
A Lightweight Framework for Function Name Reassignment
Based on Large-Scale Stripped Binaries
Han Gao

CAS Key Laboratory of
Electro-magnetic Space Information

University of Science and Technology of China
Hefei, China

gh2018@mail.ustc.edu.cn

Shaoyin Cheng∗
CAS Key Laboratory of

Electro-magnetic Space Information
University of Science and Technology of China

Hefei, China
sycheng@ustc.edu.cn

Yinxing Xue
School of Computer Science and Technology
University of Science and Technology of China

Hefei, China
yxxue@ustc.edu.cn

Weiming Zhang∗
CAS Key Laboratory of

Electro-magnetic Space Information
University of Science and Technology of China

Hefei, China
zhangwm@ustc.edu.cn

ABSTRACT
Software in the wild is usually released as stripped binaries that
contain no debug information (e.g., function names). This paper
studies the issue of reassigning descriptive names for functions to
help facilitate reverse engineering. Since the essence of this issue is
a data-driven prediction task, persuasive research should be based
on sufficiently large-scale and diverse data. However, prior studies
can only be based on small-scale datasets because their techniques
suffer from heavyweight binary analysis, making them powerless
in the face of big-size and large-scale binaries.

This paper presents the Neural Function Rename Engine (NFRE),
a lightweight framework for function name reassignment that uti-
lizes both sequential and structural information of assembly code.
NFRE uses fine-grained and easily acquired features to model as-
sembly code, making it more effective and efficient than existing
techniques. In addition, we construct a large-scale dataset and
present two data-preprocessing approaches to help improve its
usability. Benefiting from the lightweight design, NFRE can be ef-
ficiently trained on the large-scale dataset, thereby having better
generalization capability for unknown functions. The comparative
experiments show that NFRE outperforms two existing techniques
by a relative improvement of 32% and 16%, respectively, while the
time cost for binary analysis is much less.

CCS CONCEPTS
• Theory of computation → Program analysis; • Social and
professional topics→ Software reverse engineering.
∗Shaoyin Cheng and Weiming Zhang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464804

KEYWORDS
Binary Analysis, Reverse Engineering, Neural Networks

ACM Reference Format:
Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang. 2021. A
Lightweight Framework for Function Name Reassignment Based on Large-
Scale Stripped Binaries. In Proceedings of the 30th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’21), July 11–
17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3460319.3464804

1 INTRODUCTION
Most commercial off-the-shelf (COTS) software is closed-source.
Additionally, the software is usually released as stripped binaries
that contain no debug information for the purpose of easy distri-
bution or copyright protection. Practitioners who want to analyze
these programs should conduct reverse engineering and check the
logic at the binary level. The disassemblers such as IDA Pro [36]
can translate machine (binary) code into assembly language. How-
ever, assembly representation exists as plain instruction mnemonics
with limited high-level information, making it hard to read and
understand. Even an experienced reverse engineer may have to
spend much time in determining the functionality of an assembly
code snippet [22, 67]. To mitigate this problem, researchers from
academia and industry have been studying decompilation, which
is a process of lifting assembly into C-like pseudo-code for better
readability [7, 17, 35, 42, 55, 63, 70]. The state-of-the-art decompil-
ers on the market, such as Hex-Rays Decompiler [35], JEB [63], and
RetDec [7], can reconstruct variables, types, functions and source-
level structures from assembly code, and then output much higher
level text which is more concise and much easier to read.

Although the decompilers can convert assembly-level idioms
into high-level abstractions, they are weak at recovering high-level
semantic information (e.g., variable names, and function names in
stripped binaries). Especially, function names play an important
role in program comprehension [30]. In practice, practitioners pre-
liminarily guess the functionality of a function from its name [67].
Unfortunately, existing decompilers can only set address-related

607

https://doi.org/10.1145/3460319.3464804
https://doi.org/10.1145/3460319.3464804
https://doi.org/10.1145/3460319.3464804


ISSTA ’21, July 11–17, 2021, Virtual, Denmark Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang

placeholders (e.g., sub_40B8F0) as default function names in the
absence of debug symbols. Such non-descriptive names are not
informative.

To help construct better decompilers and facilitate reverse engi-
neering, we focus on function name prediction, aiming to reassign
descriptive names for functions in stripped binaries. The current is-
sue can be stated informally as the need to learn the correspondence
between an assembly code snippet and a set of tokens that forms
the function name. Although similar issues have been extensively
studied at the source level [1, 3, 5, 27, 51], it is still hard because of
the limited information in assembly code (discussed in Section 2).

In essence, the current issue is a data-driven prediction task
so that persuasive research should be based on large-scale and
diverse data. DEBIN [34] and Nero [22] are the only two existing
techniques, but their datasets are far from large-scale. As shown
in Table 1, the datasets used by DEBIN and Nero merely consist of
3,000 and 541 binaries, respectively. Nero is trained on about 60,000
functions. By contrast, the datasets used for source-level function
name prediction consist of millions of functions [4, 5, 51, 52]. As
for the assembly level, a small and simple dataset contains limited
instruction and tokens, making it unable to reflect the complexity of
the current issue. A model trained from such a trivial dataset has a
limited effect on real-world usages. According to our reproduction
and the comments on DEBIN in [49], it is the efficiency problem
that prevents them from being trained and evaluated on large-scale
binaries: Both DEBIN and Nero suffer from heavyweight binary
analysis (e.g., binary lifting, data-flow analysis), which is time- and
resource-consuming, making them powerless in the face of big-size
and large-scale binaries.

In this paper, we present NFRE (Neural Function Rename En-
gine), a lightweight framework for function name reassignment
that utilizes the instruction sequences and control-flow informa-
tion of assembly code. NFRE uses fine-grained and easily acquired
features, which make it much more effective and efficient.

Additionally, NFRE is trained and evaluated on a large-scale
and well-built dataset. The binaries are collected from Ubuntu [15]
without manual compilation, so the dataset can be large enough
and of rich variety. However, two primary problems affect the us-
ability of the dataset, which are label noise and label sparsity. The
former refers to the existence of functions with meaningless names
in the dataset. Non-descriptive names are useless to help under-
stand the logic of functions. As the noise samples, they can bias
the training process and hurt the model performance [41, 72]. The
latter is caused by the overlarge vocabulary of tokens used in func-
tion names, which exacerbates data sparsity. The sparsity problem
makes it difficult for learning-based techniques to learn the corre-
spondence between assembly code and tokens. Prior studies [22, 34]
neglect the two problems, while we present two data-preprocessing
approaches to help mitigate them, thereby improving the usability
of the dataset. We release the code and some instructions for repro-
duction at [33] to facilitate subsequent research. In summary, the
contributions of this paper can be summarized as follows:

• We present NFRE, a lightweight framework for the reas-
signment of function names in stripped binaries. It does not
require heavyweight binary analysis, so it can be efficiently

trained and evaluated on large-scale binaries. It also has a
wider application scope than Nero in design.

• We summarize the label noise and sparsity problems and
present two data-preprocessing approaches to help mitigate
them. In this way, we improve the usability of the large-scale
dataset in a (semi-)automated manner.

• We conduct extensive experiments to evaluate NFRE and val-
idate our intuitions. The results demonstrate the significance
of data preprocessing and show NFRE outperforms existing
techniques, DEBIN and Nero, by a relative improvement of
32% and 16%, respectively, while the time cost for feature
extraction is much less.

2 BACKGROUND
Developers usually set descriptive names to describe the function-
alities of functions [2]. However, the developer-chosen names no
longer exist in stripped binaries. Reassigning descriptive names
for functions is an emerging and significant issue. It has various
application scenarios, such as building better decompilers, inferring
library functions or constructing domain-specific (ad hoc) function
name predictors. In general, predicting function names from assem-
bly code is non-trivial, more challenging than that at the source
level for the following reasons:

Limited Information. Source code contains a wealth of high-level
information (e.g., semantic tokens, abstract syntax tree) that can
facilitate the related tasks. Researchers even leverage copy mecha-
nism [32] to “directly” copy tokens from function bodies to names
[3, 27] because tokens in names often appear in the corresponding
bodies1. In contrast, most of the descriptive information is dis-
carded in compiling and stripping, resulting in extremely limited
information in assembly code.

Token & Code Diversity. (1) The open property of function nam-
ing results in a large vocabulary of tokens. In comparison to the
natural language texts, word abbreviations and domain-specific
jargons are widely used in function names [27]. (2) Due to compiler
differences, optimizations and potential obfuscation techniques,
assembly representation is even more diverse than source code,
making the assembly-level tasks more challenging.

The former affects the modeling and representation of assembly
code, thereby limiting the capability of the machine learning model
to fit data distribution. The latter enlarges the search space and
exacerbates the data sparsity.

2.1 Motivating Example
A real-world function aesni_cbc_encrypt in project libgnutls
is used as a motivating example. This is an encryption function
based on the AES-CBC (Cipher Block Chaining) algorithm, which
can be deduced from its name. It is complicated, containing 400+
instructions and 30+ basic blocks. Moreover, it uses the Intel Ad-
vanced Encryption Standard Instructions (AES-NI) [37], which is
unfamiliar for common practitioners (but may be the distinctive
features for the learning-based model). Fig. 1 illustrates the corre-
sponding code snippet. It is hard for human engineers to judge the

1According to the statistics of [27], roughly 33% of tokens in names can be copied
directly from tokens in the source code of function bodies.

608



A Lightweight Framework for Function Name Reassignment Based on Large-Scale Stripped Binaries ISSTA ’21, July 11–17, 2021, Virtual, Denmark

functionality of such a complicated function. We expect to reassign
descriptive names for functions in a data-driven manner.

C9BA8: aesenc         xmm2,xmm1

C9BAD: dec            eax

C9BAF: movups         xmm1,xmmword ptr [rcx]

C9BB2: lea            rcx,[rcx+10h]

C9BB6: jnz            short loc_C9BA8

C9BB8: aseenclast     xmm2,xmm1

C9BBD: mov            eax,r10d

C9BC0: mov            rcx,r11

C9BC3: movups         xmmword ptr [rsi],xmm2

C9BC6: lea            rsi,[rsi+10h]

Figure 1: An assembly code snippet of a complicated encryp-
tion function aesni_cbc_encrypt.

2.2 Existing Techniques
2.2.1 DEBIN . DEBIN [34] is a non-neural model for predicting de-
bug information of stripped binaries. It can recover variable names
and types, function names and types from binary code. Concretely,
DEBIN lifts binary code to Intermediate Representation (IR) [13]
and then constructs variable dependency graph. Finally, it makes
predictions by the Conditional Random Fields (CRFs) [50], which is
a probabilistic graphical model. The primary limitations of DEBIN
are as follows: (1) The prediction model used in DEBIN is CRFs,
not the neural model. As pointed out by [22], DEBIN suffers from
inherent sparsity from the model perspective. The advantages of
neural models over CRFs in function name prediction task are also
discussed in [5]. (2) DEBIN is trained and evaluated in an exactly
matching manner. In other words, only the case that the prediction
is exactly the same as the label, DEBIN considers it successful; oth-
erwise, fail. Since function names usually consist of several tokens,
the exact match will lead to inherent imprecision [22]. The model
can only output full function names encountered during training.
It has no ability to predict neologisms [2], that is, function names
that have not appeared in training set.

2.2.2 Nero . Nero [22] is designed for predicting function names
in stripped binaries. It is based on the encoder-decoder paradigm,
using a Graph Neural Network (GNN) [45] as the encoder and a
Long Short-Term Memory (LSTM) network as the decoder. Nero is
more suitable for function name prediction. It uses neural model
for prediction and token-level metrics for training and evaluation.
However, Nero still suffers from the following limitations: (1) Nero
utilizes function calls with the restored arguments to model func-
tions. It is an inherent limitation because not every function makes
(internal or external) function calls. In addition, Nero is quite depen-
dent on the semantic information provided by the library function
names2. For the functions (e.g., functions in statically linked bina-
ries) that only have internal function calls, Nero has no semantic
2According to our statistics, the functions that have library function calls account for
roughly 30% of all functions.

information to use except for the restored arguments. However,
the restored arguments are low-level and abstract so that they are
weak at individually modeling functions. The performance of Nero
drops sharply at this time. (2) As we have mentioned in earlier
sections, the dataset used by Nero is quite small, merely containing
541 binaries that are compiled by a single compiler gcc. In addi-
tion, the training and test sets overlap in their dataset, resulting in
their results being debatable. In our experiments, we find that Nero
overfits the training data and has poor generalization capability for
unknown functions (discussed in Section 5.5.2).

2.3 Challenges for Large-Scale Evaluation
It is non-trivial to evaluate existing techniques on large-scale bi-
naries. Both DEBIN and Nero suffer from inefficiency because the
features they use require heavyweight binary analysis. In our exper-
iments, when we tried to train them on large-scale and real-world
binaries, the process of feature extraction consumes too much time,
making the evaluation infeasible in practice. The efficiency problem
of DEBIN has also been commented by [49]. Nero is often trapped
in complex analysis, resulting in the remaining time tends to be
unpredictable. In summary, the complexity of heavyweight analysis
makes DEBIN and Nero powerless in the face of big-size and large-
scale binaries, preventing them from being trained and evaluated
on the large-scale binaries. Therefore, one goal of our research is
to build a lightweight framework that uses easier-to-get features
for efficient training and inference.

2.4 Challenges for Dataset Construction
It is not easy to construct a large-scale dataset while maintaining
good usability. Firstly, a large number of unstripped binaries is
required. However, the compilation process is difficult to automate
due to the configuration differences of various projects. Under this
premise, manual compilation is an option, which is adopted by
Nero [22] to generate small-scale binaries. In our opinion, the best
practice is to use the compiled software in the real world, just like
DEBIN [34]. This practice allows us to obtain enough and diverse
binaries and ensures the dataset can reflect the real-world scenarios.
However, two problems damage the usability of the dataset, which
are label noise and label sparsity.

Label Noise. Due to potential code obfuscation techniques or ex-
cessive abbreviations, there are many functions whose names are
non-descriptive or meaningless (e.g., _vsubfpx). As the noise sam-
ples, they can bias the training process and damage the practical
applicability of the model (i.e., making the model less effective in
real-world cases) eventually [12, 72].

Label Sparsity. Because of the open property of function naming,
the vocabulary of tokens tends to be very large. Since we are cur-
rently facing large-scale and diverse data, using the raw tokens
directly can lead to severe sparsity problem - even semantically sim-
ilar tokens are independent of each other. In addition, the overlarge
vocabulary will increase the complexity of the model and make it
difficult to train.

For the small-scale datasets, the two problems are not severe or
can be alleviated by manual inspection. However, purely manual
inspection is impractical for large-scale data. The other goal of our

609



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang

Binary

Executables
Disassembler

Control-Flow Graph

Instruction Sequences

Prediction

Model

push r15
push r14
mov  r14, rsi
push r13
push r12
push rbp
push rbx
sub  rsp, 38h

set, num, threads

print, device, sources

http, get, request, url

make, dns, packet

open, client, socket

crypt, pkcs, open, store

Figure 2: The overall workflow of NFRE.

research is to mitigate the two problems in a (semi-)automated
manner.

3 THE NFRE FRAMEWORK
3.1 Overview
NFRE is designed as a plugin in the disassembler such as IDA
Pro [36] to automatically suggest descriptive names for functions
in stripped binaries. Fig. 2 illustrates the overall workflow. As a
prerequisite, the stripped binary is disassembled by IDA Pro, and
the functions in it are correctly recognized. Since the symbol table
(i.e., .symtab section) is discarded, IDA Pro can only set address-
related placeholders as the default function names. At this moment,
NFRE is ready to work. It is based on the encoder-decoder paradigm,
taking the instruction sequences and control-flow information as
input and outputting the likely function names. Next, we elaborate
on the principle and implementation of the NFRE framework.

3.2 Structural Instruction Embedding
NFRE utilizes the structural information brought by Control Flow
Graph (CFG) to facilitate the modeling of assembly code. CFG is a
structured code representation with a low overhead of construction.
It is widely used in the assembly-level studies [22–24, 69, 75].

The structural information is used in a pre-training manner. First,
we perform structural instruction embedding based on CFGs, repre-
senting instructions as embeddings (i.e., high-dimensional numeri-
cal vectors) that potentially aggregate the control-flow information.
Then we use the pre-trained embeddings as the input of the neural
model so that the model can benefit from the structural information.
Concretely, there are three steps: (1) instruction normalization, (2)
instruction-level CFG construction, and (3) graph-based embedding.

3.2.1 Instruction Normalization. Due to the diversity ofmnemonics
and operands, directly using raw instructions will exacerbate the
sparsity of input data, which makes it difficult for the model to
learn the data distribution. The model will also suffer from severe
out-of-vocabulary (OOV) problem when inferring functions that
contain unknown instructions during training.

To mitigate this problem, the instructions should be normalized
before participating in experiments3. Inspired by the related studies
[11, 24, 57, 75], we empirically set the following rules to normalize
instructions: (1) Retaining all the mnemonics and registers. (2) Re-
placing all the constant values with <POSITIVE>, <NEGATIVE> and
<ZERO> (i.e., only considering the sign of the value). (3) Replacing
all the internal function addresses with <ICALL>. (4) Replacing all

3Assembly instructions in this paper adopt the Intel syntax, i.e., op dst, src(s).

the library function names with <ECALL:function_name>. (5) Re-
placing all the destinations of local jump with <LOCALJUMP>. Fig. 3
illustrates an example of instruction normalization.

mov eax, ebx

push 80h

push 0

call sub_4DF0

call _fwrite

jz short loc_DD58

lea esp, [ebp-0Ch]

lea edi, [eax+10h]

mov eax, ebx

push <POSITIVE>

push <ZERO>

call <ICALL>

call <ECALL:_fwrite>

jz <LOCALJUMP>

lea esp, [ebp+<NEGATIVE>]

lea edi, [eax+<POSITIVE>]

Figure 3: An example of instruction normalization. The left
part is the original instructions, and the right part is the nor-
malized instructions.

Instruction normalization is similar to the stemming and lemma-
tization of words in Natural Language Processing (NLP). The latter
is to restore different forms of words to the original forms before
actually experimenting. For example, cats to cat (stemming) and
driving to drive (lemmatization). The purpose of both is to de-
crease the diversity of data (instructions or words) while keeping
the basic semantics unchanged.

3.2.2 Instruction-level CFG. The assembly code snippets can be
represented as CFGs according to the control transfer mnemonics
such as jmp and je. A canonical CFG is comprised of basic blocks
and jump control flows. The nodes portray basic blocks, and the
edges portray jump control flows. In our experiments, we refine
the canonical CFG and construct the Instruction-Level CFG (IL-
CFG). Specifically, we split the basic block into several instructions
and add the sequential control flows. The nodes of IL-CFG portray
instructions, and the edges portray control flows (both jump and
sequential). Fig. 4 shows an example.

4091AE: test  eax,eax

4091B0: je    0x4091BA

4091B2: test  [rbx],0x100

4091B8: jne   0x4091C8

4091BA: mov   rdi,rbx

4091BD: pop   rbx

4091BE: jmp   0x401D60

4091C3: call  0x401DA0

4091C8: mov   rdi,rbx

4091CB: mov   edx,0x1

test  eax,eax

je    0x4091BA

test  [rbx],0x100

jne   0x4091C8

mov   rdi,rbx

pop   rbx

jmp   0x401D60

call  0x401DA0

mov   rdi,rbx

mov   edx,0x1

Figure 4: An example of Instruction-level CFG. The left part
is the assembly code snippet, and the right part is the corre-
sponding IL-CFG.

Notably, constructing IL-CFG does not require heavyweight bi-
nary analysis such as data-flow analysis. Loosely speaking, the
disassembler only needs to recognize the control transfer mnemon-
ics so that the construction process is fast.

610



A Lightweight Framework for Function Name Reassignment Based on Large-Scale Stripped Binaries ISSTA ’21, July 11–17, 2021, Virtual, Denmark

3.2.3 Graph-based Embedding. We adapt DeepWalk [62] for in-
struction embedding based on the IL-CFG representation. DeepWalk
is an unsupervised graph embedding technique. It can generate
structure-sensitive instruction embeddings, allowing NFRE to use
the control-flow information. DeepWalk is internally based on the
Skip-gram [58] model for embedding. The Skip-gram model is ini-
tially used in NLP for word embedding. In the following, we briefly
introduce the Skip-gram model and the DeepWalk algorithm.

Skip-gram. Skip-gram [58] is a widely used word embedding
model. It learns embeddings from the context in which a word
occurs. As a result, if two words have similar meanings or usage,
their embeddings will be close to each other in the high-dimensional
space; otherwise, far away (e.g., “Paris” is close to “Tokyo”, while
far away from “Apple”). The essence of the Skip-gram model is a
shadow neural network with only one hidden layer, and it uses the
current word to predict the surrounding words. In practice, there is
a sliding window moving on the text, treating the middle word as
input and targeting the other words in the window. The training
sample exists in pair (x,y), where x is the input, and y is the target.
The training objective is to adjust word embeddings so that they
can be used to predict the surrounding words accurately.

DeepWalk. Graph embedding is a conversion of graph data (e.g.,
nodes, edges, substructures, or the whole graph) into embeddings. It
learns a mapping from the graph into the embedding space in which
the relevant information of the graph is maximally preserved [14].
DeepWalk [62] is an unsupervised graph embedding algorithm. It
works based on the Skip-gram model. There are two main steps:
(1) Sampling node sequences through a random walk strategy. (2)
Using the sampled sequences as corpus and adapting the Skip-gram
model for node embedding. Since the node sequences are generated
by a random walk on the graph, the node embeddings potentially
aggregate the structural information of the graph.

The original DeepWalk algorithm runs on a single large graph.
However, our data is a batch of IL-CFGs. Here we adopt an alter-
native strategy to suit our needs. To generate the training corpus
for the Skip-gram model, we perform the random walk and sample
instruction sequences on each IL-CFG. In other words, we assume
that there is a large virtual graph that contains all the instructions
and control flows of the dataset. Each IL-CFG is a sub-graph of
it. We run the DeepWalk algorithm on each sub-graph instead of
running on the virtual graph. In the pre-experiments, we found it
worked.

3.3 Neural Prediction Model
The prediction model of NFRE is based on the encoder-decoder
paradigm. Given a disassembly function body, it takes the normal-
ized instruction sequences as input, which naturally utilizes the
sequence information of assembly code. After inference, it outputs
the tokens that form the function name (i.e., from instruction se-
quence to token sequence). In the following, we briefly introduce
the encoder-decoder paradigm.

Encoder-Decoder Paradigm. Encoder-decoder paradigm iswidely
used for sequence translation tasks, such as Neural Machine Trans-
lation (NMT) [8, 65, 66]. The input sequence is encoded into a
context vector by the encoder, while the decoder decodes the vector

into target data. The types of encoder and decoder are usually Re-
current Neural Network (RNN) to handle variable-length sequences
[8, 20, 65]. Some studies also use other structures, such as Convo-
lutional Neural Network (CNN) [18], Transformer [66] and GNN
[9, 10, 22].

The prediction model is simple yet effective. The encoder of our
model is a Bidirectional LSTM (BiLSTM) network. Compared with
the (unidirectional) LSTM, it can capture the association of both the
current instruction and the previous/next instruction. The decoder
is an attentional LSTM network that is incorporated with the atten-
tion mechanism [56] to capture the long-distance dependencies of
instructions.

3.3.1 Fine-Grained Utilization of Library Functions. There are two
linking mechanisms for binary executables, static or dynamic link-
ing—the former bakes all the library functions required for the
program into executables at the linking stage. The latter only bakes
the references (i.e., library function names) into files, and the actual
linking is performed by OS when the binaries load to the memory.
For the dynamically linked binaries, library function names are
retained after stripping because the Linux OS needs to locate the
function bodies from libraries by names. The intact library func-
tion names are precious because they bring additional semantic
information. As the callee, the library function is directly related to
the functionality of the caller. Our statistics show that over 30% of
functions have at least one token, which appears both in its name
and the library function names it invokes.

NFRE utilizes the library function names in a fine-grained man-
ner. Inspired by the practice of [22], we tokenize library function
names into multiple tokens. Then we use them along with the
instruction sequences as input in the hope that they can provide
auxiliary information for the prediction model. The intuition is
that each token is potentially related to the functionality of the
caller. Compared with treating each library function as a whole,
this practice can utilize the semantic information in a fine-grained
manner and alleviate the OOV problem.

4 DATASET CONSTRUCTION
In this section, we elaborate the methodology of dataset construc-
tion, including two data-preprocessing approaches for mitigating
label noise and sparsity problems.

4.1 Overview
We opt for the software provided by Ubuntu [15] as the data source.
As a popular Linux OS, Ubuntu provides its users with the compiled
software packages (*.deb files) for easy installation, covering tens
of thousands of software projects (e.g., redis, nginx and gcc). The
debug symbol packages (*.ddeb files) are also offered for debug-
ging [16]. The software is compiled by different compilers under
various compiler options, ensuring a rich variety in our dataset. We
use IDA Pro [36] to disassemble binaries, assigning the developer-
chosen names to the functions in stripped binaries by address. In
accordance with [22, 34], we choose the programs written in C
language to construct our dataset.

Table 1 details the statistics for the raw datasets (NFRE-x86/x64-
Raw). For each architecture, almost 30,000 binaries from roughly

611



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang

7,400 projects are involved in the dataset construction. Table 1 also
shows the statistics for the datasets used by DEBIN and Nero. Since
the authors of DEBIN have not publicly released their dataset so far,
we can only get the limited information from their paper [34]. In
comparison with the datasets used in existing studies, our dataset
contains much more binaries. On the one hand, this makes our
experiments more persuasive. On the other hand, it also increases
the difficulty of data preprocessing and puts forward higher re-
quirements on the time efficiency of our framework in turn. Here
we additionally give the volume information to gain a general un-
derstanding of our dataset: The total size of unstripped binaries is
about 14GB (13.18GB of x86 and 15.04GB of x64). About 91% (92.53%
of x86 and 90.65% of x64) of binaries are less than 1MB, and about
1.6% (1.29% of x86 and 2.04% of x64) of binaries are larger than
5MB. The average number of instructions per function is roughly
90 (96.78 of x86 and 86.52 of x64).

Table 1: Statistics on the number of projects, binaries, func-
tions of the datasets.

Dataset # Projects # Binaries # Functions

NFRE-x86-Raw 7,375 29,696 3,742,027
NFRE-x86-Denoised - - 3,098,486
NFRE-x86-Deduplicated - - 1,457,426

NFRE-x64-Raw 7,408 27,686 3,335,643
NFRE-x64-Denoised - - 2,886,458
NFRE-x64-Deduplicated - - 1,361,092

DEBIN [34]1 - 3,000 -
Nero [22]2 91 541 67,8803
1 DEBIN has three versions for x86, x64, and arm binaries. For each version, the
dataset consists of 3,000 binaries. Since the authors have not publicly released
their dataset, we can only get limited information from their paper.

2 The dataset of Nero only contains x64 binaries.
3 Without function-level deduplication.

4.2 Label Noise Mitigation
To help alleviate label noise, we adopt a detection-based strategy.
The general idea is to find as many noise samples as possible and
then filter them out from the dataset. To this end, a binary classifier
is built to judge whether a function name is descriptive (meaning-
ful). It is inspired by the practice of Domain Generation Algorithms
(DGAs) detection [60, 73]. DGAs are used to automatically generate
pseudo-random names (e.g., asedfvfwk.com) to evade blacklist-
based detection. Distinguishing them from the normal names is
similar to the current problem. Specifically, we use the n-gram of
function names as features. We opt for unigram (n = 1) and bigram
(n = 2), building a 702-dimensional (26+26 × 26) feature vector
for each name. The frequency of the combinations of n charac-
ters is counted to compose different dimensions. Then we leverage
Gradient Boost Decision Tree (GBDT), an ensemble machine learn-
ing algorithm, to build the classifier. In the following, we briefly
introduce the GBDT algorithm.

Gradient Boost Decision Tree. Decision Tree is a supervised
learning model. It is a tree-structured classifier, where internal

nodes represent the features of a dataset, branches represent the
decision rules, and each leaf node represents the outcome. The
input propagates from the root to a leaf node of the tree, where
the final classification decision is made. Gradient Boost Decision
Tree [28, 29] is an ensemble algorithm. In principle, it builds one
decision tree at a time and corrects the error made by the previous
tree. Predictions are based on the entire ensemble of trees together
that make the final prediction.

Training such a binary classifier needs a large number of anno-
tated samples (both meaningful and meaningless). The meaningful
function names are collected from the most popular projects in
GitHub [31]. The assumption is that the popular projects are gen-
erally well-documented, and the functions are usually well-named.
We automatically scrape thousands of top-starred projects, cover-
ing Java, Python and C languages. Then we use parsers [25, 26] in
combination with regular expressions to extract function names.
As a result, we get roughly four million function names as mean-
ingful samples. As for meaningless samples, we use a trick in this
case. Since the meaningless function names are essentially pseudo-
random texts, we write a Python script to generate pseudo-random
texts just like DGAs, and then we use the outputs as the meaning-
less samples. According to our preliminary evaluation, the classifier
achieves roughly 80% F1-score (based on a dataset of 2,000 represen-
tative samples screened manually, in which the ratio of positives
and negatives is 1:1). Given a binary executable, if more than 60%
of the functions are judged to be noise samples, we discard all the
functions in it.

Table 2: Qualitative examples of the detected non-
descriptive function names.

Project Meaningless Function Names

weight-
watcher

zpnrev, codfwd, copfwd, airfwd, coofwd, sphfwd,
tnxfwd, qscfwd, molfwd, cscfwd, cypfwd, glsfwd,
wcsfwd, aitfwd, tnxrev, tscfwd, pcofwd, ...

yabause-qt
yabause-gtk

OP_0x0010, OP_0x0018, OP_0x001F, OP_0x0020,
OP_0x0027, OP_0x0028, OP_0x0030, OP_0x0038,
OP_0x0039, OP_0x003C, OP_0x0040, ...

qemu-user-
static

_vslh, _vslw, _vsr, _vsrb, _vsrh, _vsrw, _vsubcuw,
_vsubeuqm, _vsubfp, _vsubuwm, _vupkhpx, _vslb,
_vupkhsb, _vupklpx, _vupklsb, _xmknod, ...

libz80ex1
op_CB_0xaf, op_CB_0xdf, op_DDCB_0x00,
op_CB_0xef, op_CB_0xfd, op_DDCB_0xfe,
op_FDCB_0x00, op_FDCB_0x01, op_FD_0x02, ...

chicken-bin
f_1028, f_10284, f_10286, f_10287, f_1029, f_10290
f_10292, f_10296, f_10296_0, f_10297, f_10304,
f_10306, f_10308, f_10318, f_10322, f_10324, ...

Table 2 shows the qualitative examples of the detected noise
samples. By analyzing the detected function names, we discover
some naming patterns (e.g., OP_XXXX, f_XXXX and op_XXXX_XXXX).
They may be generated by specific code obfuscation techniques.
According to the fixed naming patterns, we use regular expression-
based matching to further find out the pseudo-negative samples
that are missed by the detection.

612



A Lightweight Framework for Function Name Reassignment Based on Large-Scale Stripped Binaries ISSTA ’21, July 11–17, 2021, Virtual, Denmark

The statistics for the denoised datasets are shown in Table 1
(NFRE-x86/x64-Denoised). About 15% (17.20% of x86 and 13.47% of
x64) of the functions are classified into noise samples and removed
from the datasets.

4.3 Label Sparsity Mitigation
The general idea to mitigate label sparsity is to establish associa-
tions among tokens that have similar meanings. We should find out
these tokens first. As mentioned in earlier sections, the dictionary-
or rule-based stemming and lemmatization in NLP can restore dif-
ferent forms of words to the original forms. However, they are
weak at processing function names due to the use of abbreviations,
which is a primary reason for the diversity of function names [27].
Most abbreviations are not standard English words (e.g., cmp for
compare, conn for connect) and they are prone to be OOV. In addi-
tion, synonyms are also interchangeably used in function naming,
such as argument and parameter.

In our experiments, we notice that the semantically similar to-
kens usually have similar contexts. For example, given two function
names getMessageType and getMsgType. The message and the
msg are standard word and its abbreviation, while other tokens
(get and type) in the two function names are the same or simi-
lar. Based on the above observation, a general idea is to leverage
Skip-gram [58] for token embedding, and then find out context-
similar tokens based on the cosine distance. The Skip-gram model
is detailed in earlier sections.

We propose a hybrid approach that combines data-driven idea
and empirical rules to summarize semantically similar tokens. Firstly,
we adapt the Skip-gram model to perform token embedding. We
treat each function name as a separate window. Each token in the
function name will be treated as input while the other tokens as
targets. Fig. 5 illustrates an example. After embedding, tokens with
similar contexts will be closed to each other in the embedding
space. Next, for each token t , we extract the top n tokens closest to
it as the candidates lt . Formally, the overall candidate list L can be
represented as

L = [l1, ..., lP ] (1)

lt = [α1, ...,αn ], 1 ≤ t ≤ P (2)
where P is the number of unique tokens. αi is one of the candidate
tokens. In our experiments, the size of token embeddings is 128 and
n is set to 80.

http cmp conf addr

wt

c1 c2 c3

Figure 5: The function name is http_cmp_conf_addr, which
can be split into four tokens: http, cmp, conf and addr. When
performing token embedding, we use the current token wt
(cmp) to predict the contexts c1 (http), c2 (conf) and c3 (addr).

The data-driven idea allows us to obtain each token with the
top n tokens with similar contexts. In order to further narrow the
scope, we use the empirical rules to filter the candidates. Given a

Table 3: Qualitative examples of the semantically similar to-
kens.

Word Semantically Similar Tokens

parameter parms, argument, arguments, args, arg, param, ...

subscribe subscription, subscriber, subscriptions, ...

debug dbg, debugger, debugging

print fprint, sprintf, fprintf, oprint, printf, eprintf

equal equals, equivalent, eq, unequal

attribution property, attributes, prop, attr, attribute, properties

authorization auth, authentication, authenticate, oauth, ...

error err, error, errno, errors, errorhandler

compare cmp, comparison, comparator, comp, comparable, ...

function func, procedure, funcs, procedures

token a in lb and a token b in la , if they meet any of the following
rules, we consider that they may be semantically similar:

(1) a starts with b or b starts with a.
(2) The first letter of a is the same as the first letter of b, and the

Levenshtein similarity [6] between a and b is larger than 0.6.
(3) The last letter of a is also the same as the last letter of b, and

the Levenshtein similarity is larger than 0.6.
(4) a and b are synonyms.

The first rule is for the case of conn, connect, connecting and
connected. The second rule is for the case of send and sent. The
third rule is for the case of str and cstr. The last rule is for the
case of argument and parameter. We utilize WordNet [59] to judge
whether two words are synonyms. In summary, the first three rules
are about the morphology, while the last one is based on semantics.

In our experiments, the hybrid approach automatically summa-
rized about 7,000 groups of tokens. Then we performed the manual
inspection for more accurate results. Since the hybrid approach has
dramatically narrowed the scope, empirical inspection is entirely
feasible at this time, which removes unreasonable tokens or entire
groups. Overall, the inspection cost about 4 man-hours, and roughly
2,000 groups of tokens remain. According to our statistics, the sum-
marized tokens account for roughly 10% of the vocabulary, but they
appear in more than 80% of function names. The qualitative exam-
ples are shown in Table 3. The hybrid approach can find out the
different forms of a word (e.g., equal, equals and equivalent),
the abbreviations (e.g., dbg and debug) and the synonyms (e.g.,
argument and parameter).

For the training set, we restore the tokens in a cluster (which is
merged by groups and consists of all semantically similar tokens)
to a single token. When testing or inference, if the model outputs a
token in the same cluster as ground truth, we deem it a success.

4.3.1 Synonyms Effectiveness. Here we elaborate on the role of
synonyms for mitigating label sparsity. The synonyms mainly
serve as bridges. For instance, the embedding-based mining and
morphology-based rules can discover (argument,arg,args) and
(parameter,param,params), but they cannot associate the two
clusters. Once argument and parameter are identified as synonyms,

613



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang

the two clusters can merge into one. There are some other cases,
e.g., (function,func,funcs) and (procedure,procedures).

4.4 Deduplication
Prior studies [22, 34] perform file-level deduplication in their exper-
iments. In other words, there are no two identical binaries in their
dataset. However, for reasons such as code reuse and the use of
libraries, such a coarse-grained practice cannot avoid function-level
duplication. When checking the dataset released by Nero [22], we
found that some functions (e.g., _start) in the test set also appear
in the training set. From the data mining perspective, it is a mistake
called data leakage [43], resulting in exaggerating results. Never-
theless, some researchers argue that it is reasonable to allow such
duplication since reverse-engineering binaries that link against
known libraries is a realistic use case [49].

In this paper, we adopt a more comprehensive strategy. Firstly,
we perform function-level deduplication before splitting the dataset
into training, validation, and test sets. As shown in Table 1 (NFRE-
x86/x64-Deduplicated), the number of functions has been re-
duced by roughly 53% (52.96% of x86 and 52.85% of x64). It is thor-
ough deduplication to avoid double counting. Then we refer to the
practice of [49]. For each model, we use two test sets for evalua-
tion. The first set is composed of known functions, which means
the functions have appeared in the training set. The second set is
comprised of unknown functions (i.e., the functions that do not
appear in the training set). It is the actual test set from the data
mining perspective. We randomly select the same number of sam-
ples from the training set as the actual test set to form the first set.
In this way, we can observe not only the performance of NFRE for
known functions, but also its generalization capability for unknown
functions.

5 EVALUATION
We conduct extensive experiments to answer the following research
questions:

RQ1. How effective is NFRE in assigning names to functions of
stripped binaries? (Section 5.2)
RQ2.How does each component of NFRE contribute to its efficacy?
(Section 5.3)
RQ3. Do the label noise and sparsity problems indeed affect the
usability of the dataset? (Section 5.4)
RQ4. How does NFRE perform in comparison with existing tech-
niques? (Section 5.5)

5.1 Experimental Setup
5.1.1 Environment. We used an Ubuntu 16.04 machine with Intel
Core i7 8700k, GeForce GTX 1080Ti and 64GB RAM to perform ex-
periments. We used Python language with OpenNMT [46], Gensim
[64], scikit-learn [61], XGBoost [19] and python-Levenshtein [6] to
implement the framework.

5.1.2 Dataset Partition. We split the dataset into training, valida-
tion, and test sets at the function level. The number of functions
in the training set accounted for 80% of the whole dataset. The
validation set and the test set accounted for 10%, respectively.

5.1.3 Function Name Tokenization. For the function names that
follow the canonical naming conventions (e.g., camel case like
setConnPort and snake case like set_conn_port), we can tokenize
them via the symbol “_” or upper case letters. However, function
names without obvious splitting marks, such as setcmdfmt, are
also prevalent in the dataset. For these function names, we followed
the practice in [49], using SentencePiece [48] to tokenize them. It
splits function name setcmdfmt into set, cmd and fmt based on
the statistics of token frequency [47].

5.1.4 Hyper Parameters. The dimension of instruction and token
embeddings is 128. We used a 2-layer BiLSTM with 500 hidden
states as the encoder and a 2-layer LSTM with 500 hidden states
as the decoder. The dropout rate is experimentally set to 0.3, ran-
domly dropping 30% of the cell’s output. We adopted negative
log-likelihood loss and the teacher forcing strategy for training.
Then we trained the model by Adam optimizer [44] with an initial
learning rate of 0.001. The batch size is 64. We trained the model
for 1000 thousand steps at most and performed validation every 20
thousand steps. If the performance does not improve for 3 valida-
tion steps (early stopping) or the gradient vanishes, the training
will be terminated. We used the beam search strategy in inference,
and the beam size is set to 10.

5.1.5 Metrics. In accordance with Nero [4, 5, 22], we used Preci-
sion, Recall, and F1-score to evaluate the performance of NFRE
with its variations and the existing techniques. The metrics are
token-level, case-, order-, and duplication-insensitive, and ignor-
ing non-alphabetical characters. Given a predicted function name
X̂ : {x̂1, ..., x̂ j } and the ground truth X : {x1, ..., xk },

TP =
j∑

i=1
I{x̂i ∈ X }, FP =

j∑
i=1
I{x̂i < X }, FN =

k∑
i=1
I{xi < X̂ } (3)

the metrics are defined as

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
2 × Precision × Recall
Precision + Recall

(6)

where xi (x̂i ) is a token in function name, I is the indicator function,
I{true} = 1 and I{ f alse} = 0. The results presented in this paper
are the average results. It should be noted that there is another
definition of Precision and Recall [3], and the difference is in the
denominator. For Precision, they use the length of X̂ (i.e., j) as
denominator, which is equal to TP + FP. For Recall, they use the
length of X (i.e., k) as denominator, which is not always equal to
TP + FN. This definition also makes sense. In the pre-experiments,
we found the difference of two definitions has slight effect on results.

When comparing with existing techniques, we additionally intro-
duced a metric to measure the efficiency, which is the average time
cost of feature extraction for each binary executable. It can reflect
the feasibility of the technique in the real world. We tried to align
the model configurations (e.g., workers) to make the results reason-
able. Note that we omitted the training time of prediction models
because it is highly related to the training steps and equipment. In

614



A Lightweight Framework for Function Name Reassignment Based on Large-Scale Stripped Binaries ISSTA ’21, July 11–17, 2021, Virtual, Denmark

fact, we found that the training of model is not the main concern
for time efficiency because the computation of neural networks can
be greatly accelerated by GPU. It is the binary analysis stage that
most affects the overall training and inference time.

5.2 Overall Effectiveness
The results are shown in the last row of Table 4. When assign-
ing names for known functions, NFRE achieves roughly 40% pre-
cision, 34% recall, and 36% F1-score. When assigning names for
unknown functions, NFRE maintains an acceptable capability of
generalization, achieving more than 32% precision, 27% recall, and
28% F1-score. It should be noted that the performance of the ma-
chine learning model on the training set (known functions) and
test set (unknown functions) is not always positively correlated.
There is a trade-off, and an extreme case is overfitting. At that time,
the model performs quite well for the known samples but poorly
for the new samples. The left side of Table 5 displays the qualita-
tive examples of the predictions for function samples, such as file
operation, and network communication.

Answer to RQ1: Overall, NFRE achieves 36% precision, 31% recall,
and 32% F1-score for the function name reassignment in stripped
binaries.

5.3 Component Contribution
We conducted an ablation study to validate the contribution of
structural information and library function names to the overall
performance of NFRE. For the NFRE that ablates structural informa-
tion, we used the randomly initialized instruction embeddings as
the input of the prediction model. For the NFRE that ablates library
function information, we no longer used the tokens from library
function names as additional input. Instead, we treated all library
function names as indistinguishable and assigned them a uniform
name <ECALL>. It also represents the scenario where the library
function name is obfuscated. At this time, NFRE has to perform
inference in the absence of the semantic information provided by
library function names. As a reference, we also show the results of
the basic NFRE that neither uses structural information nor library
function information in the antepenult row of Table 4.

The upper part of Table 4 shows the results for the variants of
NFRE that ablate different components. Briefly, both the structural
information and library function names contribute to the ultimate
effectiveness of NFRE. The right side of Table 5 shows the predic-
tions made by the incomplete NFRE. The ablation of any component
will affect the overall effectiveness of NFRE.

Answer to RQ2: Each component of NFRE contributes to the over-
all effectiveness.

5.4 Data Impact on Model
Based on the intuition that the label noise and sparsity problemswill
affect the usability of the dataset, we present two data-preprocessing
approaches described in earlier sections for mitigation. Here we val-
idated the significance of this practice. For each architecture, we ran-
domly selected some samples from the corresponding raw dataset
(i.e., NFRE-x86/x64-Raw) and constructed a sub-dataset. The number
of functions in sub-dataset is the same as that of the preprocessed

dataset (i.e., NFRE-x86/x64-Deduplicated). Then we trained the
basic NFRE on the sub-dataset while keeping the hyper-parameters
unchanged.

The results are shown in the penultimate row of Table 4. In
consistent with our previous expectations, the model trained on the
raw dataset has lower performance than that on the preprocessed
dataset. It demonstrates the significance of mitigating label noise
and sparsity problems.

Answer to RQ3: The label noise and sparsity problems indeed
affect the usability of the dataset and hurt the performance of the
model. It is significant to perform data preprocessing for mitigation.

5.5 Comparison with Existing Techniques
We compared NFRE with DEBIN and Nero, respectively. Like [49],
we encountered the problem that it is impractical to train DEBIN
and Nero on our full dataset due to time and resource restrictions.
Therefore, we adopted an alternative but reasonable strategy: We
trained NFRE on their dataset (or the same scale dataset as theirs). In
the interest of fairness, we did not introduce any data-preprocessing
approaches (including deduplication) described in earlier sections
to avoid the potential bias in favor of NFRE.

5.5.1 Comparison with DEBIN. Since the authors of DEBIN have
not publicly released the dataset till now, we built the same scale
dataset with our data. As mentioned in their paper [34], for each
architecture, the authors used a dataset composed of 3,000 binaries
to evaluate DEBIN (2,700 for training and 300 for testing). We
followed their practice and randomly selected 3,000 binaries (per
architecture) from our dataset. Then we trained and evaluated
DEBIN and NFRE on the alternative dataset. Notably, DEBIN also
chooses the software provided by Ubuntu as data sources so that
this strategy is generally reasonable.

The results are summarized in Table 6. NFRE achieves higher
precision, recall, and F1-score than DEBIN while consuming much
less time. Particularly, NFRE outperforms DEBIN by a relative F1-
score improvement of roughly 32% (33.90% of x86 and 30.56% of
x64). As for time efficiency, DEBIN needs to perform heavyweight
binary analysis, including binary lifting, variable recovery, and
data-flow analysis, to construct the variable dependency graph.
The entire process is much more time-consuming than CFG con-
struction, causing DEBIN to consume more than twenty times that
of NFRE. Considering the limitations of DEBIN (i.e., the non-neural
design and the exact match problem), the overall result is in line
with our expectations.

5.5.2 Comparison with Nero . The authors of Nero have released
their dataset at [71]. They divide the binaries into three folders,
TRAIN, VALIDATE and TEST, which contain 483, 45 and 13 binaries,
respectively. We trained NFRE based on their original partition of
the dataset.

The results are summarized in Table 7. We present two sets
of results. The former is under the original setup used in their
paper, which means that the training and test sets overlap and both
the training and test sets contain duplicate functions. However,
the results obtained in such a data-leakage manner cannot reflect
the generalization capability of the model for unknown functions.
To this end, we performed another statistic. In this case, we only

615



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang

Table 4: Experimental results of NFRE and its variations that ablate different components.

Model x86 x64
Prec. Rec. F1. Prec. Rec. F1.

NFRE w/o Structural Information 35.55 / 30.83 29.55 / 25.63 31.23 / 27.06 40.74 / 30.03 35.71 / 24.95 37.05 / 26.31
NFRE w/o Library Function Names 31.02 / 27.42 27.23 / 24.03 29.41 / 26.10 38.75 / 28.25 32.43 / 24.23 34.17 / 24.82
NFRE w/o StrucInfo. & LibF. 30.79 / 26.66 25.62 / 22.40 27.06 / 23.52 37.40 / 27.12 31.83 / 22.92 33.40 / 24.01

NFRE w/o StrucInfo. & LibF. (Raw Data) 26.41 / 22.17 21.61 / 21.31 22.95 / 22.33 33.05 / 22.73 27.79 / 21.86 29.29 / 22.88

NFRE 39.41 / 32.35 34.19 / 28.19 35.66 / 29.25 41.00 / 31.10 34.71 / 26.35 36.50 / 27.52
The former results come from the evaluation on known functions, and the latter results come from the evaluation on unknown functions.

Table 5: Qualitative examples of the predictions made by NFRE and its variations that ablate different components.

Label

Prediction Model
NFRE NFRE w/o StrucInfo. NFRE w/o LibF. NFRE w/o both.

stop timer reset timer set i timer set timer sig handler
rt read packet vers a tile read packet pcap read packet read packet xf rd recv packet
jpeg encode raw jpeg decode frame jpeg get data x frame decode frame mus percent convert
write event tree to print string print tree write node print tree print p p results
string free erase free x free cleanup lambda widget destroy event
active connection get by path find connection by name get device by name get name get uri
report create list create hash table create acpi ut create mutex acpi ut create object
sec pkcs content type sec pkcs choose content type get content length sec pkcs hash ssl cipher pref get
ssl load priv key ssl load key load cert load key file open file
set input name blk id partition set name set string gw db category set name config set string

Table 6: Comparison with DEBIN.

Model x86 x64 TimePrec. Rec. F1. Prec. Rec. F1.
DEBIN [34] 29.48 29.30 29.35 27.27 27.17 27.19 >90s

NFRE 38.94 40.10 39.30 35.12 36.64 35.50 ≈4s

counted functions that do not appear in the training set, producing
the latter results.

As shown in Table 7, NFRE outperforms Nero by a relative F1-
score improvement of 16.23% (under the original setup) and 127.75%
(eliminating data-leakage). Most notably, the metrics of Nero and
NFRE drop sharply when the training and test sets do not overlap.
It indicates that the models suffer from serious overfitting at the
moment, so the generalization capability is weak. This phenom-
enon is predictable. It confirms our standpoint: For the current
issue, the learning-based model cannot effectively learn the data
distribution from such a small dataset, and it is prone to be over-
fitted. Comparing the results of NFRE in Table 4 and that in Table
7, we can observe the difference in the generalization capability of
the learning-based model trained on different scale datasets. Ben-
efiting from the large-scale dataset, NFRE in Table 4 has better
generalization capability for unknown functions. It demonstrates
the significance of the large-scale data for the current issue. Table 7
also shows the time efficiency of the two models. Since recovering
call arguments requires deep data-flow analysis, the overhead is
also expensive, resulting in the inefficiency of feature extraction.

Benefiting from the easier-to-get features, NFRE is much more
efficient than Nero.

Answer to RQ4: In comparison with existing techniques that re-
quire heavyweight analysis, NFRE is much more effective and effi-
cient.

Table 7: Comparison with Nero.

Model Prec. Rec. F1. Time

Nero [22] 40.17 / 2.26 39.86 / 2.14 39.87 / 2.09 >90s
NFRE 47.00 / 5.16 46.25 / 4.79 46.34 / 4.76 ≈4s

The former results come from the original setup in the paper of Nero. And
the latter results come from the statistics after eliminating data leakage.

6 DISCUSSION & LIMITATION
We have demonstrated the superiority of NFRE over existing tech-
niques. In this section, we discuss the failuremodes and the practical
applicability of our approaches.

Failure Modes.We analyze the failure modes of NFRE in the hope
of providing insight for subsequent studies. It should be noted that
the failure modes of a learning-based framework are complex, in-
volving data and models. Since the interpretability of deep neural
networks is not clear, we can only tentatively explore from the
data perspective. Specifically, we focus on the following factors:
(1) The ratio of input (i.e., # of instructions) to output length (i.e.,
# of tokens). (2) The token imbalance in function names. The for-
mer is raised based on the property of the sequence-to-sequence

616



A Lightweight Framework for Function Name Reassignment Based on Large-Scale Stripped Binaries ISSTA ’21, July 11–17, 2021, Virtual, Denmark

model, while the latter is presented from the perspective of data
imbalance. We have experimentally explored the effect of the above
factors on the model performance, and here we briefly describe
and analyze our findings. For the former factor, we found that the
ratio of input to output length is negatively correlated with the
overall prediction results. In other words, given a function, the
more disparate the number of instructions to the number of tokens,
the worse the results tend to be. For the latter factor, we found the
function names consisting of high-frequency tokens tend to have
better scores, while the low-frequency tokens are usually hard to be
predicted correctly. According to our experiments, we found that
the characteristics of tokens exhibit long-tailed distribution, where
small number of tokens (e.g., get and set) appear very often while
most of the others appear more rarely. The model tends to output
the high-frequency tokens to get higher scores but neglects the
learning of low-frequency tokens. The reason for this phenomenon
is data imbalance, which has generally affected learning-based tech-
niques. Approaching long-tailed distribution data is a promising
direction in the field of machine learning-based application.

Practical Applicability. In our experiments, we built a domain-
unspecific dataset, which means the dataset tries to simulate all
possible cases of function naming. Existing studies [22, 34] also
adopt this strategy to construct their datasets. Although NFRE has
better performance than existing techniques, the metrics are still
relatively low, especially for the inference of unknown functions.
Therefore, the current NFRE can hardly be said to have good prac-
tical applicability. Nevertheless, we emphasize that the low metrics
are mainly affected by the dataset. Such a domain-unspecific and
diverse dataset allows to evaluate the model for general purpose,
but it also causes the complexity of the current issue to tend to
be infinite. Empirically, if the issue can be limited in scope (e.g.,
domain-specific prediction), the complexity will be much lower. In
this way, the distribution of samples in the dataset will be more
clear, and the learning-based model can also achieve higher per-
formance and show better practical applicability. Domain-specific
application is also a promising direction for the current issue. In
summary, the current issue is worth studying and requires more
research efforts.

7 RELATEDWORK
In this section, we briefly survey the related work about data-driven
function name prediction and debug information recovery.

Predict Function Names from Source Code. Predicting func-
tion names from source code usually refers to the source code
summarization task, which generates brief natural language de-
scriptions for source code snippets. Allamanis et al. [3] presented a
convolutional attention network to summarize source code. LeClair
et al. [51] proposed a NMT-based model that used code sequences
and Abstract Syntax Tree (AST) as input. Their model has two inde-
pendent encoders. One is used to accept the code sequences, and the
other is used to accept AST. Alon et al. [5] proposed a path-based
attention model to embed code snippets. They represented code
snippet as AST and discomposed AST as a bag of paths. Fernan-
des et al. [27] proposed a GNN-based model. They used a GNN-
based encoder to encode AST and an RNN-based encoder to encode
code sequences. Ahmad et al. [1] proposed a Transformer-based

approach to summarize code. Since the function bodies usually
contain some tokens used in the corresponding function names,
some researchers used the copy mechanism to directly copy tokens
from function bodies [3, 27].

Predict Function Names from Binary Code. DEBIN [34] and
Nero [22] are the only two published studies on this issue, which
have been detailed in earlier sections. Since Nero [22] also opts
for the neural prediction model based on the encoder-decoder par-
adigm, it is necessary to make a comparison between Nero and
NFRE. From the model perspective, the primary difference is the
encoder network. Nero opts for a 4-layer Graph Convolutional Net-
work (GCN) [45] as the encoder to utilize the structural information
brought by CFG. Since the multiple propagations between a node
and its nearby neighbors, the multi-layer GCN model suffers from
the over-smoothing problem [54, 74]. In brief, the features of nodes
within each connected component gradually converge to the same
value during training. As a result, it makes the nodes indistinguish-
able, thereby hurting the model performance. In contrast, BiLSTM
encoder is maturer. It has better scalability and robustness in the
face of large-scale and diverse data. Additionally, Nero merely uses
a GCN-based encoder, which means the abandonment of the se-
quential information of assembly code [68]. It utilizes the tokens
used in library function names and the restored arguments as fea-
tures, resulting in narrower application scope (discussed in Section
2.2.2). By contrast, NFRE uses the instruction sequences as features,
more general and fine-grained. It can capture the instruction-level
differences, which is more subtle.

Predict Debug Information in Binaries. It is recognized that
debug information can be of great help to reverse engineering.
In recent years, many researchers focus on the recovery of debug
information in stripped binaries. They put efforts to predict variable
names [34, 39, 40, 49], variable types [34, 53], function names [22,
34], function types [21, 34] and library function names [38]. We
recommend the interested readers refer to the above papers.

8 CONCLUSION AND FUTUREWORK
We study the issue of reassigning descriptive names for functions
in stripped binaries. To overcome the inefficiency caused by heavy-
weight binary analysis, we present the Neural Function Rename
Engine (NFRE), a lightweight framework for function name predic-
tion. Additionally, we construct a large-scale dataset for training
and evaluation, and we propose two data-preprocessing approaches
to help mitigate label noise and sparsity problems. Experimental
results demonstrate the significance of our data-preprocessing ap-
proaches and show that NFRE is much more effective and efficient
than existing techniques. NFRE outperforms DEBIN and Nero by a
relative F1-score improvement of 32% and 16%, respectively, while
the time consumed for binary analysis is much less.

In this paper, we conduct research entirely at the assembly level.
The features used in NFRE do not involve the higher-level abstrac-
tions brought by decompilation. On the one hand, this is for light-
weight purpose. The decompilation will affect the efficiency of our
framework. On the other hand, this is to not introduce additional
undecidability. The correctness of the decompiled output is our
main concern. Nevertheless, a recent study [55] points out that

617



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang

modern C decompilers have been progressively improved to gener-
ate quality outputs. In the future, we plan to introduce the output
of the decompiler into NFRE to see if it facilitates the performance.
We also call for more research efforts to the current issue from data
and model perspectives.

ACKNOWLEDGMENTS
We thank the anonymous ISSTA reviewers for their valuable com-
ments. This work was supported in part by the Natural Science
Foundation of China under Grant U20B2047, 62072421, 62002334
and 61972373, Exploration Fund Project of University of Science and
Technology of China under Grant YD3480002001, Fundamental Re-
search Funds for the Central Universities under GrantWK2100000011,
National Key Research and Development Program of China under
Grant 2020YFA0309702, Public Service Platform Project for Indus-
trial Technology Foundation under Grant 2019-00893-2-2, and by
Anhui Initiative in Quantum Information Technologies under Grant
AHY150400.

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A

Transformer-based Approach for Source Code Summarization. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. 4998–
5007. https://doi.org/10.18653/v1/2020.acl-main.449

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). 38–49.
https://doi.org/10.1145/2786805.2786849

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In Proceedings of
The 33rd International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.).
2091–2100. http://proceedings.mlr.press/v48/allamanis16.html

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In International Conference
on Learning Representations. https://openreview.net/forum?id=H1gKYo09tX

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2Vec:
Learning Distributed Representations of Code. Proc. ACM Program. Lang. 3,
POPL, Article 40 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290353

[6] Antti Haapala. 2021. python-Levenshtein. https://github.com/ztane/python-
Levenshtein.

[7] Avast Software. 2021. RetDec. https://retdec.com.
[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR, Yoshua Bengio and Yann LeCun
(Eds.). http://arxiv.org/abs/1409.0473

[9] Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an.
2017. Graph Convolutional Encoders for Syntax-aware Neural Machine Trans-
lation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 1957–1967. https://doi.org/10.18653/v1/D17-1209

[10] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. 2018. Graph-to-Sequence
Learning using Gated Graph Neural Networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
273–283. https://doi.org/10.18653/v1/P18-1026

[11] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neu-
ral Code Comprehension: A Learnable Representation of Code Semantics. In
Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Cur-
ran Associates, Inc., 3585–3597. https://proceedings.neurips.cc/paper/2018/file/
17c3433fecc21b57000debdf7ad5c930-Paper.pdf

[12] F. A. Breve, L. Zhao, and M. G. Quiles. 2010. Semi-supervised learning from
imperfect data through particle cooperation and competition. In The 2010 Inter-
national Joint Conference on Neural Networks (IJCNN). 1–8. https://doi.org/10.
1109/IJCNN.2010.5596659

[13] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.
BAP: A Binary Analysis Platform. In Computer Aided Verification, Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.). 463–469.

[14] H. Cai, V. W. Zheng, and K. C. Chang. 2018. A Comprehensive Survey of
Graph Embedding: Problems, Techniques, and Applications. IEEE Transac-
tions on Knowledge and Data Engineering 30, 9 (Sep. 2018), 1616–1637. https:

//doi.org/10.1109/TKDE.2018.2807452
[15] Canonical Ltd. 2021. Enterprise Open Source and Linux | Ubuntu. https://ubuntu.

com.
[16] Canonical Ltd. 2021. Ubuntu Debug Symbol Packages. https://wiki.ubuntu.com/

Debug_Symbol_Packages.
[17] G. Chen, Z. Wang, R. Zhang, K. Zhou, S. Huang, K. Ni, Z. Qi, K. Chen, and H.

Guan. 2010. A Refined Decompiler to Generate C Code with High Readability. In
2010 17th Working Conference on Reverse Engineering. 150–154. https://doi.org/
10.1109/WCRE.2010.24

[18] Qiming Chen and Ren Wu. 2017. CNN Is All You Need. CoRR abs/1712.09662
(2017). http://arxiv.org/abs/1712.09662

[19] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). 785–794. https://doi.org/10.
1145/2939672.2939785

[20] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724–1734. https://doi.org/10.3115/v1/D14-1179

[21] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural
Nets Can Learn Function Type Signatures From Binaries. In 26th USENIX Security
Symposium (USENIX Security 17). 99–116. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/chua

[22] Yaniv David, Uri Alon, and Eran Yahav. 2020. Neural Reverse Engineering of
Stripped Binaries Using Augmented Control Flow Graphs. Proc. ACM Program.
Lang. 4, OOPSLA, Article 225 (Nov. 2020), 28 pages. https://doi.org/10.1145/
3428293

[23] S. H. H. Ding, B. C. M. Fung, and P. Charland. 2019. Asm2Vec: Boosting Static
Representation Robustness for Binary Clone Search against Code Obfuscation
and Compiler Optimization. In 2019 IEEE Symposium on Security and Privacy (SP).
472–489.

[24] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DeepBinDiff:
Learning Program-Wide Code Representations for Binary Diffing. In Proceedings
of the 2020 Network and Distributed Systems Security Symposium (NDSS).

[25] Eclipse Foundation, Inc. 2021. Eclipse Java development tools. https://www.
eclipse.org/jdt.

[26] Eli Bendersky. 2021. pycparser. https://github.com/eliben/pycparser.
[27] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Structured

Neural Summarization. In International Conference on Learning Representations.
https://openreview.net/forum?id=H1ersoRqtm

[28] Jerome Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics 29 (11 2000). https://doi.org/10.1214/aos/
1013203451

[29] Jerome H. Friedman. 2002. Stochastic Gradient Boosting. Comput. Stat. Data
Anal. 38, 4 (Feb. 2002), 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2

[30] Edward M Gellenbeck and Curtis R Cook. 1991. An investigation of procedure
and variable names as beacons during program comprehension. In Empirical
studies of programmers: Fourth workshop. Ablex Publishing, Norwood, NJ, 65–81.

[31] GitHub, Inc. 2021. GitHub. https://github.com.
[32] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. Incorporating

Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 1631–1640. https://doi.org/10.18653/v1/P16-1154

[33] Han Gao. 2021. Code for Neural Function Rename Engine. https://github.com/
USTC-TTCN/NFRE.

[34] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
2018. Debin: Predicting Debug Information in Stripped Binaries. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). 1667–1680. https://doi.org/10.1145/3243734.3243866

[35] Hex-Rays SA. 2021. Hex-Rays Decompiler. https://www.hex-rays.com/products/
decompiler.

[36] Hex-Rays SA. 2021. IDA Pro. https://www.hex-rays.com/products/ida.
[37] Intel Corporation. 2021. Intel Advanced Encryption Standard Instructions

(AES-NI). https://software.intel.com/content/www/us/en/develop/articles/intel-
advanced-encryption-standard-instructions-aes-ni.html.

[38] Emily R. Jacobson, Nathan Rosenblum, and Barton P. Miller. 2011. Labeling
Library Functions in Stripped Binaries. In Proceedings of the 10th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools (PASTE ’11). 1–8.
https://doi.org/10.1145/2024569.2024571

[39] Alan Jaffe. 2017. Suggesting Meaningful Variable Names for Decompiled Code:
A Machine Translation Approach. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017). 1050–1052. https:
//doi.org/10.1145/3106237.3121274

[40] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and Bogdan
Vasilescu. 2018. Meaningful Variable Names for Decompiled Code: A Machine
Translation Approach. In Proceedings of the 26th Conference on Program Compre-
hension (ICPC ’18). 20–30. https://doi.org/10.1145/3196321.3196330

618

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.1145/2786805.2786849
http://proceedings.mlr.press/v48/allamanis16.html
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://github.com/ztane/python-Levenshtein
https://github.com/ztane/python-Levenshtein
https://retdec.com
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/P18-1026
https://proceedings.neurips.cc/paper/2018/file/17c3433fecc21b57000debdf7ad5c930-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/17c3433fecc21b57000debdf7ad5c930-Paper.pdf
https://doi.org/10.1109/IJCNN.2010.5596659
https://doi.org/10.1109/IJCNN.2010.5596659
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://ubuntu.com
https://ubuntu.com
https://wiki.ubuntu.com/Debug_Symbol_Packages
https://wiki.ubuntu.com/Debug_Symbol_Packages
https://doi.org/10.1109/WCRE.2010.24
https://doi.org/10.1109/WCRE.2010.24
http://arxiv.org/abs/1712.09662
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3115/v1/D14-1179
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chua
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chua
https://doi.org/10.1145/3428293
https://doi.org/10.1145/3428293
https://www.eclipse.org/jdt
https://www.eclipse.org/jdt
https://github.com/eliben/pycparser
https://openreview.net/forum?id=H1ersoRqtm
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/S0167-9473(01)00065-2
https://github.com
https://doi.org/10.18653/v1/P16-1154
https://github.com/USTC-TTCN/NFRE
https://github.com/USTC-TTCN/NFRE
https://doi.org/10.1145/3243734.3243866
https://www.hex-rays.com/products/decompiler
https://www.hex-rays.com/products/decompiler
https://www.hex-rays.com/products/ida
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://doi.org/10.1145/2024569.2024571
https://doi.org/10.1145/3106237.3121274
https://doi.org/10.1145/3106237.3121274
https://doi.org/10.1145/3196321.3196330


A Lightweight Framework for Function Name Reassignment Based on Large-Scale Stripped Binaries ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[41] Yingjiu Li Jiayun Xu and Robert H. Deng. 2021. Differential Training: A Generic
Framework to Reduce Label Noises for AndroidMalware Detection. In Proceedings
of the Network and Distributed System Security Symposium, NDSS.

[42] D. S. Katz, J. Ruchti, and E. Schulte. 2018. Using recurrent neural networks for
decompilation. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 346–356. https://doi.org/10.1109/SANER.
2018.8330222

[43] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.
Leakage in Data Mining: Formulation, Detection, and Avoidance. ACM Trans.
Knowl. Discov. Data 6, 4, Article 15 (Dec. 2012), 21 pages. https://doi.org/10.1145/
2382577.2382579

[44] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[45] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. https://openreview.net/forum?id=SJU4ayYgl

[46] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In
Proc. ACL. https://doi.org/10.18653/v1/P17-4012

[47] Taku Kudo. 2018. Subword Regularization: Improving Neural Network Trans-
lation Models with Multiple Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Melbourne, Australia, 66–75.
https://doi.org/10.18653/v1/P18-1007

[48] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. 66–71. https://doi.org/10.18653/v1/D18-2012

[49] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig, and B.
Vasilescu. 2019. DIRE: A Neural Approach to Decompiled Identifier Naming. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 628–639. https://doi.org/10.1109/ASE.2019.00064

[50] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML 2001), Carla E. Brodley and Andrea Pohoreckyj Danyluk (Eds.).
282–289.

[51] A. LeClair, S. Jiang, and C. McMillan. 2019. A Neural Model for Generating
Natural Language Summaries of Program Subroutines. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). 795–806. https://doi.
org/10.1109/ICSE.2019.00087

[52] Alexander LeClair and Collin McMillan. 2019. Recommendations for Datasets
for Source Code Summarization. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, Minneapolis, Minnesota, 3931–3937. https:
//doi.org/10.18653/v1/N19-1394

[53] JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled
Reverse Engineering of Types in Binary Programs. In Proceedings of the Network
and Distributed System Security Symposium, NDSS.

[54] Qimai Li, Zhichao Han, and Xiao ming Wu. 2018. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/16098

[55] Zhibo Liu and ShuaiWang. 2020. How FarWeHave Come: Testing Decompilation
Correctness of C Decompilers. In Proceedings of the 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2020). Association for
Computing Machinery, 475–487. https://doi.org/10.1145/3395363.3397370

[56] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 1412–1421.
https://doi.org/10.18653/v1/D15-1166

[57] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and
Leonardo Querzoni. 2019. SAFE: Self-Attentive Function Embeddings for Binary
Similarity. In Detection of Intrusions and Malware, and Vulnerability Assessment,
Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus Almgren
(Eds.). 309–329.

[58] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Confer-
ence on Learning Representations, ICLR, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[59] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (Nov. 1995), 39–41. https://doi.org/10.1145/219717.219748

[60] Palo Alto Networks, Inc. 2021. Domain Generation Algorithm (DGA) De-
tection. https://docs.paloaltonetworks.com/pan-os/9-1/pan-os-admin/threat-
prevention/dns-security/domain-generation-algorithm-detection.html.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[62] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’14). 701–710.
https://doi.org/10.1145/2623330.2623732

[63] PNF Software, Inc. 2021. IDA Pro. https://www.pnfsoftware.com/.
[64] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling

with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. 45–50. http://is.muni.cz/publication/884893/en

[65] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger (Eds.). 3104–3112. http://papers.nips.cc/paper/5346-sequence-to-
sequence-learning-with-neural-networks.pdf

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.).
5998–6008. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[67] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L.
Mazurek. 2020. An Observational Investigation of Reverse Engineers’ Processes.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1875–1892. https://www.usenix.org/conference/usenixsecurity20/presentation/
votipka-observational

[68] Yanlin Wang and Hui Li. 2021. Code Completion by Modeling Flattened Ab-
stract Syntax Trees as Graphs. In The Thirty-Fifth AAAI Conference on Artificial
Intelligence.

[69] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-Based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 363–376. https://doi.org/10.1145/
3133956.3134018

[70] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew
Smith. 2015. No More Gotos: Decompilation Using Pattern-Independent Control-
Flow Structuring and Semantic-Preserving Transformations. In 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego, Cali-
fornia, USA, February 8-11, 2015. The Internet Society.

[71] Yaniv David, Uri Alon and Eran Yahav. 2021. The Dataset of Nero. https:
//doi.org/10.5281/zenodo.4081641.

[72] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2017. Understanding deep learning requires rethinking generalization. In
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=Sy8gdB9xx

[73] Hong Zhao, Zhaobin Chang, Guangbin Bao, and Xiangyan Zeng. 2019. Ma-
licious Domain Names Detection Algorithm Based on N -Gram. J. Comput.
Networks Commun. 2019 (2019), 4612474:1–4612474:9. https://doi.org/10.1155/
2019/4612474

[74] Lingxiao Zhao and Leman Akoglu. 2020. PairNorm: Tackling Oversmooth-
ing in GNNs. In International Conference on Learning Representations. https:
//openreview.net/forum?id=rkecl1rtwB

[75] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
2019. Neural Machine Translation Inspired Binary Code Similarity Comparison
beyond Function Pairs. In 26th Annual Network and Distributed System Security
Symposium, NDSS.

619

https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1145/2382577.2382579
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.18653/v1/D15-1166
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
https://docs.paloaltonetworks.com/pan-os/9-1/pan-os-admin/threat-prevention/dns-security/domain-generation-algorithm-detection.html
https://docs.paloaltonetworks.com/pan-os/9-1/pan-os-admin/threat-prevention/dns-security/domain-generation-algorithm-detection.html
https://doi.org/10.1145/2623330.2623732
https://www.pnfsoftware.com/
http://is.muni.cz/publication/884893/en
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.5281/zenodo.4081641
https://doi.org/10.5281/zenodo.4081641
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx
https://doi.org/10.1155/2019/4612474
https://doi.org/10.1155/2019/4612474
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB

	Abstract
	1 Introduction
	2 Background 
	2.1 Motivating Example
	2.2 Existing Techniques 
	2.3 Challenges for Large-Scale Evaluation 
	2.4 Challenges for Dataset Construction

	3 The NFRE Framework
	3.1 Overview
	3.2 Structural Instruction Embedding
	3.3 Neural Prediction Model

	4 Dataset Construction
	4.1 Overview
	4.2 Label Noise Mitigation
	4.3 Label Sparsity Mitigation
	4.4 Deduplication 

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Effectiveness 
	5.3 Component Contribution 
	5.4 Data Impact on Model 
	5.5 Comparison with Existing Techniques 

	6 Discussion & Limitation
	7 Related Work
	8 Conclusion and Future Work
	References

