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Anderson et al. [3] observed that cover can be compressed
to generate the secret message, and for message embedding,

decompress it into stego. Le et al [4] constructed
the distribution-preserving steganography called !P-code based

the arithmetic coding and it assumes that both of the
sender and receiver know the distribution of cover. Sallee [5]
designed a compression-based stegosystem for JPEG images
that assumes the AC coefficients in JPEG images following
generalized Cauthy distribution, and the receiver can estimate
the distribution as well.

As for sampling-based stegosystem, Cachin [1] proposed
using rejection-sampling to generate the stego that looks like
the cover. In detail, the stegosystem samples a document from
the cover distribution until the sampled document whose hash
value equals to the XOR between the message and k, where
k is a session secret key shared by both of the two parties.
Hopper [2] improved Cachin’s method and generalized it to be
applicable to any distribution, which assumed it has sufficient
capacity (entropy) and can be sampled perfectly based on the
prior history. Von Ahn et al. [6] created public-key provably
secure stegosystem and chosen-stegotext attacks. Lysyanskaya
et al. [7] analyzed the problem of imperfect sampling by weak-
ening the assumption that the cover distribution is modeled as
a stateful Markov process. Zhu et al [8] provided
general construction of secure steganography with one-way
permutation and unbiased sampler.

However, neither the compression-based stegosystem
the sampling-based stegosystem, is effective and even feasible
in the non-synthetic data environment. Compression-based
schemes need to know the exact explicit distribution of cover,
the constraint of which is too strict. The complexity and
dimensionality of
such as natural audios, images and videos, will prevent
from determining a complete distribution Pc of
for sampling-based systems, the difficulty is that the perfect
sampler is hard to obtain, and the embedding capacity of the
existing scheme is rather low [2].

Fortunately, generative models bring
distribution-preserving steganography. Generative models de-
scribe how generative media
generating data whose distribution is approaching that of
the training data. Prominent models include variational auto-
encoders (VAE) [9], [10], generative adversarial networks
(GAN) [11], auto-regressive models [12]-[14] and normalizing
flows [15]. VAEs maximize a variational lower bound on the
log-likelihood of the data. GANs employ an adversarial frame-
work to train a generative model that mimics the true tran-
sition model, auto-regressive models and normalizing flows

Abstract—Steganography is the art and science of hiding secret
messages in public communication so that the presence of the
secret messages cannot be detected. There are two distribution-
preserving steganographic frameworks, one is sampling-based
and the other is compression-based. The former requires
perfect sampler which yields data following the same distribution,
and the latter needs explicit distribution of generative objects.
However, these two conditions are too strict even unrealistic in
the traditional data environment，e.g. the distribution of
images is hard to seize. Fortunately, generative models
new vitality to distribution-preserving steganography, which can
serve as the perfect sampler or provide the explicit distribution
of generative media. Take text-to-speech generation task

example,
based on WaveGlow and WaveNet, which corresponds to the
former two categories. Steganalysis experiments and theoretical
analysis are conducted to demonstrate that the proposed methods
can preserve the distribution.

Index Terms一Steganography, generative media, arithmetic
coding, provable security
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I. INTRODUCTION
TEGANOGRAPHY is the art and science of communicat-
ing in such a way that the presence of a message cannot

be detected, which can be applied in various applications, such
anonymous communication, covert communication, etc.

Cachin [1] firstly formalized an information-theoretic model
for steganography in 1998,where a relative entropy function is
employed as a basic measure of steganographic security for the
concealment system. The security of a steganographic system

be quantified in terms of the relative entropy D ( PC || Ps )
between the distributions of cover Pc and stego Ps, which
yields bound
D ( PC || _PS) = 0 means perfectly secure, which is also regarded
as distribution-preserving. From another perspective, Hopper
et al. [2] formalized a perfectly secure system based on the
computational complexity, which is immigrated from cryptog-
raphy. The perfect security is defined as a polynomial-time dis-
tinguisher that cannot distinguish the cover and stego. Namely,
the distribution of the cover and stego is indistinguishable.

With the definition of steganographic security, many
schemes related to distribution-preserving steganography
proposed and can be divided into two:compression-based and
sampling-based. As for the compression-based stegosystem,
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train with maximum likelihood, and avoid approximations by
choosing a tractable parameterization of probability density.
VAE, GAN, and flow-based generative models can generate
vivid objects from latent variables, which follow a prior
distribution, e.g. Gaussian distribution, and auto-regressive
models can give the explicit distribution of generative objects.
The generative models have been utilized for steganography
[16]-[21], but most of them did not focus
preserving steganography.

In this paper, we design two distribution-preserving stegano-
graphic methods based
the advantages of efficiency, practicality and high embedding
capacity. Inspired by the sampling-based stegosystem,
introduce a reversible flow-based generative model as a black-
box sampler. In detail, the encrypted message is mapped into
the latent codes that follows the Gaussian distribution, and
then the latent codes is fed into the generative model, yielding
the generative data. Once the generative model is well-trained
and fixed, the generative model can be seen generating data
following the same distribution, which meets the requirements
of the black-box sampler. The receiver shares the same genera-
tive models with the sender, and the reversibility of generative
models guarantees that the message can be extracted correctly
from the generated data. Here, the text-to-speech generative
model WaveGlow serves as the instance to verify the practical
security.

For the compression-based stegosystem, auto-regressive
models are adopted for their explicit distributions of the gener-
ative data. According to the duality between data compression
and message embedding, the adaptive arithmetic coding is in-
tegrated into the data generation process, which decompresses
the encrypted message into the generated samples following
the given distribution predicted by the auto-regressive models.
With the same well-trained generative model, the receivers can
compress the generated samples to extract the message using
the process of compression. Here, the text-to-speech generative
model WaveNet is adopted as the auto-regressive model.

It is worth mentioning that choosing text-to-speech gen-
erative models rather than image generative models for val-
idating
thought out. Generally, the quality of the generative speech
is acceptable, while the generative image may be blurred and
unstable. What’s more, the semantic of speech is robust, which

get the text of speech through
speech recognition. That is to say, there is no need to send
the text as the side information every time for generating the
corresponding audio. Additionally, the codes and the generated
samples are available1.

The main contributions of this work are three-fold:
the reversible generative model, WaveGlow,

design the sampling-based distribution-preserving
steganography with a high capacity and efficiency of
message extraction.

• Based on the auto-regressive generative model, WaveNet,
design a compression-based distribution-preserving

stegosystem using the adaptive arithmetic coding. The

Fig. 1. The diagram of steganographic communication.
distribution-on

theoretical analysis is given to prove our proposed method
is distribution-preserving.

• Experiments validated the practical security of the pro-
posed two stegosystems by defending against the state-
of-the-art staganalysis methods.

The rest of this paper is organized as follows. We review
the related work in Section II, and the proposed sampling-
based stegosystem and compression-based stegosystem
generative models are elaborated in Section III and Section
IV, respectively. The experiments are presented in Section V.
Conclusion and future work are given in Section VI.

II. RELATED WORK

generative models, whichon own

we

on

A. The Prisoners’ Problem
In order to improve the readability of this paper, the prison-

ers5 problem [22] formulated by Simmons is introduced first,
which is a popular formulation of the steganography problem.
Alice and Bob are imprisoned in separate cells and want to
hatch an escape plan. They are allowed to communicate but
their communication is monitored by warden Eve. If Eve finds
out that the prisoners are secretly exchanging the messages,
she will cut the communication channel and throw them into
solitary confinement.

B. The Diagram of Steganography
According to the prisoners’ problem, the diagram of the

steganography is depicted in Fig. 1. A steganographic scheme
can be regarded as a pair of embedding and extraction func-
tions Emb() and Ext() for Alice and Bob, respectively [23].

Emb(c, k, m) = s,

Ext (s) = m,

where c, k, m, s are cover object, secret key, message and stego
object, respectively. Eve judges the object s is innocent or not
by all the possible knowledge except secret key according to
Kerckhoffs’ principle [24].

⑴
distribution-preserving stegosystem is carefullyour

⑵

that themeans receiver can

C. The Theoretical Definition of Steganographic Security
The information-theoretic definition of steganographic

curity is given by Cathin [1]. Assuming the cover is drawn
from C with probability distribution Pc and the steganographic
method will generate stego object which has the distribution
Ps. The distance of two distributions can be measured using
relative entropy:

se-

• Based on
we

尸cO)^ Pc (x) logD ( P C || Ps) = (3)we P s ( x )
XGC

0, the stegosystem is distribution-When D (PC || PS)
preserving.http://home.ustc.edu.cn/~chenkj/audio/audio.html
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the probability distribution learned in the stage of training, as
shown in Fig. 2. The generative models can be divided into
two categories, implicit density probability distribution, and
explicit density probability distribution. Specifically, VAEs,
GANs and flow-based models belong to the first category, and
auto-regressive models attribute to the second category. The
former meets the requirement of the sampling-based stegosys-
tem, and the latter can be adopted to develop compression-
based stegosystems.

D. Existing Distribution-Preserving Methods
The sampling-based distribution-preserving methods can be

briefly described in Algorithm 1. Given a mapping function
/〆.）：7C x C 4 穴 with the secret key k and H - (0,l)e, the
message embedding in the stegosystem is based on rejection
sampling algorithm Sample?^,b ). The object is generated by
sampling according to the given distribution C by oracle Oc,
such that an e-bit symbol b will be embedded in it. The
hiding algorithm randomly chooses a sample .v from them that
satisfies f^ s ) = b.However, the perfect sampler for generating
multimedia objects is hard to obtain in the traditional data
environment, and the capacity of existing schemes that adopt
documents, network protocol [25] as the carrier, is rather low,
e.g. one document only carries one-bit message.

Algorithm 1 Sample^(k ,b )

Require: a key k , a value b e {0,\ }e.
l : repeat

夕 <~R
3：until fk ( s ) = b.
4：Return s.

Fig. 2. The pipeline of sample generation using the generative model.
CP.2:

Text-To-Speech (TTS) has attracted a lot of attention in
recent years and deep neural network based systems have
become more and more popular for TTS, such as Tacotron
2 [26], Deep Voice 3 [27] and ClariNet [28], resulting from
their satisfactory speech quality. These models usually first
generate the mel-spectrogram from the input text and then
synthesize speech from the mel-spectrogram using vocoders
such as Griffin-Lim [29], WaveNet [14], WaveGlow [30].

propose two distribution-preserving
text-to-speech generative

Another category of distribution-preserving steganography
is compression-based steganography. With a perfect
pressor, the medium
following the uniform distribution whose information entropy

The data decompression process is translating
the bitstream into the original medium, which is similar to
message embedding. With the distribution of the medium

be decompressed into

com-
be compressed into the bitstreamcan

is maximum.
In this paper,

steganographic methods based
models, WaveNet [14] and WaveGlow [30].

we
on

data, the encrypted message
medium through a perfect compressor, resulting from the
duality between data compression and message embedding.
Message can be extracted by compressing the generated media.
Generally, source encoding can serve as the compressor. Based
on arithmetic coding, Le [4] proposed 'P-code for distribution-
preserving steganography, assuming that both sides know
the distribution of

can a

III. DISTRIBUTION-PRESERVING STEGANOGRAPHY BASED ON

WAVEGLOW
In this section, the distribution-preserving steganographic

scheme based on the implicit generative model is proposed.
VAEs and GANs have been adopted for steganography in
previous works, however, an extra message extractor is needed
for message embedding and the message cannot be 100%
correctly extracted. Error codes can be utilized to alleviate
the problem, but the capacity becomes lower due to the parity
information. Consequently, we design a stegosystem on the
flow-based generative model, WaveGlow, whose reversibility
does favor to message extraction.

exactly. Sallee [5] designed the
compression-based stegosystem for JPEG images by assuming
that AC coefficients follow Generalized Cathin distribution,
whose parameters can be calculated by both sides. However,
Generalized Cathin distribution is not the true distribution of

cover

AC coefficients. The complexity and dimensionality of covers
formed by digital media objects, such as natural audios, images
and videos, will prevent
distribution Pc of cover, which implies Sallee’s method cannot
achieve perfect distribution-preserving steganography.

In summary, compression-based schemes need to know the
exact distribution of cover, which is too difficult to capture
the distribution of digital media objects. As for the sampling-
based system, the perfect samplers are hard to obtain, and the
capacities of the existing schemes are rather low. To this end,

introduce generative models into distribution-preserving
steganography.

from determining a completeus Fig. 3 presents the pipeline of the distribution-preserving
showmethod based on WaveGlow. In the upper part,

the normal generation of audios by WaveGlow. The input
text is first transferred into mel-spectrogram by spectrogram
generation model (SPN). Here, Fastspeech [31] is adopted
for its certainty in transformation, so that the receivers
reproduce the same mel-spectrogram. The generator randomly
takes samples from a zero-mean spherical Gaussian, and then
feeds the Gaussian sample and mel-spectrogram to WaveGlow
to generate the cover audio.

For message embedding, the encrypted message is mapped
into a Gaussian vector, and then fed to the WaveGlow
along with the mel-spectrogram to yield the stego audio. For
ensuring the

we

can

we

E. Text-to-Speech Generative Models
The generative model describes how media are generated.

The generation process can be seen as random sampling from extracting the message correctly, thereceiver
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the interval ( x, y ). F
_

l is the inverse of cumulative distribution
function (CDF) F of Gaussian distribution, m is the encrypted
message in p-ary form transferred from p-b'ii encrypted binary
message m’：

/7-1

YJ 2、m\i ). (6)m =
i=0

Fig. 4 gives the examples of the interval division of p =
1, 2, 3, 4, respectively. After the division is determined, rejec-
tion sampling is utilized to map the binary stream into the
corresponding interval. Details of the mapping process
given in Algorithm 2.

are

Fig. 3. The distribution-preserving steganographic scheme based on Wave-
Glow. The upper part presents the normal generation of audios, and the
generated audios are regarded as cover audios. The bottom part shows that the
encrypted message is mapped into the Gaussian vector and then the Gaussian
vector and mel-spectrogram are fed into WaveGlow to generate the stego
audio. As for message extraction, the stego audio is first recognized as text,
which is exactly the same as the input text on the sender-side. Since the
distribution mapping and WaveGlow are invertible, their inverse processes
can be used to extract the message.

b) 2 bit

stego audio is required to be recognized the
input text. With the recognized text and SPN, the same mel-
spectrogram can be obtained by the receiver. The message can
be extracted by the inverse processes of WaveGlow generation
and message mapping. Each module will be addressed in the
next subsections.

thesame as

(c) 3 bit (d) 4 bit

Fig. 4. The examples of division in the module of mapping.A. Message Mapping
Generally, the message m is encrypted into the random

binary bitstream by XOR with the secret key sequence k:

m’ = m � k.

Algorithm 2 Mapping function M
Require: Payload p, encrypted message m' of length
Ensure: latent codes z.

l：Divide (-00,00) into 2P intervals according to the CDF of
Gaussian distribution.

2：Make every p-bit message as one group and compose
message groups G.

3：for each item i in G do
repeat

Sample 5 from the Gaussian distribution,

until s drops into the corresponding interval of item i.
Append s to the latent codes z.

8：end for

n.
⑷

It is known that if the secret key is random and the key
is as long as the message, then the encrypted message is

uniform variable. Cryptographically secure pseudo-random
number generator (CSPRNG) is used to generate the secret
key sequence, which is computationally indistinguishable from
true randomness. Therefore, the encrypted message mf can
be regraded as following the uniform distribution. Then, the
encrypted message m' is transferred into Gaussian latent codes
z by the mapping module.

The mapping module maps variables from the uniform
distribution to the Gaussian distribution, which can be well
carried out by rejection sampling. Here, we define the payload
p as the information that each dimension of latent codes carry.
Given p-bit binary message, we can map it into the Gaussian
latent codes using mapping function At(m, p ):

a p

4
5
6
7

B. Audio Generation
WaveGlow is a reversible generative model, constructed on

affine coupling layers. It takes samples from
spherical Gaussian with the same number of dimensions
the desired output, and puts those samples as well
spectrogram through a series of invertible layers that trans-
form the Gaussian distribution to one which has the desired

a zero-mean
1 1 m + 1m

Z = A1(m, /7) = F (5) as
2P~ l

where RS( x, y ) is a rejection sampling function that will keep
randomly sampling a value z from (-00, 00) until z drops into
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distribution. Specifically, WaveGlow models the distribution
of audio samples conditioned on a mel-spectrogram.

z � JV( z; 0，I )

where fhi - 0, 1, ...,k is invertible affine coupling layer, and
Fmei is the mel-spectrogram of the text. From audio to latent
codes can be expressed

Distribution
-fcover

⑺

⑻

Distribution
Pcover

as:

Z = f k l ° f k-[ 0 - - - /o 1^ Fmel ).
After mapping the message into the Gaussian latent codes z,
the mel-spectrogram Fme【 and the latent codes z are fed into
WaveGlow to generate the stego audio y .

(9)
Fig. 5. The duality between data compression and data hiding. Data
decompression corresponds to message embedding and data compression
corresponds to message extraction.

C. Discussion of the Security
It can be seen from Fig. 3, the difference between normal

generation and message embedding is only the latent codes.
The former randomly takes samples from the Gaussian dis-
tribution, while the latter take samples from the Gaussian
distribution according to the encrypted message by rejection
sampling. As analyzed before, the encrypted message
be regarded computationally indistinguishable random thanks
to the CSPRNG. In this way, the latter can be also

randomly taking samples from the Gaussian distribution.
Since the subsequent processes are the same, the distribution
of cover audios and stego audios

In conclusion, the stegosystem based on WaveGlow is
distribution-preserving.

can

seen
as

be deemed thecan as
same.

Fig. 6. The diagram of distribution-preserving steganography based on
WaveNet and adaptive arithmetic coding.

IV. DISTRIBUTION-PRESERVING STEGANOGRAPHY BASED ON
WAVENET

Data hiding is the dual process of compression, and
present a comparison between data hiding and data compres-
sion in Fig. 5. The upper part presents the data compression
and the second row presents the data hiding. Data decompres-
sion corresponds to message embedding and data compression
corresponds to message extraction. Generally, decompressing
bitstream into medium requires prior knowledge, such as the
distribution of the medium. However, it is hard to obtain the
distribution of natural media. Fortunately, the development of
deep generative models brings
auto-regressive models present the explicit density probability
distribution of the generated media, which may solve the
aforementioned problems.

In our previous work [32], we built
auto-regressive model, PixelCNN [33]. However, the quality of
the generated image is unsatisfying. Furthermore, the images
always belong to the same category, which means the semantic
of the image is single, and this behavior is suspicious.

To solve this, we design a stegosystem based on text-to-
speech auto-regressive models, WaveNet, which can generate
audios with abundant semantics. Besides, the semantics are
naturally embedded in audios, which means the same text can
be obtained by the receiver as that in the sender-side, so that
they can reimplement the same generation process with the
identical WaveNet model.

WaveNet describes the joint distribution of an audio x =
(xj , . .. , xn ) as a product of conditionals:we

门pO/bi，.p( x ) = p ( x i , . .. , x n ) = . . Jz-b /i) , (10)

where h can be additional global information, such as speaker
ID and audio semantic. That is to say, we can obtain the
exact probability distribution of every sample of the generated
audio, which supports us to design the compression-based
stegosystem.

The diagram of the compression-based stegosystem using
WaveNet is shown in Fig. 6. The input text is transferred
into the mel-spectrogram, and the mel-spectrogram as well as
samples already generated are fed into the WaveNet to obtain
the distribution of the next sample. The normal generation will
randomly choose the sample value from the distribution. As for
message embedding, with the distribution, the stegosystem em-
beds the encrypted message into samples using adaptive arith-
metic decoding (AAD). The embedding process responds to
the data decompression. Sharing the same SPN and WaveNet,
the receiver can first recognize the stego audio into text and
then generate the same distribution. With the same distribution
and stego audio, the receiver can extract the message using
adaptive arithmetic encoding (AAE), which responds to data
compression. The details of message embedding and extraction
using AAD and AAE will be elaborated below.

opportunity, where theus an

system ona secure
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A. Message Embedding and Extraction
Given the distribution Pc of the generated audio by

WaveNet, the process of embedding message corresponds
to adaptive arithmetic decoding, and extraction corresponds
to adaptive arithmetic encoding. = [ a\ , a2 , is the
alphabet of the generated audio sample values in a certain
order with the probability V = { P{a\ ), Pfe), P( am ) } . The
cumulative probability of a symbol can be defined as i r

i r

2尸(处).F {ad = ( I D
k=\ i r

Owning these notations, we start to introduce the process of ；
message embedding and extraction. :

1) Message embedding: Given the encrypted message m' =
[m1 m2m3...mzJ，it can be interpreted as a fraction q in the range ■

_
[0, 1) by prepending “0.” to it: Fig. 7. An example of message embedding using adaptive arithmetic

decoding.- z mi - 2~l . (12)q - 0 .mini2ni3 ...mi

Following the adaptive arithmetic decoding algorithm, we start
from the interval [0, 1) and subdivide it into the subinterval
[/, h) according to the probability V of the symbols in and
then append the symbol aj corresponding to the subinterval in
which the dyadic fraction q lies into the stego y:

y 二 y ..\ ah
where :: represents appending the subsequent symbol into the
previous vector. Regularly, the probability V of symbols will
be updated. Then calculate the subinterval [/, h ) according to
the updated probability V by

(13)

hk = hk-i + ( hk-i - 4_
i ) * F( cij )，

h - 4-i + ( hk—\ - 4-i ) *

where hk and 4 are the bound of subinterval in the 众-th step. L
Repeat the process until the fraction q satisfies the constraint:

(14)

(15)

Fig. 8. An example of message extraction using adaptive arithmetic encoding.
q + (0.5)L ^ [hM
q 一 (0.5)L ^ [kJ^k ) (16)

The constraint guarantees that the dyadic fraction q is the
unique fraction of length L in the interval [k , hk ), such that
the message can be extracted correctly. The message length L
and the probabilities V of symbol are shared with the receiver.

B. Proof of distribution-preserving

proof of using adaptive arithmetic coding is
2) Message extraction: On the receiver-end, the interval discussed in the subsection. The arithmetic code is prefix free,

[U h ) starts from [0, 1), and will be subdivided into subintervals and by taking the binary representation of q and truncating it to
of length proportional to the probabilities of the symbols. / (c) = [log +1 + 1 bits [34], we obtain a uniquely decodable
if k-ih element yj corresponds to the symbol aj , update the code. When it
subinterval as follows:

The secure

to encoding the entire sequence c, thecomes
number of bits /(c) required to represent F(c) with enough
accuracy such that the code for different values of c are distincthk = hk~\ + ( hk~ [ - 4--i ) * F(a/)，

4 = 4-i + (M-i - 4-i ) * F(o；_ i ).
Repeat the process until the number of steps reaches the length
of y. Finally, find the fraction q =

^
=\叫2

一1 satisfying ln <
q hn , where m/ e {0, 1} is the message bit and n is the length
of message.

To further clarify the scheme of message embedding using Note that l (c) is the number of bits required to encode
arithmetic decoding, we provide a simple example in Fig. 7 the entire sequence c. Therefore, the average length of

arithmetic code for a sequence of length n is given by

(17)
is

(18)

/ (c) = riog i + i . (19)
尸（c)

an
and Fig. 8 .



A. WaveGlow System

At first, we introduce the setting of every component of our
stegosystem. Here, Fastspeech [31] is adopted as the SPN,
due to its certainty in transferring text to mel-spectrogram,
and the dictionary and the pretrained model are available at
Google Drive2. The WaveGlow is trained on the LJ speech [37]
data, which consists of 13,100 short audio clips of a single
speaker reading passages from 7 non-fiction books. The dataset
consists of roughly 24 hours of speech data recorded
a MacBook Pro using its built-in microphone in a home
environment. The sampling rate of audios is set as 22.05 kHz.
The pretrained model is available at PytorchHub3.

Sentences with different semantics are fed to the FastSpeech
to generate mel-spectrograms. Then the normal cover audios

generated with the Gaussian latent codes, and the stego
generated using the mapped latent codes from

the encrypted message. All the audio clips are stored in the
uncompressed WAV format.

The state-of-the-art audio steganalysis feature, the combined
feature of Time-Markov and Mel-Frequency (abbreviated
CTM) [38] is selected to evaluate the security performance.
The detectors are trained as binary classifiers implemented
using the FLD ensemble with default settings [39]. A separate
classifier is trained for each embedding algorithm and payload.
The ensemble by default minimizes the total classification
error probability under equal priors:

2尸(c)/(c)

2P(C) ⑽

2尸⑻ ⑻

-^P(c) logP (c) + 2^P(c)

= H(Cn ) + 2.

Un

「log
P (c )

(20)
=㈣兩 + 1 + 1<

on

Since the average length is always greater than the entropy,
the bounds on 1̂ are

H(Cn ) lAn < H(Cn ) + 2. (21) are
audios areThe length per symbol LA ,

^ - Therefore, the bounds on lA are
or rate of the arithmetic code is

H(Cn ) H{Cn ) 2
+ — .< /A < (22) asn n n

Also we know that the entropy of the sequence is nothing but
the length of the sequence times the average entropy of every
symbol [35]:

H (Cn ) = nH(C ). (23)

Therefore,
PE = min -(PFA + ^MD)-尸FA /

(27)2H {C ) < lA < H(C ) + ~. (24)
n

rate 尸E
means

The ultimate security is qualified by average
averaged over ten 50/50 database splits, and larger 尸E
stronger security.

errorIn our framework, Pll is the real distribution of n samples
generated by the process of message embedding using AAD,
and Pc is the target distribution which we desire to approx-
imate. According to [36, Theorem 5.4.3], using the wrong
distribution P" for encoding when the true distribution is Pc
incurs a penalty of D ( PC || P^). In other words, the increase
in the expected description length due to the approximate
distribution rather than the true distribution Pc is the
relative entropy D ( PC || P^). Directly extended from Eq. (24),
D ( PC || P7

S
? ) has a upper bound:

audios and corresponding
stego audios are available4, where the readers can evaluate
the quality of the audio. Moreover, The audio waveforms as
well as their mel-spectrograms are shown in Fig. 9. For the
same text, we generate three audios, where the first two audios

generated by the normal process and the third audio is
generated by the WaveGlow stegosystem. It can be observed
that the waveforms and mel-spectrograms of three audios are
similar, but the details are different from each other, showing
no special property within one category.

2) Security Performance: The first-order distributions of
the cover audios and the stego audio are presented in Fig. 10.
Since the KL-divergence will output unstable results,

energy distance [40] and Wasserstein distance [41] for
measurement. The energy distance between two distributions

and v, whose respective CDFs are U and V , equals to:

1 ) Visualization: Both cover

are

2
D ( PC II P：) (25)< n

and if /2 —> oo, then
we

D ( PC || P：) ^ 0. (26) use

By increasing the length of the sequence, the relative entropy
between Pc and turns to be 0, meaning that the proposed
steganographic scheme is distribution-preserving when the
sequence is long enough.

u

[ 2E\X - Y\ - E \ X - X f \ - E \Y -叫广2 , (28)D( u, v)

where X and X' (resp. Y and Yf )
variables whose probability distribution is u (resp. v). E is the
expected value, and |.| denotes the length of a vector.

independent randomare

V. EXPERIMENTS

In this section, experimental results and analysis are pre-
sented to demonstrate the feasibility and effectiveness of the
proposed schemes.

2https://drive.google.com/open?id=lP9I4qag8wAcJiTCPawt6WCKBqUfJFtFp
3https://pytorch.org/hub/
https://home.ustc.edu.cn/~chenkj/audio/audio.html4



10Fig. 10. The first-order distribution of cover audio and stego audio generated
by WaveGlow stegosystem with respect to the same text.

0
2 4 6 8 10

Payload (bps)

Fig. 12. The running time of message mapping in the WaveGlow stegosystem
with respect to different payloads.

TABLE I
THE ENERGY DISTANCE AND WASSERSTEIN DISTANCE OF THE DISTRIBUTION OF THE

COVER AUDIOS AND THE STEGO AUDIO GENERATED BY THE WAVEGLOW STEGOSYSTEM.

Distance Energy distance Wasserstein distance

0.0 Cover1-Cover! 0.0190 0.02815
0.4 0.5 0.0204 0.02543Coverl -Stego

Payload (bps)

Fig. 11. The average detection error rate Pg as a function of payload in bits
per sample (bps) for steganographic algorithm payloads ranging from 0.1-0.5
bps against CTM on generated audios by the WaveGlow stegosystem.

to 0, and is also near to the distance between the first-order
distributions of the cover audios triggered by different random
seeds, meaning that the first-order distribution is well pre-
served by the WaveGlow stegosystem. The performance of the
high-order distribution will be checked through steganalysis
later.

The Wasserstein distance between the distributions u and v
is:

D( u, v) = inf \x - y\dn( x, y ), (29) To validate the distribution-preserving ability of steganalytic
methods on the synthesized audio, we introduce modification-

where T( u,v ) is the set of (probability) distributions on RxR based steganographic methods for comparison, including least
whose marginals are u and v on the first and second factors significant bit matching (LSBM) and derivative filter residual
respectively. (DFR) [42]. During the embedding process of LSBM, if

The energy distance and the Wasserstein distance of the the LSB of the cover element matches the secret data bit,
first-order distributions of the cover audio and the stego audio this element will be kept intact. Otherwise, the element will
are presented in Table I. The distance between the first-order be altered by +1 or -1 at random. DFR is an adaptive
distributions of the cover audios and the stego audio is near steganographic method, which assigns different modification

nGT( u,v )

8

Cover audio 1

Cover audio 2

Stego audio

Fig. 9. The visualization of the cover audios triggered by different random seeds and the stego audio generated by WaveGlow stegosystem, including
waveforms and mel-spectrograms. The waveforms and the mel-spectrograms are similar between the covers and the stego. The details are different from each
other, indicating the stego audio has no special deviation with respect to the audios.cover
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Cover audio 1

lCover audio 2

Stego audio

Fig. 13. The visualization of the cover audios triggered by different random seeds and the stego audio generated by the WaveNet stegosystem, including
waveforms and mel-spectrograms. The waveforms and the mel-spectrograms are similar between the cover audios and the stego audio. The details are different
from each other, indicating the stego audio has no special deviation with respect to the audios.cover

distortion to different elements and then embeds message using
minimizing distortion codes, such as syndrome trellis codes
(STCs) [43]. Here, the DFR algorithm is simulated at its
payload-distortion bound. The payload ranges from 0.1 to 0.5
bit per sample (bps).

Fig. 11 shows the steganalysis performance of different
embedding methods. The of LSBM and DFR is lower
than 50%. With the increment of payload, the 尸E decreases,
showing that the CTM steganalytic feature is effective on this
dataset. The PE of our proposed WaveGlow stegosystem is
around 50%,meaning that the steganalyzer nearly randomly
judges synthesized audio is cover or stego. That is to say,
the high-order distribution of
cannot be distinguished by the steganalyzer as well, indicating
the WaveGlow system is distribution-preserving.

3) Efficiency and Capacity: To evaluate the efficiency of the
WaveGlow stegosystem, we measure the running time of the
system in terms of different payloads in Fig. 12. The running
time increases exponentially with the increase of the payload.
As for the -々division situation, the probability p of rejection
sample dropping into the interval of the given message is
Then the expectation E of the sampling time is:

125 125

100 100

75 75

50 50

25 25

0 0
0.0 0.1 0.2 0.0 0.1 0.2-0.2 -0.1 -0.2 -0.1

Fig. 14. The first-order distribution of cover audio and stego audio generated
by the WaveNet stegosystem.

0.5 塞二:: 食

audios and stego audioscover
0.4

0.3

1^
0.2

2Jc •

U.U

Payload (bps)

/=1
i ' P ' i} - P )1 - = 2k . (30)

P
rate PE as a function of payload in bitsFig. 15. The average detection

per sample (bps) for steganographic algorithm payloads ranging from 0,1-0.5
bps against CTM on generated audios by the WaveNet stegosystem.

error
It can be
as k grows, which is consistent to the experimental results
in Fig. 12. The capacity of the WaveGlow stegosystem is
determined by the message mapping module. The upper bound
of the capacity is 32 or 64 bps, depending on which 32-bit
system or 64-bit system the current system is.

that the expectation E grows exponentiallyseen

generation6. The WaveNet vocoder is trained on CMU ARC-
TIC dataset [44] with 100,000 steps. All the audio clips
stored in the uncompressed WAV format. The audio length
ranges from 0.5s to 3s, and the sample rate is 16kHz.

1) Visualization: Similarly, both cover audios and corre-
sponding stego audios
forms and their mel-spectrograms are shown in Fig. 13. The
phenomenon of these audios are similar to Section V-Al .

are

B. WaveNet Stegosystem

We randomly collect 1,000 short text sentences and transfer
them into mel-spectrograms using the SPN5 in Tacotron-
2 [26]. Then WaveNet vocoder is used for audio waveform

also available7. The audioare wave-

6The architecture of WaveNet vocoder can be downloaded at https://github.
com/kan-bayashi/PytorchWaveNetVocoder

7https://home.ustc.edu.cn/�chenkj/audio/audio.html
5The architecture of the spectrogram prediction network can be downloaded

at https://github.com/Rayhane-mamah/Tacotron-2.
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generative model, WaveNet. With the probability distribution
of every sample, the message
the generated audios. The security performances of the two
systems are verified by state-of-the-art steganalysis methods.
Additionally, the theoretical proof is given for the WaveNet
stegosystem using adaptive arithmetic coding.

In our future work, we will explore other effective source
encoding schemes and transfer them to generative stegano-
graphic codes. Furthermore, other generative media, such as
videos and 3D meshes, will be utilized under the proposed
framework.

TABLE II
THE ENERGY DISTANCE AND WASSERSTEIN DISTANCE BETWEEN THE DISTRIBUTION OF

THE COVER AUDIOS AND THE STEGO AUDIO GENERATED BY THE WAVEGLOW
STEGOSYSTEM.

be decompressed intocan

Distance Energy distance Wasserstein distance

C()verl -C()ver2 0.0337 0.0571

Coverl -Stego 0.0291 0.0681

2 ) Security Performance: The first-order distributions of
the cover audios by different random seeds and the stego
audio are presented in Fig. 14. The energy distance and
Wasserstein distance of the first-order distributions of the

listed in Table II.
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cover audios triggered and the stego
The distance between the first-order distributions of the cover
audios and the stego audio is near to 0 and is also near to
the distance between the first-order distributions of the cover
audios triggered by different random seeds, meaning that the
first-order distribution of cover is well preserved.

First, we verify the effectiveness of the steganalysis on the
generated audios. Fig. 15 shows the average detection error
rate PE as a function of payload in bps for steganographic
algorithm payloads ranging from 0.1-0.5 bps against CTM.
It can be observed in Fig. 15 that the of DFR and LSBM
decreases with the increment of payload and, showing that the
steganalysis is effective with respect to the generated audios.
The PE of the proposed WaveNet stegosystem is nearly 50%,
which means the stego generated by the proposed system can-
not be detected. In other words, the strong steganalyzer judges
the stego nearly by random guess. The experimental results
verify that our proposed WaveNet stegosystem is distribution-
preserving, as proved in Section IV-B.

3) Efficiency and Capacity: Since WaveNet is an auto-
regressive generative model, the process of generating audios
is time-consuming. The running time of arithmetic decoding
with respect to the time of generating audios is negligible. Nu-
merically, the speed of audio generation on NVIDIA GeForce
1080Ti is about 0.435 sec/sample. The capacity of a generated
audio is equivalent to the entropy of the distribution of audio
samples.

are
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VI. CONCLUSIONS
review the distribution-preserving

steganography, which includes: sampling-based stegosystem
and compression-based stegosystem, and conclude the limi-
tation of current works: lack of efficient perfect sampler and
cannot give the explicit distribution of natural media.

The fast development of generative models brings a
great opportunity to the distribution-preserving steganography.
Based on WaveGlow, we design a sampling-based stegosys-
tem, where the generator serves as the sampler. A message
mapping module transfers the message into the latent codes,
which is then fed to the sampler and produce the stego. The
inverse functions of the mapping module and the generator are
used to extract the message. Besides, according to the duality
between message embedding and data compression, we design

the auto-regressive
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In this paper, we

• 10215-10224.
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