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Abstract—Recent research shows deep neural networks are
vulnerable to different types of attacks, such as adversarial
attacks, data poisoning attacks, and backdoor attacks. Among
them, backdoor attacks are the most cunning and can occur
in almost every stage of the deep learning pipeline. Backdoor
attacks have attracted lots of interest from both academia
and industry. However, most existing backdoor attack methods
are visible or fragile to some effortless pre-processing such as
common data transformations. To address these limitations, we
propose a robust and invisible backdoor attack called ‘“Poison
Ink”. Concretely, we first leverage the image structures as target
poisoning areas and fill them with poison ink (information) to
generate the trigger pattern. As the image structure can keep
its semantic meaning during the data transformation, such a
trigger pattern is inherently robust to data transformations. Then
we leverage a deep injection network to embed such input-
aware trigger pattern into the cover image to achieve stealthiness.
Compared to existing popular backdoor attack methods, Poison
Ink outperforms both in stealthiness and robustness. Through
extensive experiments, we demonstrate that Poison Ink is not
only general to different datasets and network architectures
but also flexible for different attack scenarios. Besides, it also
has very strong resistance against many state-of-the-art defense
techniques.

Index Terms—Backdoor Attack, Stealthiness, Robustness, Gen-
erality, Flexibility.

I. INTRODUCTION

N the past years, deep learning has achieved tremendous

success in a lot of application areas [l[|-[5]. However,
recent works show that they are vulnerable to different types
of attacks, such as adversarial attacks [6]—[10], data poisoning
attacks [11]], [[12] and backdoor attacks [13]-[15]. Adversarial
attacks focus on misleading the model only in the test process,
while data poisoning attacks aim to degrade the model infer-
ence performance of its primary task by contaminating the
training process. Backdoor attacks are more flexible and cun-
ning than the two attacks above. Specifically, backdoor attack
can affect even all stages of machine learning pipeline [16],
such as model training [13]], fine-tuning [[14]] and even after
deployment [17]. In addition, backdoor attacks are designed
to make the backdoored model behave like a normal model
unless the attackers feed some specially designed triggers.
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Since it was introduced, an increasing amount of research
has been paying attention to this field. For example, Gu et
al. [13] directly stamped a square sticker or flower patch
onto clean images to contaminate the training process, and
Chen et al. [15] replaced the injection strategy by blending a
trigger image with the clean example. However, there are two
main limitations to existing backdoor attack methods. First,
the trigger pattern used in many current works is visible (some
visual examples are shown in Figure [2), which can be easily
recognized by humans or some deep visualization methods
like Grad-CAM [[18]]. Second, a very recent research [[19] finds
that most existing backdoor attacks will totally fail during the
inference stage if pre-processing the trigger images with some
simple data transformations, such as flipping and padding after
shrinking.

To address the above limitations, we aim to design a robust
and invisible backdoor attack method. Besides the essential
requirement for backdoor attacks: 1) the trigger pattern should
be easy for the model to learn and cannot confuse the model to
affect the pristine performance, we add two more requirements
to achieve our goal: 2) the trigger pattern should be consistent
under conventional data transformations to keep its robustness;
3) the trigger image needs be visually indistinguishable from
the corresponding trigger-free image.

In this paper, we propose to utilize the image structure
(edge) of an image as the carrier of poison information, i.e.,
hiding the poison information into the edge structures as
shown in Figure [T, Compared to existing trigger patterns, the
proposed structure-based trigger pattern has several natural
advantages: 1) On one hand, the shallow layers of DNN
[20] often capture the low-level structure information, which
means the structure can be easily captured by DNN; on the
other hand, the final decision of DNN [21] often depends
on the object texture rather than the structure information,
which indirectly indicates that structure-based trigger pattern
will not undermine performance of the original task. So
it satisfies the first requirement. 2) It is distributed in the
whole image and can keep its semantic meaning unchanged
under common data transformations, which indirectly satisfies
the second requirement. 3) Edge structures belong to high-
frequency components of an image, so hiding information into
them is more difficult to be discovered, which satisfies the third
requirement.

Based on the above observations, a new backdoor attack
method “Poison Ink” is designed. The overall framework is
shown in Figure[T] Specifically, we outline the image structures
as poison areas and then embed color values ( representation
of poison information) into such areas to generate the trigger
pattern. To achieve stealthiness, we use a deep injection
network to hide the input-aware trigger pattern into the cover
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image to produce the final poisoned image. Such poisoned
images will be regarded as the trigger set and mixed with clean
images as the training set for the standard backdoor training.
To demonstrate the effectiveness of Poison Ink, we con-
duct extensive experiments on various datasets and network
architectures under different attacking scenarios. Compared to
existing backdoor attack methods, Poison Ink outperforms in
terms of stealthiness, robustness, generality, and flexibility. In
summary, our contributions are four-fold as follows:

o We are the first to proposes utilizing image structures as
the carrier of trigger patterns, showing they have natural
advantages over existing trigger pattern designs.

o We design a new backdoor attack framework, Poison
Ink, which uses colorized image structures as the trigger
pattern and hides the trigger pattern invisibly by using a
deep injection network.

« Extensive experiments demonstrate the stealthiness and
robustness of Poison Ink, which is generally applicable
to different datasets and network structures.

« Poison Ink works well in different attacking scenarios and
has strong resistance to many defense techniques.

II. RELATED WORK

A. Backdoor Attack

Backdoor attack is a classic topic in the system security
field, and Gu er al. [13] first introduced this issue into deep
models. Based on it, Chen et al. [15] proposed a blending
injection strategy to attack face recognition systems with
less poisoned data. Then, Liu et al. [14] utilized reverse
engineering to generate data and built a strong relationship
between the optimized patch trigger with the selected neurons
via fine-tuning. Unlike these attack methods based on static
and visible trigger patterns, the trigger pattern of Poison Ink
is dynamic and invisible.

Besides the aforementioned suspicious attack methods, there
are a few attempts at more stealthy backdoor attacks. Zhong et
al. [22] proposed an invisible trigger called static perturbation
mask (SPM), for instance, a checkboard-like pattern. Similarly,
Barni ef al. [23]] replaced the repeated mask with the sinusoidal
signal (SIG). Very recently, Liu ef al. [24] presented “ Refool
”, which is spurred by the natural phenomenon — reflectance.
However, all trigger patterns aforesaid are unnatural due to
their input-agnostic attribute. Conversely, our proposed method
focuses on an input-aware trigger pattern, which is much
harder to be detected. Unlike the attacks above, Li et al. [25]
proposed generating an invisible attack via a steganography
algorithm called least significant bit (LSB) substitution. How-
ever, it totally fails on low-resolution datasets like CIFAR-
10, and Poison Ink significantly outperforms LSB in the
context of robustness to data transformation. We also notice
some interesting works [26]—[28|] explored the incorporation
of image structures for evasion attacks and defenses. Different
from them, we are the first to leverage image structures for
backdoor attacks.

B. Defense against Backdoor Attack

To resist backdoor attack, many defense methods have been
proposed, which can be roughly categorized into three groups:
data-based defense, model-based defense, and meta classifiers.

For data-based defense, Tran et al. [29] removed the poi-
soned examples by analyzing the spectrum of latent features.
However, its assumption of having full access to the infected
training data is not practical in use and thus not considered in
our experiment. Gao et al.’s observation included predicting
the backdoor image under strong perturbations, on which
STRIP [30] was proposed. In addition, Doan et al. [31]]
proposed Februus by using Grad-CAM [18] to locate the
potential trigger region and replacing it by image restoration.
Recently, Li et al. [19] showed that most existing attack
methods are vulnerable to data transformations, which we
mainly focus on in this paper.

For model-based defense, Fine-pruning [32] tries to prune
the neurons that are dormant for clean inputs, which is as-
sumed to have a relationship to the activation of the backdoor.
Chen et al.proposed to detect backdoor attacks by Activation
Clustering [33[], which determines the infected category by
analyzing the activation clustering of all classes. Inspired by
the Electrical Brain Stimulation technique, Liu et al.proposed
ABS [34] to scan malicious neuron. Then, Wang et al. [35]
proposed Neural Cleanse, which first reverse-engineers the
trigger pattern and then utilizes the reversed trigger for back-
door removal. Based on Neural Cleanse, TABOR [36]] obtained
a further improvement by appending various regularization
during reverse-engineering. Rather than using reversed trigger,
MESA [37]] leveraged many generated triggers to improve the
backdoor removal performance. Later, a more effective method
named TND is designed by Wang [38|], which is applicable
even in data-limited or data-free scenarios.

There are also some methods, such as ULPs [39], based
on the idea of a meta classifier. However, it consumes enor-
mous computation resources and has a strong but impractical
assumption that the trigger size is known. To evaluate the
robustness of Poison Ink, we will try these state-of-the-art
defense methods in the following experiments.

III. PRELIMINARIES

Before introducing Poison Ink, we first formally define
backdoor attacks and briefly analyze existing methods’ lim-
itations. Finally, we clarify the threat model and our attack
goals.

A. Problem Definition

In this paper, we only consider the backdoor attack on
the image classification task. For image classification, as-
suming the input domain X is composed of massive images
{x1,29,...,2n}, and the target output domain L consists
of corresponding labels {l,ls,...,ix}. Then the goal of the
image classification model M is to approximate the implicit
transformation function by minimizing the distance D (eg.,
cross-entropy) between M(z;) and [;, i.e.,
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Fig. 1.

For backdoor attacks, we randomly choose a portion of
training data as the candidate set X and select some trigger
patterns from the pre-designed trigger pattern set P. Here, we
pick a single trigger pattern p from P as an example. With
a pre-defined backdoor injection strategy Z, we can generate
the poisoned image z?, i.e.,

o =TI(xf,p), z§ € X°. )

K2

All poisoned images {z!, x5, ...,a%; },ep with the corre-
sponding target attack labels {I7,...,1 Np} will be combined
with the left clean images {x1,z2, ...,x .} and their original
labels {I1,1s, ..., I, } as the final backdoor training dataset X*,
where (3 p Np) + Ne = N. The injection ratio « is defined
as @ = (>_,cp Np)/N. Finally, we can obtain an infected
model M* by training on the polluted dataset X*.

B. Brief Analysis of Existing Limitations

Most existing backdoor attack methods have a limitation
in stealthiness or robustness. For the stealthiness limitation,
we attribute it to two points: the unnatural and input-agnostic
trigger patterns; the injection strategy Z, like hard-pasting or
soft-blending, which is hard to adapt to various inputs to sat-
isfy the invisibility requirement. For the lack of robustness to
data transformation, it is also because the trigger pattern p has
no relationship with its cover input z¢. During training time,
the infected model M* is forced to remember the relationship
between such input-agnostic pattern p and the target attack
label [P. Then, at the inference stage, if the poisoned image
zP is pre-processed by some data transformations, the hidden
trigger pattern p will also be transformed, and the relationship
will be corrupted. Therefore, the infected model M* cannot
recognize p any more.
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The overall pipeline of Poison Ink, which mainly consists of trigger image generation, backdoor model training and backdoor model attacking.

C. Threat Model and Our Goals

Backdoor attacks can occur at any stage of a deep learning
pipeline. In this paper, we introduce the threat model in terms
of attacker’s capacities and attack scenarios as follows:

Attacker’s capacities: we assume that attackers are allowed
to poison some training data, whereas they have no informa-
tion on or change other training components (e.g., training
loss, training schedule, and model structure). In the inference
process, attackers can and only can query the trained model
with any image. They have neither information about the
model (even prediction) nor can they manipulate the inference
process, which is different from adversarial example. The
assumption above is the minimal requirement for attackers
[40]]. Taking data transformations as an example, the attacker
is not accessible to the exact range and combinations order of
the data transformations used by the defender.

Attack scenarios: the discussed threat can happen in many
real-world scenarios, including but not limited to adopting
third-party training data, training platforms, and model APIs.
The attacker can directly inject his own poisoned data into the
training stage. During inference, the attacker does not need
to hijack any image and triggers the attack by querying the
target model, with the poisoned image generated by himself
in the same way. We shall point out that we mainly focus on
the threat in the digital domain, where many backdoor attacks
were explored, and attacks in the physical world will be our
future direction.

We aim to achieve an invisible, robust, general and flexible
backdoor attack (Poison Ink) and set main goals in detail: 1)
maintain the model performance on clean data; 2) the poisoned
image shall be imperceptible to evade human inspection at
the inference stage; 3) Keep the high attack effectiveness
even when some data transformations pre-process the poisoned
image.
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IV. THE PROPOSED POISON INK

To achieve our goal, we propose a new backdoor attack
method called “Poison Ink”, and the overall pipeline is shown
in Figure[T] We are motivated by the recent work [41] that pro-
poses the physical consistency for model IP protection. When
generating the trigger set, we first generate the trigger pattern
by embedding the poison information into edge structures and
then embed the trigger pattern into the cover image with a
deep invisible injection strategy. An interference layer is added
to enhance the robustness further and dynamically generates
diverse interference to the injection network and the auxiliary
guidance extractor network.

A. Trigger Pattern Generation

As described before, the edge structure of one image is an
ideal carrier for the trigger pattern: 1) It can be easily captured
by the shallow layers of deep models and will not undermine
the performance of the original task. 2) The edge structure
can keep its semantic meaning and physical existence during
data transformation. 3) Different from existing pattern designs,
edge structure is also the inherent high-frequency component
of an image, so it is easy to be hidden in an invisible way.

In the trigger pattern generation module of Figure|l] we give
a simple example to illustrate how to generate a trigger pattern
by using the edge structure. In details, given an input image
x;, we first outline its edge by using some edge extraction
algorithms & such as Sobel [42] or Canny [43]] operator. Next,
we encode the poison information into the RGB color value
C? by mathematical encoding and colorize the black and white
edge image with CJP as the target trigger pattern p;:

pi = E(z;) @CY, 3)

where ® means the color filling operator that makes all the
edge color values be C¥'. Compared to existing trigger patterns,
such edge structure based trigger pattern is input-aware and
dynamic, which breaks the assumptions of many existing
defense techniques that the trigger patterns are input-agnostic
and static patches. Besides, since the RGB color space is
enormous and many different edge extraction algorithms exist,
it also naturally supports multiple different trigger patterns by
changing the color values or edge types.

B. Deep Invisible Injection Strategy

After getting the edge structure based trigger pattern, we
design a deep injection strategy to hide the trigger pattern
into the cover image. As shown in the top part of Figure [I]
it basically consists of three parts during training: a deep
injection network, an auxiliary guidance extractor network to
help the injection network learn in a proper way, and an
interference layer to force the injection network to embed
trigger pattern more robustly. After the training process, both
the auxiliary guidance network and the interference layer will
be discarded. We will only use the deep injection network to
hide the trigger pattern into the clean cover images to generate
the poisoned images.

Injection network /N. We concatenate the clean image x§
with its corresponding trigger pattern p; along the channel

dimension before feeding them into /N to obtain the final
poisoned image z%, i.e,

xf = IN([z7; pi)- 4

In order to encourage IN to hide the trigger pattern invisibly,
we need to find some invisibility loss metrics to guide its
learning. However, it is often difficult to explicitly define
invisibility. As shown in existing information hiding methods
(44]-[47], though L,, Norm is not a perfect invisibility metric,
it can serves as a good invisibility learning metric. So we
utilize it as one invisibility loss:

‘Cinv = E [

k
RS )

By default, we use L1 loss by setting k = 1, which follows the
classic image-to-image translation framework Pix2Pix [48]].
To further improve the invisibility, we leverage an extra
adversarial loss £,4, to minimize the domain gap between sz
and x§, formally:

Eadv == I:IGEXCZOQ(D(QSS)) + x?IEEXplOg(l - D(xzp)) (6)
With the adversarial loss, the adversarial discriminator network
D will act as a competitor to find the difference between a¥
and x7. Meanwhile, the injection network IN tries to generate
the 2’ in a more invisible way so that the discriminator cannot
distinguish it from the clean image x5.

Guidance extractor GE. Only constrained by the invisibility
loss, the injection network IN will easily ignore p; and learn a
trivial solution that outputs the original clean input directly. To
ensure p; to be hidden in z{, we append an auxiliary guidance
extractor network G'E after the injection network to guide the
injection process.

On the one hand, GE should be able to extract the trigger
pattern p; out if feeding in the poisoned image z*, which can
be regraded as the reverse operation of injection. On the other
hand, GE should not extract any trigger pattern out from the
trigger-free images. With these two requirements, the training
of IN and GF is indeed conducted in an adversarial way,
so it is impossible for IN to degrade into a trivial solution.
To achieve these two goals, we add two corresponding loss
functions respectively: the trigger extraction loss L;. for
poisoned images and the clean loss L, for trigger-free images
ie.,

EGE = Etc + A Ech
— Py _ p.
Lu= E, [1GE(a!) = ) -
La= B, [IGE) - Ol

where C is a clean map (shown in Figure [I)) to indicate no
trigger pattern and A is one hyper-parameter to balance the two
loss terms. Here we simply use the L2 reconstruction loss for
both L. and L. by default.

Interference layer. To increase the extracting difficulty of
the guidance extractor network and encourage the injection
network to hide the trigger pattern in a more robust way,
we further add an auxiliary interference layer between them.
During training, this layer will randomly augment the poisoned
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image output from the injection network. By default, it con-
sists of a sequence of common data augmentation operators
{Terop = Tresize = Tfiip = -+ — Trot}, and each poison
image will be randomly augmented by each operator with the
probability of 0.5.

To guarantee both the invisibility and robustness, the injec-
tion network IN and the guidance network GE are jointly
trained, and the total loss function L4 is:

Liotat = LIN+7 - LgE. 3

By default, we set v = 1. During training, we will randomly
use different color values CP for different image z; and
encourage IN to be a general injection network that can embed
different types of trigger patterns on the fly. When attacking
one target model, we can choose one specific trigger pattern
or multiple different trigger patterns by using different C? to
enable single-label attack and multi-label attack, respectively.

V. EXPERIMENTS

In this section, we will first briefly introduce the implemen-
tation details we adopt, such as datasets, network structures,
metrics, and default settings. After that, we will demonstrate
the invisibility and robustness of the proposed Poison Ink, re-
spectively. Then more network structures, datasets, and attack
scenarios are considered to demonstrate the generality and
flexibility of our method. Next, we showcase the resistance of
Poison Ink to many state-of-the-art backdoor defense methods.
Finally, some ablation studies are conducted to justify our
design. Our source code will be released.

A. Implementation Details.

Datasets. We consider 4 datasets for three types of classifica-
tion tasks. For object recognition, we use CIFAR-10 [49] and
ImageNet [50]; GTSRB [51]] and VGG-Face [52] are utilized
for traffic sign recognition and face recognition, respectively.
For each dataset except CIFAR-10, we randomly select a
portion of classes and resize the inputs for diversity, as shown
in Table E} Because of the resource and space consideration,
we mainly use the ImageNet and CIFAR-10 for comparison
and CIFAR-10 for ablation. GTSRB and VGG-Face are used
to demonstrate the generality of our method. Note that, The
test data has no overlap with the training data, and the trigger
pattern is input-aware and not seen during the training phase.

Network structures. For trigger image generation, we simply
adopt the UNet [53|] and the PatchGAN [54] as the default
network structure of IN and the discriminator D respectively,
which are both widely used in many image-to-image tasks
[48]], [55], [56]. For guidance extractor GE, we design a
simple auto-encoder-like network. The encoder consists of
three residual blocks with stride 2, symmetrically, and the
decoder consists of three residual upsampling blocks to ensure
the output resolution to be same as the input resolution. To
further enhance its learning capacity, several residual blocks
are also inserted between the encoder and the decoder. In
Table [[I| and Table we provide the details of the injection
network IN and the guidance extractor GE respectively.

TABLE I
THE STATICS OF DATASETS.

Dataset | # Labels | Input Size | # Training / Testing Images
CIFAR-10 10 32 x 32 50000 / 5000
GTSRB 13 64 x 64 4772/ 293
ImageNet 100 |224 x 224 126689 / 5000
VGG-Face | 500 |224 x 224 135712 / 3147

Besides, we chop up each poisoned image into 16 x 16
patches for the discriminator D.

As for network structures of the victim classifier, we
consider four popular recognition networks: ResNet-18 [57]],
ResNeXt [58]], DenseNet [59] and VGG-19 [60]. In the fol-
lowing experiments, we adopt VGG-19 as the default network
and mainly showcase the results on CIFAR-10 and ImageNet.
The results of other network structures and datasets are used
to demonstrate the generality of our method.

Metrics. We use Clean Data Accuracy (CDA) to evaluate the
influence of backdoor attacks on the original tasks, and use
Attack Success Rate (ASR) to evaluate the effectiveness of
backdoor attacks. Specifically, CDA is the performance on the
clean test set, i.e., the ratio of trigger-free test images that are
correctly predicted to their ground-truth labels; and ASR is
the performance on the pre-defined poisoned test set, i.e., the
ratio of poisoned images that are correctly classified as the
target attack labels.

For invisibility evaluation, we compare clean and poisoned
images with three famous metrics, PSNR, SSIM, and LPIPS,
where LPIPS adopts the features of the pre-trained AlexNet.
Besides the above metrics, we also conduct a user study for
human inspection testing.

Default settings for training. For trigger pattern generation,
we use the Sobel operator [42] to extract the edge. We conduct
comparisons with the single-label attack by default and inject
the poison ink (R:80, G:160, B:80) into the edge area with the
well-trained injection network IN. Then, 10% pollution rate
is considered for all tasks, and the first class of each dataset
is chosen as the target attack label. We train the injection
network IN for 200 epochs by default. All the victim models
are trained using the SGD optimizer with a momentum of 0.9
and an initial learning rate of 0.01, which is further set as
0.001 and 0.0001 at epoch 150 and epoch 200, respectively.
For the other methods to compare with, we adopt the default
setting in their official implementations.

B. Invisibility of Poison Ink

We first compare the invisibility of our method with many
popular backdoor attack methods, and we follow their default
implementation for fair comparisons.

In Figure[2] we showcase more visual comparison with other
popular attack methods on ImageNet dataset and CIFAR-10
dataset. In detail, we can see that the poisoned image generated
by BadNets [[13]], Blend [15], SIG [[61] and Refool [24]] can be
easily distinguished from the clean images, due to the image-
agnostic trigger pattern and simple embedding strategy. As for
SPM [22], the checkboard-like pattern is also easily observed
in the smooth region of the image. In contrast, LSB [25] and
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TABLE II
THE DETAILED NETWORK STRUCTURE OF THE INJECTION NETWORK IN.
Module Name Layer Name Kernel Stride Channel I/0 Normalization Activation Input
convl 4x4 2 6/64 BN LeakyReLU Cat[(Images, Trigger Pattern), 1]
conv2 4x4 2 64/128 BN LeakyReLU convl
Encoder conv3 4x4 2 128/256 BN LeakyReLU conv2
conv4 4x4 2 256/512 BN LeakyReLU conv3
conv5 4x4 2 512/512 BN LeakyReLU conv4
transpose_conv 1 4x4 2 512/512 BN ReLU conv5
transpose_conv2 4x4 2 1024/256 BN ReLU transpose_convl + conv4
Decoder transpose_conv3 4x4 2 512/128 BN ReLU transpose_conv2 + conv3
transpose_conv4 4x4 2 256/64 BN ReLU transpose_conv3 + conv2
transpose_conv>S 4x4 2 128/3 BN Sigmoid transpose_conv4 + convl
TABLE III
THE DETAILED NETWORK STRUCTURE OF THE GUIDANCE EXTRACTOR GE.
Module Name Layer Name Kernel Stride Channel I/O Normalization Activation Input
convl 3x3 1 3/128 IN ReLU Poisoned Images
Encoder conv2 3x3 1 128/128 IN ReLLU convl
conv3 3x3 2 128/128 IN ReLU conv2
res_block1 3x3 1 128/128 IN ReLLU conv3
res_block2 3x3 1 128/128 IN ReLU res_block1
res_block3 3x3 1 128/128 IN ReLU res_block2
Residual Learning res_block4 3x3 1 128/128 IN ReLU res_block3
res_block5 3x3 1 128/128 IN ReLLU res_block4
res_block6 3x3 1 128/128 IN RelLU res_block5
res_block7 3x3 1 128/128 IN ReLLU res_block6
transpose_conv 1 4x4 2 128/128 IN ReLLU res_block7
Decoder transpose_conv2 3x3 1 128/128 IN ReLU transpose_conv 1
transpose_conv3 1x1 1 128/3 IN - transpose_conv2
TABLE IV
COMPARISON OF INVISIBILITY (STEALTHINESS) WITH EXISTING POPULAR BACKDOOR ATTACK METHODS ON IMAGENET DATASET.
Metric BadNets [[13] Blend [15] SIG [23] Refool [24] SPM [22] LSB [25] Ours
PSNR 1 27.03 19.18 25.12 16.59 38.65 51.14 41.62
SSIM 1t 0.9921 0.7921 0.8988 0.7701 0.9665 0.9975 0.9915
LPIPS | 0.0149 0.2097 0.0532 0.2461 0.0022 0.0003 0.0020
Fooling Rate (%) 0 0 0 0 38.33 51.67 53.33
TABLE V
COMPARISON OF INVISIBILITY (STEALTHINESS) WITH EXISTING POPULAR BACKDOOR ATTACK METHODS ON CIFAR-10 DATASET.
Metric BadNets [13] Blend [15] SIG [23] Refool [24] SPM [22] LSB [25] Ours
PSNR 1 25.68 21.29 25.12 19.38 38.94 51.13 42.95
SSIM 1 0.9833 0.8810 0.8250 0.8243 0.9884 0.9991 0.9961
LPIPS | 0.0009 0.0240 0.0400 0.0397 0.0001 0.00001 0.0001
Fooling Rate (%) 0 0 0 0 16.67 43.33 46.67

Poison Ink achieve better invisibility, and the embedded poison
is imperceptible.

In Table and Table we provide the quantitative
comparison of invisibility on ImageNet dataset and CIFAR-
10 dataset. Poison Ink outperforms the majority of attacks
under all the evaluation metrics except LSB [25]], which are
consistent with the visual comparison. As for LSB, it also
has good invisibility but is very fragile to common data
transformations in the attacking stage (shown in Table
and Table [VII). Moreover, in Table we observe that LSB
fails on CIFAR-10 dataset, even without transformation-based
pre-processing on its poisoned images. It may be because the
trigger pattern of LSB on the CIFAR-10 dataset is regarded
as random noise and ignored by the target classifier.

We further conduct a user study for human inspection
testing. In detail, we randomly selected 50 clean images from

ImageNet dataset and CIFAR-10 dataset and generated the
corresponding 50 poisoned images for each backdoor attack
method. Then in each question, we randomly display one
image pair (one clean image and one corresponding poisoned
image) and ask the user to select which one is the clean
image. A total of 30 volunteers (12 females and 18 males,
user ages range from 18 to 30, and all users are familiar
with backdoor attacks) are involved in our user study. Thus,
there are 1500 answers for each attack method. We compare
the fooling rate of each method as shown in the last row of
Table [TV] and Table [V] It can be observed that the fooling rate
of LSB and our method both are close to 50%, a probability
of random guessing, while the poisoned images generated by
other remaining methods can be easily judged as unclean.
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BadNets Blend

Clean

Fig. 2. Visual comparison with existing popular attack methods. The first three rows are examples on ImageNet dataset and the last two rows are examples
on CIFAR-10 dataset. “Clean” denotes the original trigger-free image.

TABLE VI
COMPARISON OF THE ROBUSTNESS AGAINST DIFFERENT DATA TRANSFORMATIONS WITH POPULAR ATTACK METHODS ON IMAGENET DATASET. “DT”
DENOTES DATA TRANSFORMATION. “S&P” AND “C&R” MEANS PADDING AFTER SHRINKING AND RESIZING AFTER CROPPING, RESPECTIVELY. THE RED
FONT REPRESENTS THE "WORST-CASE” PERFORMANCE.

Metric CDA (%) ASR (%)
DT None Flip S&P Rot 15 C&R Average None Flip S&P Rot 15 C&R Average

BadNets [13] 80.78 80.32 73.90 78.52 75.82 77.87 100.00 99.98 31.46 6.08 55.34 58.57
Blend [15]° 80.12 80.30 74.72 77.52 76.30 77.79 99.98 99.96 96.40 69.72 89.46 91.10
SIG [23] 80.42 80.34 74.82 77.90 76.40 77.98 100.00 99.98 51.84 54.20 68.94 74.99
Refool [24 80.36 80.10 74.60 78.24 75.84 77.83 99.36 99.32 98.70 92.00 92.24 96.32
SPM [22 80.42 80.10 73.16 77.60 76.10 77.48 99.94 99.92 53.94 1.04 0.90 51.15
LSB |25 80.64 80.28 73.60 77.82 75.98 77.66 97.32 97.22 11.12 0.92 0.98 41.51
Ours 80.56 80.40 74.32 78.10 76.64 78.00 98.48 98.62 98.20 96.10 96.12 97.50

C. Influence on Pristine Performance

Besides the stealthiness of poisoned images, another critical
aspect for evaluating the backdoor attack is its influence
on pristine performance. In other words, when training the
backdoor model with the mixture of the trigger set and the
clean set, the model should keep its original performance on
the clean set. In the left part of Table [VI and Table [VII, we
show the Clean Data Accuracy (CDA) of backdoored models
trained with the trigger set generated by different methods. It
can be seen that the backdoored models of Poison Ink have
overall higher CDA than other baselines, demonstrating the
stealthiness during the backdoor model training. Even in the
worst case, the CDA is still comparable with other methods.
Here, the CDA of the original model without backdoor attack
is 80.84% on ImageNet dataset and 91.41% on CIFAR-10
dataset, respectively.

D. Robustness of Poison Ink

To address the limitation to data transformation, a cor-
responding solution [[19] was proposed that conducting a
data transformation on the training images with the trigger
before feeding into the training process, which can be seen as
adversarial training. In our threat model, the attacker cannot
control the training strategy. Nevertheless, in this section, we
train all backdoor attacks in such an enhanced training strategy
for a fair comparison.

In the right part of Table [VI] we give the ASR of different
attack methods on ImageNet dataset without (None) or with
data transformation attack, respectively. With the data trans-
formation attack, the poisoned images will be pre-processed
by different data transformation techniques and then fed into
the victim model for testing. We also provide the results in
the average case and the worst case in order to evaluate these
attack methods comprehensively. It can be seen that, compared
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TABLE VII
COMPARISON OF THE ROBUSTNESS AGAINST DIFFERENT DATA TRANSFORMATIONS WITH POPULAR ATTACK METHODS ON CIFAR-10 DATASET. “DT”
DENOTES DATA TRANSFORMATION. “S&P” AND “C&R” MEANS PADDING AFTER SHRINKING AND RESIZING AFTER CROPPING, RESPECTIVELY. THE RED
FONT REPRESENTS THE "WORST-CASE” PERFORMANCE.

Metric CDA (%) ASR (%)
DT None Flip S&P Rot 15 C&R Average None Flip S&P Rot 15 C&R Average
BadNets [13] 91.22 91.15 86.01 77.76 81.08 85.44 100 99.98 22.00 77.26 39.77 67.80
Blend [15] 93.32 93.01 89.89 86.97 85.28 89.69 99.82 99.79 92.39 98.95 74.34 93.06
SIG [23] 92.64 93.08 89.34 86.23 85.43 89.34 99.92 99.95 99.86 99.8 97.62 99.43
Refool [24] 92.40 92.57 88.72 86.20 83.34 88.65 93.87 93.64 89.59 93.22 93.63 92.79
SPM [22] 93.05 93.39 89.63 84.51 84.75 89.07 99.86 99.89 9.72 68.42 8.96 57.37
LSB [25] 87.86 87.22 84.28 81.26 77.54 83.63 14.93 15.36 15.14 16.35 17.03 15.76
Ours 92.92 92.77 89.60 87.09 85.15 89.51 99.92 99.97 83.12 96.94 87.46 93.48
PSNR Blend PSNR SIG PSNR Refool PSNR

SPM PSNR PSNR

Ours PSNR

Fig. 3. Comparison with popular attack methods on ImageNet dataset in terms of both stealthiness and robustness. PSNR is 2x original value. CDA and
ASR mean the performance under no data transformation, CDA* and ASR* denote the average performance under different data transformations, and CDA"

and ASR” are calculated under the worst case.

with other popular attack methods, Poison Ink achieves a
higher ASR in both the average and worst cases, when facing
different transformations. In contrast, some baseline methods
like SPM and LSB will totally fail when some specific
transformations are applied. Compared to Refool, our method
outperforms narrowly in terms of robustness but outperforms
in stealthiness by a large margin, as shown in Table

Although the enhanced training strategy improves the ro-
bustness to some extent, overfitting will be introduced. Taking
SPM as an example, such a strategy improves the robustness
against rotation but fails on other data transformations. We
explain that SPM tends to only focus on getting robust against
rotation. Conversely, Poison Ink mitigates such overfitting and
achieves an outstanding or comparable performance in terms
of the CDA and the ASR.

As shown in Table we provide the quantitative com-
parison of robustness to data transformations on CIFAR-10
dataset. Overall, Poison Ink guarantees comparable robustness
on CIFAR-10 dataset with many existing attack methods such
as Blend and SIG, which nevertheless have worse invisibility
compared with our method (shown in Figure [2] and Table [V).

In Figure 3] and Figure [ we plot radar charts to illustrate that
our method achieves a much better balance between visual
quality and robustness.

E. Comparison with More Invisible Backdoor Attacks

Besides the classic backdoor attacks mentioned above, we
further consider some recent invisible backdoor attacks, such
as WaNet [62], FTrojan [63], and Advdoor [64]. In detail,
WaNet generates backdoor images via subtle image warping,
and FTrojan injects mid- and high-frequency triggers in each
block with medium magnitude, both of which utilize input-
aware trigger patterns. Advdoor generates triggers by the tar-
geted universal adversarial perturbation (TUAP). Specifically,
some inputs in a category are used to obtain input-specific
adversarial perturbations firstly, which are further integrated to
generate the final TUAP for the target category. Such TUAPs
belong to the static trigger patterns, which are further directly
imposed onto the clean images to generate final triggers.

All comparison experiments are conducted on CIFAR-10
dataset, and we train all backdoored models with the enhanced
training strategy [19]] for a fair comparison. We calculate the
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BadNet  PSNR

Blend PSNR

SIG PSNR Refool PSNR

Fig. 4. Comparison with popular attack methods on CIFAR-10 dataset in terms of both stealthiness and robustness. PSNR is 2x original value.CDA and
ASR mean the performance under no data transformation, CDA* and ASR* denote the average performance under different data transformations, and CDA

and ASR” are calculated under the worst case.

TABLE VIII TABLE IX
THE COMPARISON RESULTS WITH RECENT INVISIBLE BACKDOOR ATTACK COMPARISON OF THE ROBUSTNESS AGAINST DIFFERENT DATA
METHODS. TRANSFORMATIONS WITH FTROJAN ON CIFAR-10 DATASET. T
DENOTES WITHOUT THE ENHANCED TRAINING STRATEGY.
Methods CDA(%) | ASR(%) | PSNR 1 | SSIM 1 | LIPIS |

WaNet [62] 83.47 26.10 32.15 0.9822 0.0042 Methods None Flip S&P Rot 15 | C&R | Average

FTrojan || 87.47 98.21 41.10 0.9915 0.0001 FTrojan [[63]] 97.57 | 97.35 | 99.07 97.59 99.46 98.21

Advdoor [64] 87.69 99.71 22.97 0.9101 0.0109 ours 99.92 | 99.97 | 83.12 96.94 87.46 93.48

ours 89.51 93.48 42.95 0.9961 0.0001 FTrojan |]63]] i 100 100 9.99 77.99 9.56 59.51

ours T 99.92 | 99.98 | 39.82 96.24 82.39 83.67

FTrojan Advdoor

Fig. 5. Visual examples of a poisoned image generated by invisible backdoor
attack methods.

average CDA and ASR under different data transformations.
As shown in Table and Figure [5} Advdoor is not stealthy
enough due to its static trigger patterns, while WaNet is fragile
to data transformations. Compared to Advdoor and WaNet,
FTrojan and our method perform well in both stealthiness and
robustness. If training backdoored model without the enhanced
strategy, poison ink achieves stronger robustness than FTrojan
(ASR: 83.67% vs. 59.51% in Table [IX).

FE. Generality and Flexibility of Poison Ink

To demonstrate the generality of our attack to different
datasets and network structures, we run the controlled ex-
periments with VGG-19 on different datasets and different
network structures on CIFAR-10 dataset. Poison Ink is imper-
ceptible among various datasets, with visual and quantitative
results shown in Figure [§] and Table [XI| respectively. In

Figure [6] we can see that the Guidance Extractor informs the
Injection Network to preserve the edge trigger well. Besides,
Table [X] shows that our attack still guarantees a high ASR on
different datasets and architectures while only decreasing the
pristine performance slightly.

For the flexibility of Poison Ink, we further consider three
more attack scenarios: training the target model from the pre-
trained model, with multiple target labels, and under different
ratios. All these experiments are conducted on CIFAR-10
dataset. In the former scenario, we set the initial learning rate
as 0.001, and we observe in the left of Figure m that the ASR
achieves nearly 100% after only 16 epochs. For the multiple-
label attack, we inject 10 different poison ink (color) to
generate the corresponding poisoned image for 10 target labels
of CIFAR-10 dataset. As displayed in the middle of Figure [7]
ASR for most target label attacks is comparable with single
label attack, and so is the CDA (single:93.17, multiple:91.91).
Besides, different ratios are also considered, and we can see
on the right of Figure [/| that Poison Ink attacks successfully
under different ratios, which will be further discussed in the
ablation study.
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TABLE X
THE PERFORMANCE (OMA / CDA / ASR (%)) OF POISON INK ON DIFFERENT DATASETS AND DIFFERENT NETWORK STRUCTURES. WE ADOPT VGG-19
AND CIFAR-10 AS DEFAULT NETWORK ARCHITECTURE AND DEFAULT DATASET, RESPECTIVELY. “OMA” DENOTES ACCURACY OF THE ORIGINAL
MODEL TRAINED ON TOTAL CLEAN DATASET.

Settings GTSRB VGG-Face

ResNet-18 ResNeXt DenseNet

Performance 87.71 /1 88.74 1 98.63

92.73 /92.41 / 99.44

91.41 /90.87 / 99.89

95.53/95.05 /7 100 90.06 / 89.47 / 99.76

Fig. 6. Visual examples of Poison Ink on different datasets
and the original edge trigger extracted by GE, respectively.
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~——Val (poisoned image)

Attack Success Rate (%)
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Fig. 7. The flexibility of Poison Ink. Left: the train-val convergence curve for training from pre-trained VGG-19; Middle: the attack success rate (ASR) of
Poison Ink trained with multiple target labels, the orange dot line denotes the ASR of Poison Ink trained with single target label; Right: The performance
(CDA/ASR (%)) of infected model with different pollution ratios The blue dot line denotes the performance of original clean model. All three experiments

are conducted on the CIFAR-10 dataset.

TABLE XI
QUANTITATIVE RESULTS OF THE STEALTHINESS OF OUR POISON INK ON
DIFFERENT DATASETS.

Invisibility PSNR 1 SSIM 1 LPIPS |
CIFAR-10 42.95 0.9961 0.0001
GTSRB 38.05 0.9965 0.0001
ImageNet 41.62 0.9915 0.0020
VGG-Face 45.34 0.9916 0.0011

G. Resistance to Defense Techniques

To resist backdoor attacks, many different defense tech-
niques have been proposed recently. In this section, we will
test the resistance of Poison Ink against different defense tech-
niques, which are further categorized as data-based defense,
model-based defense, and defense with the meta classifier.

Data-based defense. Februus utilizes Grad-CAM to
visualize the attention map of the target image and regards
the area with the highest score as the trigger region, then
removes this region and restores it with image inpainting
techniques. We first provide the attention map in Figure [§]
During visualization, we feed the clean model and our infected
model with both clean images and the corresponding poisoned
images generated by Poison Ink. We find that the infected

clean input poisoned input

|lepow ueso

|Japow pajosjul

Fig. 8. The Grad-CAM of clean input and poisoned input according to clean
model and infected model. As shown in the figure, Grad-CAM fails to detect
trigger regions of those generated by our attack, which is indistinguishable
with the benign case.

model also focuses on the main content area of the input,
which is similar to the clean model. Then, we remove such
a region and directly restore it with the same region of the
corresponding clean image. After trigger pattern removal, the
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0.4763 0.3391 0.3193 0.4340 0.3287

airplane automobile bird cat deer

0.3514 0.3983 0.3662 0.3361

dog frog horse ship truck

0.5750 0.6285 0.6206 0.5025 0.3889

airplane automobile bird cat deer

0.4777 0.4785 0.3298 0.3573 0.4382

dog frog horse ship truck

Fig. 9. The activation clustering results for each class on the CIFAR-10
dataset. Silhouette score is given on the top of each subfigure, and a high
silhouette score indicates that two clusters fit the data well. The top part is
for the single label attack while the bottom part is for the multiple label attack.

ASR of Poison Ink still guarantees 98.84% and 98.01% on
CIFAR-10 and ImageNet, respectively.

STRIP [30] blends input images with a set of clean images
from different classes and compares the entropy of the pre-
diction before and after blending. As shown in Figure [I0a]
the entropy distribution of Poison Ink looks very similar to
that of the clean model, which means that Poison Ink behaves
normally as the benign (clean) model.

Model-based defense. For model-based defense, we first try
the totally white-box defense Fine-pruning [32]. As shown in
Figure [T0b] the ASR of Poison Ink remains 92.6% with a
50% pruning rate on the ImageNet, while the performance on
clean data decreases significantly. On CIFAR-10 dataset, we
observe that the ASR of Poison Ink still stays at 100% even
with a 90% pruning rate. Next, we run the official code of ABS
[34] on the only supported CIFAR-10 dataset, and find ABS
fails to detect our method. In Figure 0] we find that Activation
Clustering [33] can infer the infected class (“‘airplane”) by a
larger silhouette score, which is based on the assumption that
the infected class will induce more overfitting. However, it
cannot find the true poisoned images with a large false alarm
(TPR:0.0002, FPR:0.984). Moreover, poison ink can pollute all
labels, while Activation Clustering cannot handle this case, as
shown in the bottom of Figure [9}

Then, we consider Neural Cleanse [35], which is designed
for small and static triggers. It first reverses the trigger pattern
based on the optimization method, then runs an anomaly
detection among all reversed trigger patterns from each label.
It defines a model as the infected model by Anomaly Index
larger than the threshold ¢ = 2. As shown in Figure
the Anomaly Index for our backdoored model is both below
the threshold on CIFAR-10 dataset and ImageNet dataset.
Besides, the infected label found by Neural Cleanse is empty
on CIFAR-10 dataset, and is wrong on ImageNet Dataset
(#97 not #0). Based on Neural Cleanse, TABOR [36] adds
more constraints for the reversed trigger pattern during the

optimization process, which reduces the false positive rate but
costs more computation time. The corresponding Anomaly
Index on CIFAR-10 dataset is 1.5938 (clean mode:1.0806),
and some visual results of reversed triggers are further shown
in Figure[I0d] On ImageNet, TABOR costs 7 hours for a single
label, and there still exist false alarms of the Anomaly Index
(clean model:4.1593; Poison Ink:2.3125).

Rather than using the single reversed trigger, MESA [37]

models the trigger distribution and uses many generated trig-
gers to implement backdoor removal. Once our backdoored
model attacks all the labels, it can only find partially polluted
labels, and our method can still keep a high ASR after
backdoor removal, as shown in Figure @ For TND, it
provides a faster detection in the data-scarce scenario, but it
can also be evaded by Poison Ink easily.
Meta classifiers. We further try the recent meta classifier
based defense method ULPs [39] on CIFAR-10 dataset as
an example. ULPs classifies the suspect model as “clean” or
“corrupted” by feeding the universal patterns to the suspect
model and analyzing its output. The fewer the universal pat-
terns required, the weaker the backdoor attack is. In general, 5
Universal Litmus Patterns (ULPs) can detect backdoor attacks
successfully. The corresponding experiment shows that our
backdoored model is classified as the clean one even with
10 ULPs.

H. Adaptive Robustness Evaluation

Adaptive robustness evaluation has become the standard in
adversarial machine learning in recent years [65], [66]. In this
section, we evaluate the resistance of Poison Ink against some
adaptive defense techniques, which takes into account the fact
that trigger patterns are not static and may be hidden in the
image edges.

We first test the robustness of Poison Ink to adaptive pre-
processing operations such as Gaussian Noise and Gaussian
Blur, which may mitigate the Poison Ink by disrupting the
image edges. In addition, we adopt three data augmentations
used in [67] for sanitizing backdoor attacks. In detail, Mixup
means blending inputs with clean images, while Cutout and
CutMix denote that patches of inputs are randomly cut and
pasted with nothing or clean images, respectively. We display
quantitative results on ImageNet dataset and CIFAR-10 dataset
in Table XTI The results suggest that Poison Ink can still keep
a relatively high ASR after suffering from such pre-processing
operations.

RCA-SOC [28] is proposed as a defense against evasion
attacks by refocusing on critical areas and strengthening object
contours. Specifically, pixel channel attention is adopted to
focus on the critical feature areas, and pixel plane attention is
designed to focus more on feature pixels, where the key pixels
of the image are emphasized and the adversarial perturbed
pixels are weakened. We utilize RCA-SOC to filter the inputs
from CIFAR-10 dataset and find the CDA degrades heavily
(from 92.92% to 11.47%) while the ASR (77.75%) is still
acceptable. We further showcase some visual examples in
Figure and we find that the perturbed pixels by Poison Ink
are preserved to some extent after RCA-SOC, which makes
our attack still succeed.
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Fig. 10. Some visual and quantitative results showing the resistance of Poison Ink to some state-of-the-art defense techniques.

TABLE XII

1 2 3 4 5 6
Targets

ROBUSTNESS OF POISON INK TO OTHER ADAPTIVE PRE-PROCESSING OPERATIONS. THE VARIANCE OF GAUSSIAN NOISE IS SET AS 0.01, THE KERNEL
SIZE OF GAUSSIAN BLUR IS 3 X3, AND THREE PRE-PROCESSING OPERATIONS USED IN [[67]] ARE ALSO ADOPTED. THE PERFORMANCE DEGRADATION IS
SHOWN IN THE BRACKET.

Dataset ImageNet CIFAR-10
Pre-processing CDA (%) ASR (%) CDA (%) ASR (%)
Gaussian Noise 56.28 (—24.28) 88.36 (—10.12) 55.17 (-317.75) 89.49 (—10.43)
Gaussian Blur 73.84 (—6.72) 90.36 (—8.12) 52.53 (—40.39) 40.60 (—59.32)
Mixup 22.78 (—57.78) 73.62 (—24.86) 45.77 (—47.15) 85.74 (—14.18)
Cutout 56.44 (-24.12) 90.40 (—8.08) 65.82 (—27.10) 72.39 (-27.53)
CutMix 47.24 (-33.32) 90.62 (—7.86) 61.79 (-31.13) 85.11 (—14.11)
TABLE XIII

Fig. 11. Visual examples of inputs processed by RCA-SOC (RS) [28].

Scharr Prewitt Roberts Sobel-2 Sobel-3

Fig. 12.
extraction algorithms.

Visual examples of edge structures extracted by different edge

To remove the poison information more accurately, we
further assume that the defender can utilize edge extraction al-
gorithms to locate the edge area and then replace this area with
another image. For edge extraction algorithms, we consider
the same algorithm (“Sobel”) used for the trigger pattern gen-
eration, other algorithms (“Scharr”,“Prewitt”,”Roberts”) with
the same parameters, and the same algorithm with different
parameters (“Sobel-2”,“Sobel-3”). Some visual examples are
provided in Figure [I2} For the replacement of the edge
area, we first consider the above-mentioned solution, namely,

THE PERFORMANCE (CDA / ASR) IN THE CASE OF REPLACING EDGE
AREAS WITH THE CORRESPONDING ORIGINAL (ORI) CLEAN IMAGE OR
THE PURE IMAGE WITH A CONSTANT RGB VALUE. WE UTILIZE
DIFFERENT EDGE EXTRACTION ALGORITHMS TO LOCATE THE EDGE AREA.

(%) Sobel | Ccharr | Prewitt | Roberts | Sobel-2 | Sobel-3
CDA_pure | 60.98 | 60.71 61.96 65.3 84.17 90.49
ASR_ori | 66.39 | 65.57 67.76 74.57 94.56 99.14
ASR_pure | 57.28 | 56.59 58.34 62.15 88.25 97.89

directly using the corresponding original clean image (denote
as “ori”’), which however is not accessible in practice. Never-
theless, the defender can leverage an inpainting algorithm to
restore the removed area [31]]. Here, we use a pure image with
a constant RGB value (e.g.,125) as the restored area, which
can be regarded as the worst case of inpainting. As shown in
Table [XITI] Poison Ink can still achieve above 55% ASR in all
cases mentioned above. We explain that the poison information
is not fully removed in such adaptive defenses. Besides, in the
case with a relatively low ASR, the corresponding CDA also
degrades a lot, which is unacceptable for the defender.

We also consider adversarial training [[68]], which is pro-
posed to defend against adversarial attacks. In detail, Geiping
et al. [69)] extend adversarial training to defend against back-
door attacks by generating poisoned images during training
and injecting them into training batches. We conduct the
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TABLE XIV

COMPARISON WITH OTHER ATTACK METHODS UNDER DIFFERENT POLLUTION RATIO. WE TAKE RESULTS ON CIFAR-10 DATASET FOR EXAMPLE.
Metric Ratio BadNets [13] Blend [15] SIG [23] Refool [24] SPM [22] LSB [25] Ours
1% 88.20 89.55 89.71 89.72 89.58 89.26 89.25

CDA 3% 87.38 89.89 89.74 89.20 88.98 88.18 89.65
5% 87.13 89.60 89.64 89.16 88.90 86.98 89.69

10% 85.44 89.69 89.34 88.65 89.07 83.63 89.51

1% 61.76 84.79 98.79 75.86 57.15 10.32 10.51

ASR 3% 66.55 89.39 99.23 87.16 58.53 10.91 94.22
5% 65.36 90.99 99.47 89.79 57.69 11.67 93.58

10% 67.80 93.06 99.43 92.79 57.37 15.76 93.48

TABLE XV degrades from 99.95% to 43.73% when faced with resizing,

QUANTITATIVE RESULTS OF THE STEALTHINESS WITH DIFFERENT LOSS
CONSTRAINTS ON THE CIFAR-10 DATASET.

Loss Constraints PSNR 1 SSIM t LPIPS |
Liny 41.24 0.9959 0.0002
Ladv 8.18 0.1482 0.2870

Liny & Lady 42.95 0.9961 0.0001
clean Liny Lady Liny&Logy

u

¢ y 9

» \ > \
Fig. 13. Output examples of injection network /N trained with different loss
constraints on CIFAR-10 dataset.

corresponding experiments on CIFAR-10 dataset, adopt s =
0.75 as the poison immunity, and consider the from-scratch
scenario. To generate poisoned images, we utilize the most
similar watermark-based method [12] provided by the official
code El However, the ASR of Poison Ink even increases
by 6.49% after adversarial training. The possible reason is
that adversarial training forces the model to capture more
robust features, making the edge structures learned better. This
finding warrants more study in future work, as adversarial
training is one of the only truly effective methods we have
to date to defend against adversarial attacks.

1. Ablation Study

Importance of our design. In this experiment, we take
CIFAR-10 dataset as an example to ablate our design. First, we
use an input-agnostic image rather than the edge structure as
the trigger pattern and leverage the same invisible injection
network to create the poisoned image. However, we find
this strategy will totally fail, and the ASR is only 13.42%
even without pre-processing. Very recently, Li et al. [70] also
proposed an invisible input-specific backdoor attack, whose
framework is similar to us but does not considering the
structure information. To double confirm it, we also conduct
comparative experiments on CIFAR-10 dataset and find it fails
as expected.

Second, we try to discard the interference layer during
the injection network training. Under this setting, the ASR

Uhttps://github.com/JonasGeiping/data-poisoning

demonstrating the importance of the interference layer.

Influence of pollution ratio. In our default setting, we set
the pollution ratio as 10%. In Table we further try more
pollution ratios on CIFAR-10 dataset and show the robustness
and the stealthiness of different methods, where we use the
average CDA and ASR to represent the robustness against data
transformations. There exists a trade-off between the CAD
and ASR under different ratios. Overall, compared with other
methods, our method performs well both in stealthiness and
robustness in most cases.

However, poison ink will fail under a meager pollution
ratio like 1%. In our threat model, we cannot control the
training strategy. We try more invisible backdoor attacks such
as WaNet [62] and FTrojan [63]] under the 1% pollution ratio,
and find they also fail with a low ASR in our threat model
(WaNet: 10.83% and FTrojan: 10.92%). If we control the
training strategy like in WaNet [62], namely, adding poisoned
images in every training batch, Poison Ink can succeed with
above 90% ASR. Besides, if we first train the model only on
trigger images and then fine-tune it on clean images, we can
also achieve above 90% ASR. In conclusion, the model needs
more information to remember the trigger pattern when it is
stealthy enough.

Influence of Loss Constraints on Stealthiness. In our default
setting, we utilize both invisibility loss L;,, and adversarial
loss L,4v to achieve desirable stealthiness. As shown in
Table appending adversarial loss L4, after invisibility
loss L;n, can improve the image quality slightly, and only
using L4, Will cause poor image quality, where injection
network mainly focuses on the high-level information of im-
ages. Some visual results are also showcased in Figure [I3] In
practice, adopting or discarding the adversarial loss is flexible,
which depends on the desired balance between stealthiness and
robustness.

VI. CONCLUSION

In this paper, we point out the limitations of existing back-
door attacks regarding stealthiness and robustness. To address
such limitations, we propose a new backdoor attack method
“Poison Ink”. It utilizes the image structure as the carrier of
poison information to generate trigger patterns and leverage
a deep injection network to hide the trigger patterns into
the cover images in an invisible way. Extensive experiments
demonstrate that Poison Ink is superior to existing methods
in stealthiness, robustness, generality and flexibility. Besides,
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Poison Ink is resistant to many state-of-the-art defense tech-
niques. It is interesting to explore backdoor attacks in the
frequency domain, and we leave it as future work.
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