray8 dataset [31]. Similarly, for artistic portrait
generation, we use APDrawingGAN[32] for synthesis from
7500 high-quality celebA images[33]. They are split in a
similar way as the deraining task.

Hyper-parameters and Augmentation Setting. Before
adding adversarial loss into the training phase, the default
value of λ, λ1, λ3, λ4, all equal to 1 and λ2 = 0, and the
learning rate is 0.0002. After that, we change the λ2 and λ
to 0.01 and 10 and decrease the learning rate of EXNet
to 0.00002. The color step t is set as 20. Considering
the attacker will only use some quality-harmless data aug-
mentation operations to ensure the surrogate model quality,
four most popular augmentations are used in the main com-
parison to simulate the attacker’s behavior: flipping, rota-
tion, cropping and resizing. By default, the rotation range
is [−90◦, 90◦], crop size is chosen from [64, 256] and re-
size range is [1/2, 2]. When training the surrogate model,
we choose the augmentation configuration: random rota-
tion from −30◦ to 30◦, random cropping with size 224 and
randomly resizing to 128.

Recovering Color Values. Given an extracted watermark,
we directly use a straightforward algorithm to recover the
hidden color value: extracting the physical structure of wa-
termarked images as position guidance and calculating the
average value in each color channel as the color value.

Evaluation Metric. PSNR and SSIM are used as the de-
fault visual quality metric. For extracting performance, we
define the biggest recovered color value error of different
color channels as the actual error value and set 10 as the
absolute error value threshold (TH). When the error value
falls in the range of the threshold, we define it as a success-
ful extraction. And the successful extracting rate (SR) is
the ratio of images with successful extraction. Due to the
watermarking mechanism difference, we still use the NC
value introduced in [14] to measure the baseline method.
Compared to the NC value, our metric is more strict.

5.1. Comparison Experiments

Results of watermarked images and extracted images.
To ensure the watermark embedding network HNet can em-
bed the structure-aligned watermarks into the cover image
bi and guarantee the watermarked image bwi is visually sim-
ilar to the bi, we first evaluate the PSNR and SSIM values
between the watermarked images and the original clean im-
ages on the test dataset. Results show that our method can
obtain visually indistinguishable watermarked images with



(a) (b) (c) (d) (e) (f) (g)

Figure 4. Some visual results of our method: (a) clean image bi, (b) watermarked image bwi , (c) ground truth watermark Wi, (d) recovered
watermark W ′

i , (e) Ti(b
w
i ) augmented from bwi , (f) Ti(Wi) augmented from Wi, (g) recovered watermark from Ti(b

w
i ).

Pre-processing Method Different Network Structures Different Loss Functions
CNet Res9 Res16 UNet L1 L1 + Ladv L2 L2 + Ladv Lperc Lperc+Ladv

W/O DA

[14] 100% 100% 100% 100% 100% 100% 100% 100% 86% 100%
Ours 100% 100% 100% 100% 100% 100% 100% 100% 59% 100%
[14] † 0% 0% 0% 0% 0% 0% 0% 100% 24% 0%

Ours † 84% 82% 84% 45% 54% 99% 45% 99% 0% 98%

With DA

[14] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Ours 98% 97% 95% 99% 99% 97% 99% 96% 57% 97%
[14] † 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Ours † 0% 0% 0% 0% 0% 2% 0% 1% 0% 1%

Table 1. The success rate of resisting surrogate model attack for different network structures and different loss functions without / with data
augmentation (DA). † denotes without the adversarial training stage , and the false positive rates of both methods are 0 for all cases.

the PSNR value as 37.86 and the SSIM value as 0.97. One
example visual result is presented in Figure 4. It can be seen
that our method can extract the hidden watermarks out for
both unaugmented and augmented images while guarantee-
ing high visual quality for watermarked images. Need to
note that the end users can only see bwi but not bi.

Robustness to different types of surrogate model attack.
For fair comparison with [14], we follow its setting and
evaluate the robustness to surrogate model attack by using
different surrogate models with respect to network struc-
tures and loss functions. Specifically, four different net-
work structures are used: vanilla convolutional networks
only consisting of several convolutional layers (“CNet”), an
auto-encoder like networks with 9 and 16 residual blocks
(“Res9”, “Res16”), and the aforementioned UNet network
(“UNet”); For objective loss function, L1, L2, perceptual
loss Lperc, adversarial loss Ladv and their combinations
are adopted. By default, SM model with “UNet” and L2
loss is leveraged in the adversarial training stage, therefore
this configuration can be viewed as white-box attack and all
other configurations are black-box attacks.

For the computation resource consideration, we follow
[14] and conduct controlled experiments to demonstrate the
robustness to the network structures and loss functions re-
spectively. Specifically, for the comparison regarding dif-
ferent network structure, the SM model is only trained with
L2 loss. And for the loss function comparison, the SM
model adopts the UNet by default. Below, we consider two
different training settings: without data augmentation like
[14] and with data augmentation.

Without data augmentation. In this ideal setting, the at-
tacker does not pre-process the collected input-output pairs.
As shown in Table 1, both our method and the baseline [14]

Figure 5. Comparison results of the baseline [14] (top) and our
method (bottom). For both methods, from left to right: original
watermarked image, surrogate model output, ground truth water-
mark, and extracted watermark from surrogate model output.

are robust to different surrogate network structures and loss
functions with the adversarial training stage. But without
the adversarial stage, our method can still obtain pretty good
results for most cases while the baseline [14] almost fails.
In this sense, our structure consistency is more robust than
the whole-image consistency.

With data augmentation. In this more realistic attack sce-
nario, the attacker will utilize data augmentation operators
to train the surrogate model SM. As shown in Table 1, our
method succeeds in most scenarios after adversarial training
while the baseline method [14] totally fails even after adver-
sarial training, no matter what kinds of network structure or
loss function were used. We also observe that the extra ad-
versarial training stage is very important in such challenging
data augmentation cases. In Figure 5, we provide some vi-
sual results about the extracted watermarks from the outputs
of the learned surrogate model. Obviously, after data aug-
mentation, the surrogate model of the baseline [14] cannot
learn the watermark into its outputs anymore.



Figure 6. Example pairs of images and extracted watermarks for the APG and debone tasks. From left to right for both tasks: input domain
image ai, watermarked image bwi and surrogate model output.

Settings Baseline Noise Blur Hue Saturation Contrast Style Transfer Clean

PSNR 32.02 31.67 / 31.29 31.99 / 31.89 32.02 / 32.03 31.99 / 31.93 32.00 / 31.97 31.76 / 31.06 32.05 / 32.67
SR 100% 100% / 100% 100% / 100% 100% / 98% 100% / 100% 100% / 100% 99% / 99% 100% / 68%

Table 2. The image quality and successful extracting rate of our framework for surrogate models trained by mixing some augmented data
from other augmentation techniques or clean data. A / B represents the results with 10% and 50% mixing ratios, respectively.

Figure 7. Watermarked images bwi comparison with (middle) and
without (right) incremental training strategy. And clean images bi
are shown in the 1st column.

5.2. Ablation Study

Importance of incremental training strategy. As men-
tioned above, it is very difficult to train the framework with
all the augmentation operations and losses from scratch si-
multaneously. Therefore, an incremental training strategy
is adopted. To justify its necessity and superiority, we try
to train the framework just from scratch and show the two
watermarked images bwi in Figure 7. Obviously, this set-
ting suffers from serious color drifting problems. With the
proposed incremental training strategy, it works very well.

Generalization ability. Besides the deraining task, we also
try another interesting image processing task, called artistic
portrait generation (APG). Given a real face image, APG
converts it to a pencil drawing style. To demonstrate the
generalization ability of structure consistency, we regard the
semantic “eyes” region as the physical structure. Then the
extracting network needs to recognize this semantic struc-
ture and extract the hidden watermark out automatically,
which is more challenging than global edges based physi-
cal structures. We further apply our framework to the X-ray
Chest image debone task, which is also mentioned in [14].
We choose another famous Canny edge algorithm to extract
the global edges as the physical structure. In Figure 6, we
provide some visual results of both applications. It can be
seen that our framework works very well for different physi-
cal structures and is general for different tasks. More results
are given in the supplementary material.

Robustness to other augmentation attacks. As mentioned
before, we only consider quality-harmless augmentation by
default and assume all the training pairs used by the surro-
gate model are the output of our target model. But like the

arm race, the attacker may train the surrogate model with
partial quality-harmful augmented data or self-labeled data
to destroy the consistency constraint and remove the wa-
termark. To simulate such behaviors, we mix some water-
marked data augmented by 6 representative quality-harmful
techniques and some unwatermarked data into the surrogate
model training dataset, respectively. In Table 2, two mixing
ratios (10%/50%) are considered. Surprisingly, though the
consistency constraint is destroyed in the newly introduced
data, our method can still work very well in resisting surro-
gate model attacks, even when 50% self-labeled clean data
is added. Note that we do not retrain our framework here.
More details are given in the supplementary material.

Robustness to more circumvention attacks. Apart from
data augmentation attacks, attackers may consider more
strategies to remove the model watermark. First, we con-
sider Neural Cleanse [34], which is famous for reverse-
engineering the watermark pattern. But it totally fails be-
cause our method is designed in a global and structure-
aligned way, which does not fulfill its assumption, i.e., the
trigger is input-agnostic and static both in location and
pattern). Second, we assume the attacker collects a small
amount of clean (unwatermarked) data pair, and conducts
supervised fine-tuning. Results show that even finetun-
ing with a new same-size clean data, our EXNet can still
work well with 78% success rate. Third, we consider the
case where the attacker has un-paired clean data and trains
the surrogate model with a domain-adversarial loss (water-
marked vs. non-watermarked images). In this case, the ex-
tracting success rate degrades to 43% but it is still accept-
able. Moreover, doing this will hurt the surrogate model’s
performance (PSNR: from 32.3 to 28.9) and make the at-
tack less meaningful. Finally, we consider the robustness of
our method to watermark overwriting. Similar to traditional
media watermarking, overwriting can be solved by water-
mark legal agreement. On the other hand, after overwriting,
our method can still extract the original watermark out, and
the surrogate model performance will degrade a lot.



6. Conclusion

Starting from a deep analysis on the model watermark-
ing scheme of [14], we find the fragility of the whole-
image consistency is the root cause why this watermark-
ing framework cannot resist the data augmentation attack.
To overcome this limitation, we propose a new watermark-
ing methodology, “structure consistency”, based on which
a novel and robust structure-aligned model watermarking
algorithm is designed. Experiments demonstrate that the
“structure consistency” can be utilized in both a global and
local way, and achieve much better robustness to data aug-
mentation attack and other circumvention attacks.
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[9] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via
prediction apis. In USENIX, pages 601–618, 2016. 1

[10] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4954–4963, 2019. 1

[11] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Embedding watermarks into deep neural
networks. In ICMR, pages 269–277. ACM, 2017. 1, 2

[12] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas,
and Joseph Keshet. Turning your weakness into a strength:
Watermarking deep neural networks by backdooring. In
USENIX, 2018. 1, 2

[13] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph
Stoecklin, Heqing Huang, and Ian Molloy. Protecting intel-
lectual property of deep neural networks with watermarking.
In ASIACCS, pages 159–172. ACM, 2018. 1, 2

[14] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming
Zhang, Wenbo Zhou, Hao Cui, and Nenghai Yu. Model wa-
termarking for image processing networks. In Thirty-Fourth
AAAI Conference on Artificial Intelligence, 2020. 1, 2, 3, 4,
5, 6, 7, 8, 9

[15] Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang,
Huamin Feng, Gang Hua, and Nenghai Yu. Deep model in-
tellectual property protection via deep watermarking. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2021. 1, 2, 3

[16] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Digital watermarking for deep neural net-
works. IJMIR, 7(1):3–16, 2018. 2

[17] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and
N Asokan. Dawn: Dynamic adversarial watermarking of
neural networks. arXiv preprint arXiv:1906.00830, 2019. 2

[18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. CVPR, 2017. 3, 4

[19] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In CVPR, 2018. 3



[20] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
CVPR, 2018. 3

[21] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, pages 2337–2346, 2019. 3

[22] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, pages 2223–2232,
2017. 3

[23] Jose Eusebio, Hemanth Venkateswara, and Sethuraman Pan-
chanathan. Semi-supervised adversarial image-to-image
translation. In International Conference on Smart Multime-
dia, pages 334–344. Springer, 2018. 3

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241. Springer, 2015. 4

[25] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei.
Hidden: Hiding data with deep networks. In ECCV, pages
657–672, 2018. 6

[26] Shumeet Baluja. Hiding images within images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(7):1685–1697, 2019. 6

[27] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338, 2010. 6

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[29] He Zhang and Vishal M Patel. Density-aware single image
de-raining using a multi-stream dense network. In CVPR,
pages 695–704, 2018. 6

[30] Wei Yang, Yingyin Chen, Yunbi Liu, Liming Zhong,
Genggeng Qin, Zhentai Lu, Qianjin Feng, and Wufan Chen.
Cascade of multi-scale convolutional neural networks for
bone suppression of chest radiographs in gradient domain.
Medical image analysis, 35, 2017. 6

[31] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-
hammadhadi Bagheri, and Ronald M Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of com-
mon thorax diseases. In CVPR, 2017. 6

[32] Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin. Ap-
drawinggan: Generating artistic portrait drawings from face
photos with hierarchical gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 10743–10752, 2019. 6

[33] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Large-scale celebfaces attributes (celeba) dataset. Retrieved
August, 15:2018, 2018. 6

[34] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-
mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural
cleanse: Identifying and mitigating backdoor attacks in neu-
ral networks. In 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 707–723. IEEE, 2019. 8


