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Adversarial examples can easily fool existing powerful deep neural networks. However, we
find that the attack ability of most existing adversarial attack methods is significantly
degraded once the generated adversarial examples are shown on screen devices and are
further captured. This is mainly attributed to two challenges: (1) Extra noises and variance
during the capturing process, such as lens distortion and diverse capturing angle. (2) They
get stuck in a self-contradictory problem between visual quality and attack ability. Inspired
by the properties of the human visual system (HVS), this paper dedicatedly designs the first
color decomposition-based adversarial example method CDAE for screen devices.
Specifically, it decomposes one regular screen frame into two symmetric adversarial
frames with maximum modifications while theoretically guaranteeing the visual quality
perceived by human observers. Thanks to the powerful generalization ability of the pro-
posed method, we can combine it with most adversarial example generation methods
and achieve state-of-the-art attack ability. Additionally, it can also be used to protect
important information from leakage and attack existing video action recognition networks.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Screens are becoming some of the most common display devices in many application scenarios, such as personal com-
puters, cellphones, cinemas, and traffic electronic signs. Essentially, screens show one image at a time but are refreshed
at a high frequency. In this sense, screen content can be regarded as video streaming. Recently, adversarial example attacks
have become a hot research topic, and many works [4,6,14,19,28,37] have been proposed for different image-based or video-
based applications. There have been some successful physical-world attacks [12,13], including viewpoints, on road sign clas-
sification under various environmental conditions, which pose threats to the security of auto-driving systems. However,
most of these works assume that their inputs are images or videos not captured from screen devices.

Capturing a screen image with a camera has become increasingly popular in real systems. Here we enumerate two very
common scenarios: (1). Auto-driving attack. In auto-driving, electronic street signs are very common. It is possible to add
adversarial perturbations on the original image displayed on an electronic screen to mislead the recognition results by the
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auto-driving systems. Adding adversarial perturbations, which maintain the original visual quality of an image when per-
ceived by human observers, can have serious consequences for an auto-driving system that captures images on an electronic
screen. (2). Leak prevention. In a confidential environment, hardware isolation is often used to prevent the leaking of con-
fidential information. At this time it is difficult to steal confidential documents with traditional methods such as USB flash
drives or sending emails. However, commercial spies (usually authorized employees) can steal a large amount of confidential
information by simply opening many confidential documents on a screen and capturing images with a portable camera, such
as the camera on a mobile phone, using optical character recognition (OCR) to obtain the documents from the pictures, and
then directly transferring the documents to steal the confidential information. We believe that in the process of stealing,
commercial spies can reduce the capacity of the transmitted information as much as possible. Compared with the direct
transmission of high-definition pictures, when OCR is used on pictures to obtain text information and then to obtain the
secret information, the chance of the thieves being caught is greatly reduced. This behavior has occurred many times in real-
ity and is inevitable. To eliminate this security problem, we can add adversarial perturbations when displaying confidential
documents on a screen, which blocks deep learning-based OCR systems from obtaining the right information from screen-
captured pictures and thus prevents information leaks.

Since capturing screens with cameras has become increasingly popular in real systems, we attempt to address the adver-
sarial attack problem for images captured from screen devices. As shown in Fig. 1, this is much more challenging from two
aspects: (1)More complex distortions. The screen capturing process introduces extra noises and variances, such as lens dis-
tortion, moire pattern distortion, light source distortion and diverse capturing angle, which make most current adversarial
attack methods fail. (2) Easily perceived by HVS. On the one hand, small modifications generated by current adversarial
attack methods are still easily perceived by the human visual system (HVS), which makes them not applicable for real appli-
cations. On the other hand, to maintain the attack ability during the capturing process, current methods need to increase the
amount of modification as much as possible. Hence, this is indeed a self-contradictory problem.

Inspired by the property of HVS, we propose to use the classic color mixing principle to solve the above self-contradictory
problem. In other words, when the alternate flickering frequency of two colors is higher than the critical flicker frequency
(CFF), human observers will perceive one fused color. Conversely, an original frame of a picture can be decomposed into
two different frames, which are generated by adding and subtracting the same amount of modification from the original
frame respectively. In this way, once the flickering frequency is high enough (over CFF), these two frames can theoretically
be perceived by HVS to be the same as the original frame even when the modification amount is very large. In this paper, we
refer to this property as the ‘‘color decomposition” property.

Based on this motivation, we successfully circumvent the above self-contrad-ictory problem in the existing methods and
propose the first screen adversarial example generation framework: Color Decomposition based Adversarial Examples
(CDAE). As shown in Fig. 2, we decompose one regular screen frame into two frames, as described above, while guaranteeing
that they are both adversarial examples with the same amount of modification. However, different from previous adversarial
methods, we choose to maximize but not minimize the modification amount so that the generated adversarial examples can
still retain the attack ability after the screen capturing process. Thanks to the aforementioned color decomposition property,
the adversarial examples generated by our method can perfectly maintain the original visual quality when perceived by
human observers.

Our proposed algorithm can be used in scenarios with a single frame and a single photo. The essence of the picture dis-
played on the screen is to reproduce a picture continuously. The only difference between a picture and a video on a display
screen is that a picture maintains the same display as the previous frame and the next frame, while a video displays different
images in the previous frame and the next frame. On common display screens, the display of pictures is essentially the same
Fig. 1. Limitations of existing adversarial example generation methods after screen capture. The left picture is a clean image, and the middle picture is an
image with added adversarial noise, and it was misclassified. However, the right picture shows that after screen capture, the attack ability of adversarial
noise is destroyed.
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Fig. 2. The overall working principle of the proposed CDAE framework for screen devices. The CDAE method decomposes an original image I to two
symmetric adversarial examples by adding and subtracting perturbation d respectively. Thanks to the color mixing principle, the human observer (HVS) can
perceive the original image, while modern cameras can capture noisy adversarial examples.
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as that of videos, that is, a single picture is played repeatedly in a loop with the display refresh frequency as the playback
frequency. Due to the fusion characteristics of the HVS, when the display refresh frequency exceeds CFF, the human visual
system only observes a single picture. The proposed CDAE can generate screen adversarial examples that are imperceptible
to the human eye by making each picture into one adversarial example pair.

Another advantage of our method is its powerful generalization ability. Experiments show that CDAEmethod can be com-
bined with most existing adversarial example methods and significantly improves their robustness and attack ability during
the screen capturing process. As a side benefit, since the shutter frequency of modern cameras is generally much higher than
CFF and does not satisfy the color decomposition property, our method can naturally protect important information from
illegal screenshots or video recordings. This is because, if we apply our CDAE to the screen frames, the content captured
by camera devices is not the fused content and will be very noisy. Moreover, it is also able to attack the following recognition
systems if they exist.

For the leak prevention scenario, if commercial spies have sufficient time and tools, it is indeed possible to perform man-
ual conversion regardless of the time and money required, however, the text adversarial examples we generated make dis-
tinguish detailed information from pictures difficult for the human visual system. Even if much manpower is invested, it is
difficult to obtain complete and correct information. Therefore, our proposed method is effective in preventing information
leaks.

We further demonstrate that the proposed CDAEmethod can be used to generate the first video action recognition adver-
sarial examples against the Two-Stream Network [32]. By converting the original frames into adversarial frame pairs for the
spatial stream network, we find that it can simultaneously be used to attack the spatial stream and flow stream networks,
and then cause the final classification network to definitely fail. The experiments also show that the method achieves good
performance.

In summary, our main contributions are threefold as follows:

� Based on the color decomposition property, we proposed the first screen adversarial example generation framework,
called CDAE, which can theoretically guarantee the visual quality and attack ability of images captured from screen
devices simultaneously.
� We demonstrated the generalization ability of the proposed CDAE method. It can be combined with most existing adver-
sarial methods and achieves state-of-the-art attack abilities. Additionally, it can also naturally protect important informa-
tion from leakages and attacks existing video action recognition networks as side benefits.
� We further proposed the first video action recognition adversarial examples against the Two-Stream Network [32] with
CDAE and achieved very good attack performance in the experiment.

The rest of the paper is organized as follows. In Section 2, we describe the works most closely related to our proposed
method. In Section 3, we propose our CDAE method, which can theoretically guarantee the visual quality and attack ability
of images captured from screen devices. Section 4 shows the experimental setup and experimental results of our CDAE
method compared with other state-of-the-art methods. In Section 5, we mainly discuss the influence of different parameters
on our proposed CDAE method. Section 6 draws the conclusion.
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2. Related work

2.1. Digital adversarial examples

L-BFGS attack [37], which is named by the optimization method they used, was the first optimization-based adversarial
example generation method. Its main idea is to transform the adversarial example generation problem into an optimization
problem and solve it with the L-BFGS optimization method. To further improve the attack ability, Carlini et al. [6] proposed
C&W attack, which is named after initial letters of the authors’ names, to follow the path of L-BFGS attack. They design a
series of loss functions that have a smaller value for adversarial examples but a larger value for clean images so that adver-
sarial examples can be searched by minimizing the loss function. However, unlike the L-BFGS method, this method uses the
Adam algorithm instead of L-BFGS to solve this optimization problem and improve the speed.

Goodfellow et al. [14] pioneered the fast gradient sign function method (FGSM), which creates perturbations with sym-
bols relative to the input loss gradient and uses back propagation to efficiently calculate the required gradient. It has the
advantages of few calculations and fast calculation speeds and the disadvantage of poor attack ability. The Basic Iterative
Method (BIM) [19], sometimes called iterative FGSM (I-FGSM), is an improvement of FGSM with a small step size and mul-
tiple iterations. It has a slightly higher computational cost but greatly improves the attack success rate. Madry et al. [27] fur-
ther found that BIM could be significantly improved by starting with random points. This type of attack is often referred to as
PGD.

Although the above two types of methods have very good attack abilities, they require a large amount of calculations due
to their inherent iterative procedures. To solve this problem, Baluja et al. [4] directly trained a generation model to transform
input images to adversarial examples. This kind of method can be viewed as an accelerated version of optimization-based
and gradient-based methods. By training on a large number of images with the pre-defined attacking objective, these models
do not need to access the target model again and can generate adversarial examples with only a fast forward pass during the
runtime, so they are very fast. GAP [30] is one of the classic generation-based methods. Other representative algorithms
include [48,10,15,44,47].

Although all the above methods can attack recognition models for regular images, their attack ability is significantly
degraded for the images captured from screen devices because of the extra noises and variances added during the capturing
process. Another problem is that the visual quality of the input images is sacrificed.
2.2. Temporal image modulating

Temporary image Modulating is a broad and classical research theory that has been studied for more than 60 years. [31] is
a representative work proposed in 1952, which summarized its theoretical background and potential applications. One of the
key observations is that when two isoluminant colors alternate at sufficiently high frequencies, the human observer typically
perceives only the fused color in an additive way. Based on this theory, many great works [42,46,1] have been proposed in
the past. VRCodes [42] was a novel bar code design based on color decomposition, and can be read by cameras. However, it is
still unobtrusive to the HVS. Kaleido [46] proposed a color decomposition-based video encoding and display system that
does not affect HVS but prevents opponents from using the camera or smart device to record HD video. Abe et al. [1]
designed a system based on color decomposition to embed five different data values using imperceptible color vibrations.

Our work is also motivated and based on this great theory. However, the direct application of this theory to our task is
non-trivial. First, it can only guarantee the attacking ability of only one frame rather than two adjacent symmetric frames.
Second, most previous methods [46,1] consider Lab and XYZ color spaces for color decomposition, which have to be pre-
transformed from the original RGB color space. By contrast, we consider RGB color space decomposition instead. This is
advantageous because it avoids complex color difference formulas such as the CIEDE2000 [26] color difference, which
may cause less chromatic aberration and higher computational efficiency. Third, to make our method general to different
types of adversarial attacking methods, we have dedicatedly designed different types of algorithms, which are shown in
the following parts, for different methods.
2.3. Physical-world adversarial examples

Kurakin et al. [19] first demonstrated that adversarial attacks can be implemented in the physical world. They printed
adversarial examples on papers and then used cameras to capture pictures on the papers. However, subsequent research
[3] found that due to different illumination and angles, camera noise, and other transformations, it is difficult to generate
successful adversarial examples in the physical world. Therefore, to enhance the adaptability of the methods to natural
transformations such as illumination, rotation and camera noise, powerful physical-world adversarial examples require lar-
ger perturbations. Adversarial Patch [5] uses large perturbations to enhance the robustness and generalization ability of the
adversarial examples. By generating a visible fixed-size adversarial patch, adversarial examples can be generated by adding
this patch at any position on the original image. Cameras were used to capture pictures and these special pictures were fed to
deep learning classifiers. This shows that even if captured photos contain the noise from the physical world, a large portion of
adversarial examples will still be misclassified. A similar idea was also used by Evtimov et al. [12] to attack traffic signs. By
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pasting stickers onto a sign to create disturbances, a classifier can be attacked from a different distance at different angles.
Other representative algorithms include [12,23,24].

Though these methods can generate physical adversarial examples, (1) Application scenario. they cannot be directly
applied to screen devices, and (2) Easily perceived. to increase the attack ability, all of these physical-world adversarial
examples generate large perturbations, which inevitably cause these existing adversarial examples to have distortions that
can be easily perceived by HVS and then removed by human observers.

2.4. Video adversarial examples

In addition to the adversarial examples designed for image classifiers, there are some attack methods designed for video
classification systems. For example, Hosseini et al. [17] first proposed an attack method for video classifiers and exploited the
vulnerability in the Google video classification API. Because the underlying API algorithm only processes the first frame of a
video every second, by inserting an attack image into the video each second, the API would only output the tags associated
with the inserted attack image. However, this method is not universal. Li et al. [21] then proposed the first universal adver-
sarial example generation method for video classification. They proposed two different types of perturbations and achieved
an 80% attack success rate on the C3D classification network [39] with the UCF-101 dataset.

However, to the best of our knowledge, there is no attack method designed for the Two-Stream Network [32] yet.

3. Method

3.1. Motivation

Since extra noise is often introduced during the image/video capturing process, the attack ability of adversarial examples
generated by most existing methods degrades considerably when images are captured from screen devices. This is because
these methods are often designed to minimize adversarial perturbations to ensure visual quality. However, small perturba-
tions are be easily overwhelmed by noise and variance captured by screens. That is, most existing methods face a serious
self-contradictory problem between visual quality and attack ability.

Inspired by the color mixing principle of the human vision system, we adopt a totally different idea and circumvent the
above contradiction successfully. This principle [9] can be summarized as ‘‘When the alternating flicker frequency of two
colors is above the CFF, the human observers can only perceive their fused color.” In the RGB color space, it can be for-
mally formulated as:
R ¼ R1 þ R2ð Þ=2
G ¼ G1 þ G2ð Þ=2
B ¼ B1 þ B2ð Þ=2

8><
>:

ð1Þ
where ðR1;G1; B1Þ and ðR2;G2;B2Þ are the original two colors in the RGB color space respectively, and R;G;B is the fused color
perceived by human observers. CFF represents the fluctuation frequency above which human eyes cannot perceive flicker
[2]. Notably, by real human visual tests, we find that this color mixing principle is perfectly valid when the illuminance
change is under some threshold; otherwise, some flickering effects will appear.

For an adversarial example, we consider the dual problem of the color mixing principle, i.e., ‘‘color decomposition”. In
detail, given an original frame image I, we can decompose it into two frames fI � d; I þ dg, where d represents the symmetric
modification value. Regardless of how large d is, as long as these two frames are alternatively shown at a frequency above the
CFF threshold (satisfied by most screen devices), humans can only perceive the original frame I. In this paper, we refer to this
property as the ‘‘color decomposition property”. Recalling that all current adversarial attack methods are based on adding/-
subtracting some adversarial perturbations onto/from the original input image, a natural idea would be to incorporate the
‘‘color decomposition” idea into the adversarial example generation process. In fact, if we can guarantee that I � dand I þ d
are both adversarial examples, even if d is large, humans can still perceive the original frame I, thus theoretically preserving
the original visual quality. Another advantage of a large d is that it can help to maintain the attack ability during the screen
capturing process.

3.2. CDAE: Color decomposition-based adversarial examples

Formally, given an original frame I, previous methods search for an optimal and minimal d to maintain I þ d’s attack abil-
ity. By contrast, as shown in Fig. 2, we aim to generate two symmetric adversarial examples I � d; I þ d. Thanks to the color
decomposition property, we do not need to minimize d to ensure the visual quality but maximize it to retain the attack abil-
ity after screen capture. Although our method can be incorporated with different types of adversarial attack methods, we
first formulate it as an optimization problem with the two basic constraints below:

� Adversarial constraints: I � d and I þ d are both adversarial examples that can attack a given recognition model.
� Boundary constraints: The pixel values of I � d and I þ d must be in the range of 0 to 255.
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The proposed optimization problem can be formulated as:
max
d

DðI; I þ dÞ þ DðI; I � dÞ
s:t: f ðI þ dÞ– f ðIÞ

f ðI � dÞ– f ðIÞ
I þ d 2 0;255½ �n
I � d 2 0;255½ �n

ð2Þ
where D is the distance metric that can be L0; L2 or L1; f is the target recognition model; and I is fixed. The objective is to find
the value of d that maximizes the distances DðI; I þ dÞ and DðI; I � dÞ while ensuring that f ðI � dÞ and f ðI þ dÞ have classifica-
tion labels that are different from the labels of origin f ðIÞ.

Illuminance Constraint. As emphasized above, when the change in illuminance between I � d and I þ d is above some
threshold (+2, �3), humans can perceive some flickering effects. This phenomenon is also highlighted in [29]. Therefore,
to guarantee that there is no impact on the visual quality, we further incorporate an extra illuminance constraint; i.e.:
Y ¼ 0:222485Rþ 0:716905Gþ 0:060610B
YðI � dÞ � YðI þ dÞ <¼ DY

ð3Þ
To demonstrate the generalization ability of our method, we combine our color decomposition-based adversarial example
generation idea with different types of adversarial attack methods. For gradient-based methods, we select I-FGSM [19] as the
basic algorithm. For generation-based methods, we design our generation-based CDAE. For the optimization-based method
[6], because it is too time-consuming, we do not have enough computational resources to perform massive experiments, so
we ignore it in this part. However, we have to emphasize that our method can support it in principle.

Gradient-based CDAE. Directly solving the above objective function defined in Eq. (2) together with the illuminance con-
straint in Eq. (3) is a non-trivial problem, because f is often a very complex recognition model without explicit formulation
and Eq. (3) is a hard constraint. Therefore, we resort to an alternative optimization algorithm to approximate its solution
instead.

I-FGSM [19] is an adversarial example generation method that increases the attack capability by accumulating modifica-
tions in the direction of the gradient during the iteration process. I-FGSM seeks an adversarial example by solving the con-
strained optimization problem [11]:
argmax
d

JðI þ d; xÞ; s:t: kdk1 6 � ð4Þ
where x is the ground-truth label, JðI þ d; xÞ is the loss function, and � is the size of the adversarial perturbation. We use mul-
tiple iterations to help achieve a stronger attack capability and robustness with the same modification amount. We apply the
idea of iteration to generate our gradient-based CDAE method and obtain great benefits.

To generate a pair of adversarial examples I þ d and I � d from a real example I, which satisfies our CDAE bounds,
gradient-based CDAE seeks the adversarial example pair by changing Eq. (4) to the following optimization problem:
argmax
Iþd;I�d

JðI þ d; xÞ þ JðI � d; xÞ

s:t: I þ d 2 0;255½ �n
I � d 2 0;255½ �n
kdk1 6 �

YðI� dÞ � YðI þ dÞ <¼ DY

ð5Þ
where we set � as large as possible to ensure the maximum modification.
Algorithm 1: Color decomposition-based adversarial example (CDAE) generation method
292
Symbols: original frame I, iteration number n, illuminance constraint DY, pixel position ði; jÞ, illuminance Y,
specific adversarial attack method GenAdv
Output: d

Initialize d0 ¼ 0

for k 1 to n do:
Ik� :¼ I � dk�1 ! get frame one
dk :¼ GenAdvðIk�Þ ! adversarial perturbation of Ik�

Ikþ :¼ I þ dk ! get frame two
dk :¼ GenAdvðIkþÞ ! adversarial perturbation of Ikþ

Ik� :¼ I � dk ! update frame one
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Ikþ :¼ I þ dk ! update frame two
293
for pixels ði; jÞ that satisfy YðIkþÞ � YðIk�Þ R ½�DY;DY� do

dk½i; j� :¼ dk�1½i; j� ! rollback to last d
return dn as the final d
As shown in Algorithm 1, we first initialize d with zeros, then for each iteration, we alternatively obtain the adversarial
perturbation of the first decomposed frame I � d and the second decomposed frame I þ d respectively. To ensure that the
change in illuminance between ðI � d; I þ dÞ is always below threshold DY , we roll back to the last d values for positions that
do not satisfy this illuminance constraint.

The experiments show that the adversarial perturbation d first increased during the beginning stage and then converges
to stable values after enough iterations. By alternatively obtaining the adversarial perturbations for the two decomposed
frames, this algorithm can converge well and guarantee I � d and I þ d both adversarial examples.

3.3. Generation-based CDAE

Since the above gradient-based CDAE requires an alternative optimization procedure, such as the underlying gradient-
based adversarial attacking methods, its computational cost is relatively high. To speed it up and make it applicable in
real-time applications, we further propose the generation-based CDAE method.

Similar to many existing end-to-end image generation models based on deep learning, the proposed generation-based
CDAE uses the basic architecture of a convolutional encoder-decoder network. Existing end-to-end image generation net-
works can be generally divided into two kinds: directly generate the target image and generate the residual image between
the input image and the target image. For our task, unlike most existing image generation methods, which only generate one
output image, we need to generate a pair of adversarial examples. If we use the encoder-decoder network to directly gen-
erate one target image, we need to train two encoder-decoder networks, which increases the training difficulty and compu-
tation time. Hence, we design a generation network that directly outputs one perturbation and then generates a pair of
adversarial examples by adding and subtracting the perturbation image from the input image respectively.

Therefore, we require a mapping G : I ! d, which generates a pair of perturbed images I þ GðIÞ; I � GðIÞ for each clean
image I. A desirable function G must result in a high fooling ratio and a large modification. Our approach is to approximate
the difference in the clean and adversarial image pairs with a generation network G. We require that for each clean image
I : f ðI þ GðIÞÞ– f ðIÞ and f ðI � GðIÞÞ– f ðIÞ, the L1 norm of the additive perturbation needs to be as large as possible while
maintaining the illuminance constraint. Like GAP, clean image I is passed through the generator G to generate one pertur-
bation GðIÞ. The result is the perturbation GðIÞ, which is added and subtracted to the clean image. We feed the modified
images f ðI þ GðIÞÞ and f ðI � GðIÞÞ to the network to obtain two output probabilities. At the inference stage, we can discard
the classification network and only use the generation network G to generate adversarial example pairs. This avoids the need
for iterative gradient computations.

As mentioned above, our goal is to develop an end-to-end generation model that directly generates adversarial example
pairs with large perturbations and fits CDAE’s optimization conditions. We use a generative model to directly generate
adversarial example perturbations to achieve the goal of generating adversarial sample pairs. Compared with GAP, the gen-
erated adversarial example pair no longer needs to maintain appearance similarity with the original image but needs to
ensure that their luminance difference is as small as possible. Therefore, we use three intuitive loss functions to optimize
the generative adversarial network. The first is the classification loss Lcls, which guarantees the attack ability of the generated
adversarial example pair; the second is the perturbation loss Lper , which controls the amplitude of the perturbation; and the
last is the illuminance loss Llum, which guarantees the illuminance difference between I þ GðIÞ and I � GðIÞ. To calculate the
classification loss, the generated images are fed into the target classification network to obtain the predicted labels.

We call this final loss the CDAE loss:
LCDAE ¼Lcls þLper þxLlum ð6Þ

Classification loss. The classification loss Lcls encourages the classification results between the generated image and the

original image to be different. The detailed function formulation is defined as cross-entropy loss:
Lcls ¼ �logðpyðI þ GðIÞÞÞ � logðpyðI � GðIÞÞÞ ð7Þ

where pyðÞ is the probability output of the attacked model f with respect to classification class y.

Perturbation loss. The above classification loss can make the generated adversarial image pair have attack capabilities;
however, it cannot control the magnitude of the adversarial perturbation. The magnitude of the adversarial perturbation can
be controlled by the perturbation loss Lper:
Lper ¼ �kGðIÞk1 ð8Þ
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Illuminance loss. The illuminance loss Llum is the relaxed version of Eq. (3) and measures the difference in illuminance
between the symmetric adversarial example pair, and we directly use the simple MSE loss here:
Llum ¼ 1
M
ðYIþGðIÞ � YI�GðIÞÞ2 ð9Þ
With these three different losses, the CDAE loss can ensure that the generation network generates adversarial pairs that
ensure visual quality while maximizing the difference to retain the attack ability after screen capture.
3.4. Extension to video action recognition

Furthermore, we find that our method can be easily extended to generate adversarial examples for video action recogni-
tion. In fact, there are two main types of action recognition algorithms: (1) One treats multi-frame RGB images as 3D inputs
and uses 3D convolutional networks for processing. Representative algorithms include C3D [39] and ARTNet [40]. (2) The
other type is the two-stream network and its variants, which often consist of two branches fed with RGB images and optical
flow images, respectively, and the recognition results of these two branches are merged. Representative methods include
TSN [41], Two-Stream [32], Temporal pyramid CNNs [41], I3D [7]. To the best of our knowledge, we are the first to generate
adversarial examples for the Two-Stream type action recognition network.

Specifically, as shown in the top part of Fig. 3, Two-Stream [32] has an independent spatial stream and a temporal stream,
and the classification result of these two streams are combined with some weights; the result can be formulated as:
Result ¼ a � Scorespatial þ b � Scoretemporal ð10Þ
where Result is the classification result of the whole network. Scorespatial and Scoretemporal are the softmax results of the spatial
stream and temporal stream, respectively. a and b are the coefficients of the weighted summation.

Generally, the spatial stream’s weight a is often the same or higher than the weight of the temporal stream b [32], which
makes adversarial example generation easier for our method. If the attack on the spatial stream is strong enough, even if the
classification result of the temporal stream is correct, the final result will still be incorrect.

As shown in Fig. 4, with the aforementioned color decomposed based adversarial examples method, we convert each
frame of the video into two frames of adversarial examples based on the spatial stream branch. We find that this modifica-
tion can destroy both the spatial stream and temporal stream. As shown in the bottom part of Fig. 3, by feeding the decom-
posed adversarial frames (targeted to the spatial stream) into the temporal stream, the optical flow generation method also
completely fails because the newly introduced noise causes incorrect patch matching.
4. Experiment

In this section, we first introduce the experimental settings, and then we evaluate the visual quality of CDAE and common
adversarial examples by letting the users judge by themselves. After that, we evaluate the attack capabilities of CDAE and
other common adversarial attacks after screen shooting under white-box and black-box conditions and attack models with
defensive capabilities. We further extend CDAE to video action recognition.
Fig. 3. Overview of the proposed framework for generating video adversarial examples..
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Fig. 4. Process of generating video adversarial examples. Phase 1 generates one optical flow frame from two adjacent natural frames. From clean images
Clean Frame 1 and Clean Frame 2, we can obtain very clear motion information: Clean Flow 1. Phase 2 uses CDAE to change the two frames of clean images
Clean Frame 1 and Clean Frame 2 into two pairs of adversarial examples: Adv Frame 1 1;Adv Frame 1 2;Adv Frame 2 1 and Adv Frame 2 2. The
corresponding optical flow also becomes three: Adv Flow 1 1;Adv Flow 1 2 and Adv Flow 1 3 . After CDAE, the motion information on the optical flow
is completely disturbed, as Adv Flow 1 1;Adv Flow 1 2 and Adv Flow 1 3 have no useful motion information.
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4.1. Experiment setup

Dataset. For visual quality comparisons, we randomly select 100 images from the ImageNet validation dataset to form an
evaluation set. For white-box attack, black-box attack and the attack of adversarial training model, all results are reported on
1000 randomly selected images from the ImageNet validation dataset. For video action recognition, we generate adversarial
examples on the UCF101 dataset [34], which contains 101 action classes and 13,320 video clips. Due to the limited compu-
tational resources, one-thousand video clips are randomly extracted as the test set.

Baseline attack settings. We compare the capabilities of a series of adversarial example generation methods, including
the gradient-based method, optimization-based method and generation-based method, as baselines with CDAE’s attack
capabilities after screen shooting. We adopt I-FGSM, PGD, ATN, GAP under the constraint of the L1norm and C&W under
the constraint of the L2 norm. By default, we use classification accuracy as an evaluation indicator in all the experiments
below.

Threat model. For the experiment of image adversarial examples, we generate untargeted attacks and test after the
screen capturing process. In the white-box attack, the source network and the target network are the same, and four differ-
ent networks are selected for experiments. In the black-box attack, the source network and the target network are different
networks. We choose ResNet_101 as the source network, and the other four models are tested for the target network. When
attacking the adversarial training model, we selected five very powerful adversarial training models that were published on
the Internet as the target model for testing. For video action recognition adversarial examples, two of the most common two-
stream networks are selected as the target networks.

Shooting setting. As shown in Fig. 5, all the shooting experiments are conducted in a bright indoor office environment. A
commonly used office monitor is used to show all the adversarial examples in the experiment, and the camera of a com-
monly used smartphone is used to shoot adversarial examples on the screen. The model of the display is ViewSonic
VA2465, and the resolution of the screen is 1920�1080. All image adversarial examples are displayed at a frequency of
60 Hz (over CFF and a common frequency for displays). To prevent the change in the size of the adversarial examples from
affecting the attack ability, we display them on the display with their original size. The shooting device is the camera of the
smartphone Xiaomi Mix2. In the experiment, the default application of the mobile phone is used to shoot the screen in auto-
matic mode. We mounted the phone on a tripod and set the distance between the screen and the lens of the phone to 30 cm.
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Fig. 5. Experimental settings.
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4.2. Experiment results

Visual Quality Comparison. Visual quality is an important but subjective metric, so we use the same metric as previous
methods, such as SRGAN [20] to let the users judge by themselves. The mean opinion score (MOS) is proposed to measure the
visual quality of images. To compare the visual quality of different kinds of adversarial example methods, we also adopt MOS
as the evaluation metric by default. Specifically, we randomly selected twenty volunteers and asked them to rate the visual
quality of adversarial examples from 1 (bad quality) to 5 (excellent quality). The evaluation set is randomly selected from the
ImageNet dataset.

The final visual comparison results are shown in Table 1. It can be seen that our method achieves the same MOS score as
C&W [6], which is much better than those achieved by the other methods. The reason why C&W also achieves such a high
MOS is that their method only adds very small and invisible perturbations onto the original image.

For a more intuitive comparison, some visual examples are given in Fig. 6. When the frequency of the video displayed on
the display exceeds the critical flicker frequency, the human visual system merges the two frames into one, and then people
observe only a single picture. Since the common camera equipment records the average value of the objects captured during
the exposure time, if the shutter speed of the common camera equipment is reduced to a frequency that is lower than that of
the video displayed on the screen, the fusion of multiple frames will be taken, which is similar to the tendency of the human
eye to merge frames. Therefore, we use cameras to take long-exposure photos by reducing the shutter speed to simulate the
fusion process of the human eye, as shown in Fig. 6(h). Obviously, to have a strong attack ability, I-FGSM_32 and PGD_32
need to use very large adversarial perturbations and destroy the original visual quality considerably. By contrast, although
our CDAE method has an even larger modification, it still theoretically guarantees that the adversarial examples observed by
human eyes are completely consistent with the original images. To ensure fairness in the following attack ability compar-
ison, we compare our method to these methods with small perturbations to ensure similar visual quality.

White-box Attack. For white-box attack, we tried four different recognition models (resnet_v2_101 [16], inception_res-
net_v2 [35], inception_v3 [36], and VGG [33]) and compared our method with four state-of-the-art adversarial attacking
methods on the ImageNet dataset. For each generated adversarial example, we first use the same camera to capture it from
the screen display and then test their attack abilities. In this experiment, without a loss of generality, we use I-FGSM [19] as
our basic adversarial attack algorithm in the implementation of our gradient-based CDAE method. As shown in Table 2,
gradient-based CDAE and generation-based CDAE achieve comparable results, and our gradient-based and generation-
based CDAE both outperform the baseline I-FGSM algorithm by approximately 5% � 24% and even outperform PGD_4.

Black-box Attack. For the black-box attack, we adopt the same configuration as the white-box attack; the only difference
is that we generate adversarial examples based on the recognition model resnet_101 but test them on the above four recog-
nition models. As we can see in Table 3, compared to our baseline I-FGSM, the attack transferability of our method is still
better by 2% � 6%. Except for inception_resnet_v2, our method achieved the best results. Note that the performance of CDAE
is influenced by the baseline attack method, which is based on (default: I-FGSM); however, it can always bring relative
Table 1
The MOS of different methods.

C&W I-FGSM_4 I-FGSM_32 PGD_4 PGD_32 Gradient-based CDAE Generation-based CDAE

MOS 4.5 3.6 1.5 3.9 2.0 4.9 4.5
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Fig. 6. Picture adversarial examples captured by a camera. (a) Clean image. (b) C&W [6]. (c) I-FGSM [19] at 4. (d) I-FGSM [19] at 32. (e) PGD [27] at 4. (f)
PGD [27] at 32. (g) Our method: CDAE captured by a camera. (h) CDAE evaluated by HVS.

Table 2
Classification accuracy of white-box adversarial attacks with networks by different methods after capturing.

resnet_v2_101 [16] inception_resnet_v2 [35] inception_v3 [36] VGG [33]

C&W [6] 34.6% 58.6% 40.0% 29.7%
I-FGSM_4 [19] 12.7% 55.8% 34.3% 15.1%
PGD_4 [27] 6.9% 52.4% 27.6% 15.5%
ATN_4 [4] 15.6% 56.9% 36.2% 25.2%
GAP_4 [30] 22.1% 52.7% 37.7% 28.2%

Gradient-based CDAE 6.0% 46.0% 10.0% 5.6%
Generation-based CDAE 7.2% 48.5% 9.5% 4.5%

Table 3
Classification accuracy of black-box adversarial attacks with networks by different methods after capturing.

resnet_v2_101 [16] inception_resnet_v2 [35] inception_v3 [36] alexnet [18] VGG [33]

C&W [6] 34.6% 54.3% 38.7% 24.9% 29.3%
I-FGSM_4 [19] 12.7% 26.6% 15.9% 9.8% 11.1%
PGD_4 [27] 6.9% 19.4% 10.5% 5.3% 6.4%
ATN_4 [4] 15.6% 42.1% 25.8% 18.9% 23.7%
GAP_4 [30] 22.1% 35.6% 20.6% 12.6% 18.3%

Gradient-based CDAE 6.0% 24.0% 10.0% 4.8% 5.7%
Generation-based CDAE 7.2% 23.4% 12.4% 4.2% 6.2%
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performance gain. If CDAE is based on PGD, the performance on inception_resnet_v2 will be 16.8%, which is better than the
original PGD’s performance (19.4%).

The generative model and the target model are tightly coupled, and the GAN needs to be retrained when switching target
models. But our method is still efficient. First, our proposed generative model, i.e., CDAE, is tightly coupled with the target
model, but due to the transferability of most common adversarial examples, when switching to a different target model, even
without retraining, CDAE still has attack ability but with a weaker performance. Second, we have given the comparative
results under black-box conditions in Table 3. The results show that CDAE achieves a better attack capability than the
state-of-the-art methods even without retraining when attacking different target models, which means that CDAE has better
transferability than other methods. Third, the generative model we proposed requires more training costs during the training
period, but during the testing period, it can generate a large number of adversarial examples efficiently, which is more
advantageous in practical applications.

Attack Adversarial Training Model. Many different adversarial defense methods have also been proposed
[38,43,45,22,8,25,49]. Adversarial training is by far one of the most effective adversarial defense methods [38,43]. Here
we try to attack some very powerful defense models proposed in [38]. For fairness, we directly adopt their released pre-
training models on the Internet. It can be seen from Table 4 that our method is even able to attack the networks that are
adversarially trained and achieves better performance than state-of-the-art methods.

Video Action Recognition Adversarial Attack.We use the most popular action recognition algorithms, TSN, Two-Stream
and I3D, as the target networks to attack. Since UP [21] only works for the C3D [39] network, we only compare our method
with the image insertion-based video attack method [17], which proposes an attack method for video classifiers and exploits
the vulnerability in the Google video classification API. Because the underlying API algorithm only processes the first frame of
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Table 4
Classification accuracy of adversarial attacks with adversarial training networks by different methods after capturing.

ens_incp_res_v2 [38] incp_res_v2 [38] incp_v3 [38] ens3_incp_v3 [38] ens4_incp_v3 [38]

C&W [6] 31.6% 36.2% 15.5% 11.8% 17.3%
I-FGSM_4 [19] 23.5% 31.6% 20.3% 15.2% 15.6%
PGD_4 [27] 18.6% 15.5% 7.7% 8.3% 5.0%
GAP_4 [30] 28.4% 33.5% 18.3% 13.6% 14.8%

Gradient-based CDAE 9.1% 10.6% 5.4% 7.1% 4.4%
Generation-based CDAE 8.6% 12.3% 8.5% 6.3% 7.0%

Fig. 7. Video adversarial examples by CDAE. (a) Clean image. (b) Optical flow in the x direction and y direction. (c) Adversarial example for the first frame.
(d) Adversarial example for the second frame. (e) Adversarial examples’ optical flow in the x direction and y direction.

Table 5
Video adversarial examples’ classification accuracy of adversarial attacks by different methods.

TSN [41] Two-Stream [32] I3D [7]

Clean video 93.5% 88.0% 97.6%
Image insertion attack 93.5% 88.0% 97.6%
CDAE (our method) 4.5% 0% 0%
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a video every second, by inserting an attack image into the video every second, the API only outputs the tags associated with
the inserted attack image.

Fig. 7 shows some video adversarial examples generated by CDAE. It is easy to find that the optical flow of the original
video is greatly attacked by our method in both the x and y directions. As shown in Table 5, our method achieves excellent
attack results. It is nearly 100% successful when attacking the Two-Stream network and I3D, and 95:5% when attacking the
TSN network. By comparison, the image insert attack baseline [17] almost fails.
5. Ablation study

Classification Accuracy vs Iteration n. In this part, we explore the influence of iteration n on the success rate of gradient-
based CDAE. We use I-FGSM as the basic algorithm and set the step size to 5. The top part of Fig. 8 shows the relationship
curve between the classification accuracy of CDAE on the Imagenet dataset and iteration number n. We can see that as n
increases, the classification accuracy decreases, i.e., the attack ability grows. When n reaches 30, the classification accuracy
stops decreasing, which means our method converges at this stage.

Modification Amount d vs Iteration n. Since we are also curious about whether the modification amount d is able to con-
verge in CDAE, the relationship between the modification amount d and the iteration number n on the ImageNet dataset is
further studied in this part. As shown in the bottom of Fig. 8, at the early stage of optimization, as n increases, the modifi-
cation amount d increases. However, when the modification amount d reaches 70, it almost stops increasing, which means
that the maximum d is obtained. This demonstrates that the proposed alternative optimization algorithm can approximate
the objective function Eq. (2) quite well and at least reach a local optimal solution.
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Fig. 8. Classification accuracy vs iteration n (top), and modification amount d vs iteration n (bottom).
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6. Conclusion

Inspired by the property of the human visual system, we proposed the first color decomposition-based adversarial exam-
ple generation framework CDAE for screen devices. It successfully circumvents the self-contradiction problem between
visual quality and attack ability. More specifically, it can theoretically guarantee the visual quality perceived by human
observers while maximizing the adversarial perturbations to achieve a better attack ability. Equipped with I-FGSM and
GAP, we propose both gradient-based CDAE and generation-based CDAE. The extensive experiments demonstrate that it
can significantly improve the attack ability and transferability.

Despite the power of our method, there are many facets that are worth investigating in the future. For example, we will
study robust adversarial examples that are insensitive to capturing variations (e.g., distance change, angle change, and cam-
era type). In addition, the transferability of adversarial examples among different models should also be further boosted.
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