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a b s t r a c t 

The dramatic increase in the number of malware poses a serious challenge to the Android 

platform and makes it difficult for malware analysis. In this paper, we propose a novel ap- 

proach for Android malware detection and familial classification based on the Graph Con- 

volutional Network (GCN). The general idea is to map apps and Android APIs into a large 

heterogeneous graph, converting the original problem into a node classification task. We 

build the “App-API” and “API-API” edges based on the invocation relationship and the API 

usage patterns, respectively. The heterogeneous graph is then fed into the GCN model, itera- 

tively generating node embeddings that incorporate topological structure and node features. 

Eventually, the unlabeled apps are classified by their final embeddings. To our knowledge, 

this paper is the first study to explore the application of graph neural network in the field of 

malware classification. We develop a prototype system named GDroid. Experiments show 

that GDroid can effectively detect 98.99% of Android malware with a low false positive rate 

of less than 1%, outperforming the existing approaches. It also achieves an average accuracy 

of almost 97% in the malware familial classification task with surpassing the baselines. Ad- 

ditionally, we cooperate with QI-ANXIN Technology Research Institute to evaluate its real- 

world impact, and GDroid also maintains satisfactory performance in real-world scenarios. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

As the most used mobile operating system, Android has al-
ways been the vital target of hackers. A recent security report
shows that an average of 12,000 new mobile malware was cap-
tured per day ( 360, 2018 ). The emergence of massive malware
poses a considerable challenge for malware mitigation. 

Previous research indicates that the primary source of
new malicious apps is the variants of knowns ( Fan et al.,
2018 ). To accelerate malware analysis, researchers divide mal-
∗ Corresponding authors. 
E-mail addresses: gh2018@mail.ustc.edu.cn (H. Gao), sycheng@ustc.e
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0167-4048/© 2021 Elsevier Ltd. All rights reserved. 
ware into various families to assist analysis. The malicious
apps belonging to the same family exhibit similar behaviors,
even are variants of the same malware. For example, family
GinMaster silently transmits confidential information to the
remote server, and DroidKungFu allows the hacker to control
the device remotely. Correctly classifying unseen malicious
apps into their families is helpful for malware mitigation. 

This paper presents a novel approach for Android malware
detection and familial classification based on the graph neural
network. Concretely, we first map apps and Android APIs into
a large heterogeneous graph. Then we respectively utilize two
du.cn (S. Cheng), zhangwm@ustc.edu.cn (W. Zhang). 
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elationships, (1) the invocation relationship between apps 
nd APIs and (2) the API usage patterns, to build “App-API”
nd “API-API” edges. The heterogeneous graph is subse- 
uently fed into GCN ( Kipf and Welling, 2016 ), a graph neural 
etwork model, to generate informative embeddings (i.e.,
igh-dimensional numerical vectors) for nodes. Eventually,

he unlabeled apps are classified by their final embeddings. 
The existing work most similar to ours is HinDroid 

 Hou et al., 2017 ). They utilized the Heterogeneous Information 

etwork (HIN) ( Sun and Han, 2012 ) to model apps, APIs with 

heir relationships. They modeled three relationships: (1) the 
nvocation relationship between apps and APIs, (2) the rela- 
ive positional relationship among APIs (i.e., whether APIs co- 
xist in the same code block), and (3) the package and method 

ame of APIs (i.e., whether APIs have the same packages or 
ethod names). Then they calculated the path-based simi- 

arity by meta-paths ( Sun and Han, 2012 ) over apps and per- 
ormed classification by the multi-kernel Support Vector Ma- 
hines. From our perspective, both package name and method 

ame are part of API so that the relationships can be simpli- 
ed. Besides, their approach relies on the path-based similar- 

ty, while recent research indicates that it is unable to fully 
ine latent structure information of graph ( Shi et al., 2019 ). In 

ontrast to HinDroid, we only model two relationships, mak- 
ng the heterogeneous graph more simple. Moreover, our ap- 
roach is based on the graph neural network, which can lever- 
ge topological structure and node features to generate infor- 
ative embedding for each node. 
We develop a prototype system named GDroid and con- 

uct extensive experiments to evaluate its performance. For 
he malware detection task, the experimental dataset con- 
ists of two parts: The benign apps are collected from Google 
lay Store (GP) ( Google, 2017 ) and the malicious apps are from 

ndroid Malware Dataset (AMD) ( Wei et al., 2017 ). For the 
alware familial classification task, three malware datasets,

1) Android Malware Genome Project (AMGP) ( Zhou and 

iang, 2012 ), (2) Drebin (DB) ( Gascon et al., 2014 ) and (3) AMD
 Wei et al., 2017 ), are used to construct a series of experimen- 
al datasets with the different number of families. We com- 
are GDroid with the existing approaches in various metrics,

ncluding Accuracy, Precision, Recall, F-measure, False Positive 
ate (FPR), and False Negative Rate (FNR) 1 . The comparison re- 
ults demonstrate the superiority of GDroid for the two tasks.

The main contributions can be summarized as follows: 

• We present a novel approach for malware detection and fa- 
milial classification based on the GCN model. To our knowl- 
edge, this is the first study to explore the application of 
graph neural network in the field of malware classification.

• We propose an embedding-based approach to mine the API 
usage patterns. It allows our model to utilize the relevance 
among Android APIs. 

• We develop a prototype system named GDroid. Experimen- 
tal results show that it can effectively detect 98.99% of mal- 
ware with low FPR ( < 1%) and FNR. In addition, it achieves 
an average accuracy of almost 97% in the malware famil- 
ial classification task. The comparison results indicate that 
1 FPR and FNR are only used in the malware detection task. 

o
p
a

GDroid outperforms the existing approaches for the two 
tasks. GDroid also maintains satisfactory performance in 

real-world scenarios. 

. Related work 

ur study is based on the recent progress of the following 
elds: malware detection and classification, word embedding 
nd graph neural network. 

.1. Graph-based android malware detection 

ow-level raw features such as bytecodes ( Xu et al., 2018; Yuan 

t al., 2020; Zhang et al., 2019 ), opcodes ( Canfora et al., 2016;
im et al., 2019; McLaughlin et al., 2017; Pektas and Acarman,
019 ), strings ( Kim et al., 2019; Wang et al., 2018 ), permissions
 Gascon et al., 2014; Kim et al., 2019; Li et al., 2018; Vinayaku-

ar et al., 2018; Yerima and Sezer, 2019 ) and APIs ( Allen et al.,
018; Gascon et al., 2014; Jerbi et al., 2020; Nix and Zhang,
017; Zhang et al., 2018; Zhou et al., 2019 ) are shallow. They
re susceptible to code obfuscation techniques. In contrast,
t is recognized that high-level structured features have bet- 
er robustness because the cost of modifying such features is 
elatively high. Thus some researchers tend to use the graph- 
ased features, such as Control Flow Graph (CFG) ( Narayanan 

t al., 2016; Xu et al., 2017 ), API Dependency Graph (ADG) 
 Zhang et al., 2014 ) and Function Call Graph (FCG) ( Gascon
t al., 2013; Hassen and Chan, 2017; Narayanan et al., 2016 ) to
haracterize the code block, function, or the entire program.
hey are internal to the programs (i.e., they can be constructed 

or each program), so we call them “intra-app” features. There 
re also “inter-app” features, implying that they exist among 
rograms. HinDroid ( Hou et al., 2017 ) used HIN to model apps,
he related APIs and their relationships. The disadvantage of 
inDroid is discussed in Section 1 . 

.2. Malware familial classification 

ecent studies for malware familial classification utilize 
ulti-level features which are extracted by dynamic or static 

nalysis. The dynamic analysis focuses on the runtime 
nformation of the program. Martín et al. (2018) mod- 
led the runtime app behaviors with Markov chains.
ai et al. (2019) recorded the runtime API invoca- 

ions and inter-component communication of intents.
lzaylaee et al. (2020) proposed a deep learning system to 
etect malicious Android apps through stateful input genera- 
ion. In theory, dynamic analysis is more robust at the expense 
f more resource consumption. However, dynamic analysis 

s unable to cover all behaviors of the program because 
f the limitation of simulation time and trigger ways. The 
vent-driven mechanism of Android also brings difficulties to 
imulation. In contrast, static analysis can achieve compre- 
ensive coverage of the program in most cases without too 
uch resource consumption. Zhang et al. (2019) used n -gram 

f multiple raw features to model apps. Fan et al. (2018) pro- 
osed a weighted security-relevant API call graph matching 
lgorithm to characterize apps. Zhou et al. (2017) tried to 
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find the maximum isomorphic subgraph of each security-
relevant API within each malware family to extract the
familial features. Garcia et al. (2018) used sensitive APIs and
the invocations in libraries to describe apps and performed
malware detection and familial classification based on the
machine learning algorithms. Mirzaei et al. (2019) proposed a
characterization system for Android malware families based
on ensembles of sensitive API calls extracted from aggregated
call graphs of different families. 

However, existing studies for malware familial classifica-
tion are limited to the “intra-app” features. The “inter-app”
information has not received enough attention. In this paper,
we utilize the “inter-app” information to build a large hetero-
geneous graph for app classification. 

2.3. Word2vec 

Wording embedding is an unsupervised learning technique
in the field of Natural Language Processing (NLP). Word2Vec
( Mikolov et al., 2013a ) is a widely used approach that can
generate context-aware word embeddings. If two words have
similar contexts, the corresponding embeddings will be near
each other in the embedding space, and vice versa. For exam-
ple, the word “Paris” is near the word “Tokyo”, while far from
the word “Apple”. Word2Vec contains two models, Continu-
ous Bag-of-Words (CBOW) and Skip-gram. The CBOW model
predicts the current word from a window of surrounding con-
text words, while the Skip-gram model uses the current word
to predict the surrounding words. Empirically, the Skip-gram
model performs better than CBOW for the infrequent words
( Mikolov et al., 2013a ). Since the security-relevant APIs are not
invoked frequently, and the number of API invocations may
vary significantly in the different methods, we opt for the Skip-
gram model to perform API embedding. 

2.4. Graph neural network 

The Graph Convolutional Network proposed by ( Kipf and
Welling, 2016 ) is a semi-supervised classification model for
graph-structured data. The basic idea is to update the node
representations by propagating information among nodes.
GCN shows strong ability of representation and performs well
in the tasks of various fields, such as the NLP ( Gao et al., 2019;
Liu et al., 2018; Yao et al., 2018 ), recommender system ( Wang
et al., 2019; Wu et al., 2019; Ying et al., 2018 ), computer vi-
sion ( Chen et al., 2018; 2019 ) and biomedicine ( Mao et al., 2019;
Zhang and Kabuka, 2018 ). To our knowledge, this paper is the
first study to explore the application of graph neural network
in malware classification. 

3. Methodology 

Fig. 1 illustrates the overall workflow of GDroid. Given a set of
apps, both labeled and unlabeled, and there are the following
steps: (1) Extracting the API co-occurrence feature from apps.
(2) Conducting API embedding based on the API co-occurrence
feature. (3) Mining the patterns of API usage by the distance
metric among embeddings. (4) Mapping apps and APIs into a
heterogeneous graph. The “App-to-API” edges are established
by the invocation relationships, and the “API-to-API” edges are
built by the API usage patterns. (5) Feeding the heterogeneous
graph into the GCN model, iteratively generating node embed-
dings that aggregate neighboring information with node fea-
tures. (6) Classifying unlabeled apps by their final embeddings.

3.1. Feature extraction 

Empirically, programs achieve their functionalities by calling
system APIs so that the invocations of Android APIs are di-
rectly related to apps’ behaviors. Existing studies usually re-
gard API as the binary feature (e.g., constructing feature vec-
tor by checking whether the app invokes the specific API while
each API corresponds to a dimension). However, this practice
treats APIs as independent of each other, ignoring the poten-
tial relevance among them. Here we take a more comprehen-
sive approach. We build a heterogeneous graph to hold apps
and APIs, using the invocation relationship between apps and
APIs and utilizing the patterns of API usage to model the rel-
evance among APIs. 

The invocation relationship can be extracted through com-
mon static analysis, while the acquisition of API usage pat-
terns is complicated. To this end, we propose an embedding-
based approach based on the API co-occurrence feature.
Specifically, we deem the APIs invoked by the same method as
a co-occurrence. The API co-occurrence feature exists in API
sequences, and each internal method corresponds to an API
sequence. Fig. 2 shows an example. It is an internal method re-
lated to check the network connection. According to the smali
code, three different APIs are invoked so that they consist of
the co-occurrence feature of this method. 

3.2. Mining of API usage patterns 

To mine the API usage patterns, we first perform API embed-
ding based on the API co-occurrence feature and then sum-
marize APIs that have similar usages according to the distance
metric among embeddings. Next, we first introduce the orig-
inal Skip-gram model and then detail our embedding-based
approach. 

3.2.1. The Skip-Gram model 
The Skip-gram model ( Mikolov et al., 2013b ) can generate
context-aware word embeddings. It uses a fixed-size sliding
window moving on the texts to generate training samples.
Training sample exists in pair (x, y ) , where x is the input, and
y is the label. The model uses a sliding window moving on the
texts to generate training data. Fig. 3 illustrates this process.
The word sat in the middle is treated as the input, and the
other words are treated as the targets. As a result, four training
samples are generated: (sat , t he ) , (sat , cat ) , (sat , on ) and (sat, a ) .
The training objective is to adjust word embeddings so that
they can be utilized to predict the surrounding words. For-
mally, given a word sequence w 1 , w 2 , w 3 , . . . , w T , the model
maximize the average log probability as 

J(w ) = 

1 
T 

T ∑ 

t=1 

∑ 

−d ≤ j ≤d 

log P( w t+ j | w t ) (1)
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Fig. 1 – The overall workflow of GDroid. We first extract the API co-occurrence feature from apps. Then we perform API 
embedding, representing APIs as numerical vectors. The patterns of API usage are mined by the distance metric among 
embeddings. Next, we map apps and APIs into a heterogeneous graph and build “App-API” and “API-API” edges. Finally, we 
train the GCN model and classify unlabeled apps. 

.method public sta�c isConnected(Landroid/content/Context;)Z

......
.line 74

......
invoke-virtual {p0, v2}, Landroid/content/Context;

->getSystemService(Ljava/lang/String;)Ljava/lang/Object;
......

.line 77
......

invoke-virtual {v0, v3}, Landroid/net/Connec�vityManager;
->getNetworkInfo(I)Landroid/net/NetworkInfo;
......

.line 78
......

invoke-virtual {v1}, Landroid/net/NetworkInfo;->isConnected()Z
......

.line 80
......

invoke-virtual {v0, v4}, Landroid/net/Connec�vityManager;
->getNetworkInfo(I)Landroid/net/NetworkInfo;

.line 81
invoke-virtual {v1}, Landroid/net/NetworkInfo;->isConnected()Z

......

.end method

1

2

3

2

3

Fig. 2 – An example of the API co-occurrence feature. We omit some statements except the API invocations due to space 
limits. According to the smali code, three distinct APIs are invoked to achieve the functionality of checking network 

connection. They consist of the co-occurrence feature of this method. 
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he sliding window size is 2 d + 1 . P(w t+ j | w t ) is defined as 

(w O | w I ) = 

exp (e T w O 
e w I ) ∑ W 

i =1 exp (e T i e w I ) 
(2) 

here w I and w O are the input ( w t ) and output ( w t+ j ) respec-
ively, e w I and e w O are the corresponding embeddings, W is 
he size of vocabulary. However, this formulation is expensive 
o optimize because 

∑ W 

i =1 exp (v T i v w I ) sums over all the words 
n vocabulary. In practice, negative sampling ( Mikolov et al.,
013b ) and hierarchical softmax ( Mikolov et al., 2013a ) are usu- 
lly used to simplify the objective and accelerate the training 
rocess. 
t
.2.2. API Embedding 
he API embedding model is adapted from the Skip-gram 

odel. It is expected to encode Android APIs, preserving the 
ontext information to make the APIs with similar usages near 
ach other in the high-dimensional space. 

The original Skip-gram model uses a fixed-size window 

oving on the texts. However, this practice does not fit our 
ask because most internal methods do not invoke too many 
PIs, so the API sequences are not long enough. In our exper- 

ments, we opt for an alternative way: Each API sequence is 
eemed as an API window, where we go through each API,
aking the current API as input and targeting the other APIs.
or example, given an API sequence [ api 1 , api 2 , . . . , api N ] . In
he beginning, the first API api 1 is treated as the input, and 
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The cat sat on a mat

sat

the cat on a

Sliding Window

Fig. 3 – The Skip-gram model. There are five words in the window, which are the, cat, sat, on and a . The model uses the 
word sat in the middle to predict the surrounding four words. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Embedding Space

Key APIs

Fig. 4 – The key APIs with their top-5 nearest APIs in the 
embedding space. 
the other APIs ( api 2 , api 3 , . . . , api N ) are treated as the targets.
As a result, N − 1 training samples are generated, which are
(api 1 , api 2 ) , (api 1 , api 3 ) , . . . , (api 1 , api N ) . Next, we treat the sec-
ond API api 2 as input and targeting the other APIs (including
api 1 ), and so on, for each API in the window. An API sequence
that contains N APIs can generate N × (N −1) training samples.

The detailed procedure is presented in Algorithm 1 . The
training objective is similar to the Skip-gram model, which
maximizes the probability of co-occurrence for the neighbor-
ing APIs. 

3.2.3. Distance-based mining 
The embedding process makes the APIs with similar usages
cluster together in the high-dimensional space. Therefore, the
API usage patterns can be obtained by the distance metric.
Concretely, we present a set of APIs that need to be mined for
usage patterns. Generally speaking, they are critical for mod-
eling apps’ behaviors, so we call them key APIs. For each of
them, we calculate the cosine distance between it and other
APIs (not only key APIs). Then we summarize the top- n near-
est APIs. The summarized APIs have similar usages with the
Algorithm 1 Training Samples Generation For API Embedding. 

Input: A set of apps A Output: A set of training samples for 
embedding 

1: t rain _ sampl es ← {} 
2: for ∀ app ∈ A do // for all apps 
3: int ernal _ met hods ← get_internal_methods (app) 
4: for ∀ m ∈ int ernal _ met hods do // for all internal methods 
5: seq API ← π (m ) // extract the API invocation sequen- 

cein m 

6: pairs ← product (seq API , seq API ) // generate train- 
ingsamples 

7: t rain _ sampl es ← t rain _ sampl es ∪ pairs 

8: return t rain _ sampl es 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding key API and can represent the patterns of API
usage. Fig. 4 illustrates this process. 

The setting of key APIs is task-related. We use the sensitive
APIs summarized by Au et al. (2012) as key APIs for the mal-
ware detection task. They are discovered based on the sensi-
tive permission requirements and directly related to the ma-
licious behaviors. As for the malware familial classification
task, things have changed. According to our investigations, the
divide of malware families is based not only on malicious be-
haviors but also on normal functionalities. For instance, the
families FakePlayer is classified by the normal functional-
ity of multimedia. These functionalities are achieved by other
functional APIs, so the non-sensitive APIs also need to be
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Fig. 5 – The schematic depiction of the GCN model in this paper. In the heterogeneous graph, the white nodes in the middle 
represent APIs, while the surrounding orange, blue, green and gray nodes represent apps. Each color of app nodes 
represents a malware family. The black straight lines between app nodes and API nodes are the “App-to-API” edges, while 
the straight gray lines among API nodes are the “API-to-API” edges. The heterogeneous graph is subsequently fed into GCN. 
After training, the right half is the graph with node embeddings. The unlabeled apps are classified into malware families 
(i.e., “Jifake”, “Gemini”, “Airpush”, “Boxer”) by their final embeddings. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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onsidered. Exactly, we mine the usage patterns for all APIs 
o comprehensively model the family behaviors. In the pre- 
xperiments, we found it better than only considering sensi- 
ive APIs. 

.3. Heterogeneous graph construction 

e construct a large heterogeneous graph to hold the apps,
PIs with their relationships. As shown in the left half of Fig. 5 ,
pps and APIs are mapped into the graph. We build two types 
f edges to model the relationships: “App-to-API” and “API-to- 
PI” edges. Formally, the heterogeneous graph G is defined as 

 = (V, E) (3) 

 = V app ∪ V api (4) 

 = (V app × V api ) ∪ (V api × V api ) (5) 

here V app and V api are sets of apps and APIs, respectively. G is 
 simple graph, and there is no more than one edge between 

very two nodes. The “App-to-API” edges are built by the invo- 
ation relationship. If the app invokes an API, an “App-to-API”
dge will be established. The “API-API” edges are established 

y the patterns of API usage. For each key API, we build edges 
etween it and each of its top- n nearest APIs. 

.4. GCN-Based classification 

ur graph neural network model is adapted from GCN 

ipf and Welling (2016) , a semi-supervised learning model for 
raph-structured data. GCN embeds nodes with different fea- 
ures while taking the topological information into account.
ach of the unlabeled nodes is represented by neighboring la- 
eled nodes and itself, incorporating the topological structure 
nd the node features. Note that GCN can capture information 

nly about immediate neighbors with one layer. Stacking mul- 
iple layers can integrate information from larger neighbors.
ig. 5 shows the schematic depiction of the heterogeneous and 

he GCN model for this paper. 
Given a graph G = (V, E) , where V (| V | = n ) and E are sets

f nodes and edges, respectively. Let X ∈ R 

n ×d be the feature 
atrix of V, where d is the dimension of the feature vectors,

ach row x v ∈ R 

d is the feature for node v . Let A ∈ R 

n ×n be
he adjacency matrix. If there is an edge between node v i and 

ode v j , and then set A i j to 1, otherwise A i j = 0 . According to
he theory of GCN, each node should be self-loop. Hence the 
iagonal elements of A are set to 1. The adjacency matrix of 
raph added with self-connections is written as 

ˆ 
 = A + I n (6) 

very layer of GCN can be written as 

 

(l+1) = f (H 

(l) , ˆ A ) (7) 

here l ( l = 1 , . . . , L ) denotes the layer number and f is an acti-
ation function. The input layer H 

(0) = X and the output after 
he last layer H 

(L ) = Z . Then the GCN layer-wise propagation is

 

(l+1) = f ( ̂  D 

− 1 
2 ˆ A ̂

 D 

− 1 
2 H 

(l) W 

(l) ) (8) 

here ˆ D is the degree matrix( ̂  D ii = 

∑ 

j 

ˆ A i j ), and 

ˆ D 

− 1 
2 ˆ A ̂

 D 

− 1 
2 is the 

ormalized adjacency matrix. 
In this paper, we build a two-layers GCN model. The second 

ayer is not connected to an activation function. It is connected 
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Table 1 – Summary statistics of the experimental 
datasets. 

Dataset # Apps # APIs # Classes 

GP-AMD 3300 98,015 2 
AMGP1 911 10,738 10 
AMGP2 1070 11,005 20 
DB1 1723 12,550 10 
DB2 2364 14,436 20 
DB3 2593 14,625 30 
DB4 2738 15,367 40 
AMD1 2000 20,232 10 
AMD2 3654 27,758 20 
AMD3 4095 28,591 30 
AMD4 4298 29,247 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the softmax classifier to perform node classification. 

Z = softmax ( ̃  A ReLU ( ̃  A XW 

(0) ) W 

(1) ) (9)

where ˜ A is the normalized adjacency matrix. Recall that X is
the feature matrix. In the following experiments, we set X = I,
which means initial node features are one-hot vectors. In pre-
experiments, we tried to use API embeddings as the feature of
API nodes, and for each app, we used the mean of embeddings
of its invoked APIs as its feature. However, this practice did not
improve the results, so we chose the one-hot feature finally. 

As for the loss function, we use the categorical cross-
entropy error over all labeled apps 

L = −
∑ 

a ∈Y A 

F ∑ 

f=1 

Y a f ln Z a f (10)

where Y A is the set of labeled apps and F is the dimension of
the output vectors, which is equal to the number of classes. Y
is the label indicator matrix. The weight matrix W is trained
by Adam optimization method ( Kingma and Ba, 2015 ). 

4. Evaluation 

In this section, we first introduce the dataset and experimen-
tal setup, and then we conduct a series of experiments to an-
swer the following research questions: 

• RQ 1. How does GDroid perform in the malware detection
task? ( Section 4.4.1 ) 

• RQ 2. Does GDroid outperform the existing malware detec-
tion approaches? ( Section 4.4.2 ) 

• RQ 3. How does GDroid perform in the malware familial
classification task? ( Section 4.5.1 ) 

• RQ 4. Does GDroid outperform the baselines of malware
familial classification task? ( Section 4.5.2 ) 

• RQ 5. Do the API usage patterns contribute to the model
performance compared with the straightforward prac-
tices? ( Section 4.4.1 ) 

4.1. Dataset 

Three malware datasets: (1) AMGP ( Zhou and Jiang, 2012 ), (2)
DB ( Gascon et al., 2014 ), (3) AMD ( Wei et al., 2017 ) and a be-
nign dataset GP collected from Google Play Store ( Google, 2017 )
were used to construct experimental datasets. AMGP and DB
have been widely used in the past five years. However, a re-
cent study ( Irolla and Dey, 2018 ) point that 49.35% of mal-
ware samples in DB have at least one repackaged app, and the
only differences between the original malware sample and the
repackaged versions are the resource files. The duplication is-
sue is detrimental to build a robust model. Therefore, we also
used the AMD dataset released in 2017, which could reflect the
recent trend of Android malware to a certain extent. We ran-
domly selected a part of apps from these datasets to compose
the experimental datasets. 

For the malware detection task, 1200 malicious apps from
AMD and 2100 benign apps from GP were randomly selected
to construct an experimental dataset (GP-AMD). 
The reasons for choosing malicious apps from AMD are as
follows: 

• The AMD dataset was collected from Google Play Store and
released in 2017, consistent with our benign dataset. The
alignment of the collection time and source is important. 

• The AMD dataset contains the most malware families and
samples. In other words, the malware diversity of AMD is
greater, which can minimize the effect of malware sam-
ples belonging to the same family on the malware detec-
tion model. 

The imbalance in the number of malicious and benign apps
is derived from reality. We tried our best to simulate the situ-
ation when performing malware detection in the real world. 

For the malware familial classification task, we noticed
that the number of malware samples in different families
was very unbalanced. Some families have hundreds of sam-
ples (e.g., BaseBridge ), but some families have fewer than
10 samples (e.g., Ackposts ). To mitigate this problem, we first
sorted all malware families according to the number of sam-
ples and then selected families that contain sufficient sam-
ples to construct experimental datasets. The details of exper-
imental datasets are listed in Table 1 . For DB and AMD, we con-
structed four experimental datasets that contain 10, 20, 30,
40 families, respectively. For AMGP, we only constructed two
datasets that contain 10 and 20 families due to the limited
number of malware samples. 

4.2. Experimental setup 

4.2.1. Environment 
We used an Ubuntu 16.04 machine with Intel Core i7-8700k,
GeForce GTX 1080Ti and 32GB RAM to deploy GDroid. GPU
is used to accelerate the training process of the neural net-
work model. We implemented the proposed approaches using
Python with several packages: Androguard ( And, 2021 ), Ten-
sorFlow ( Google, 2021 ), Scikit-learn ( skl, 2021 ), and Matplotlib
( Mat, 2021 ). 

4.2.2. Dataset splitting 
The number of samples in the training set accounted for 70%
of the whole experimental dataset, while the validation set
and the test set accounted for 15%, respectively. 
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Table 2 – Descriptions of the metrics. 

Term Abbr Definition 

True Positive TP # of apps correctly classified as malicious 
True Negative TN # of apps correctly classified as benign 
False Positive FP # of apps mistakenly classified as malicious 
False Negative FN # of apps mistakenly classified as benign 
Precision P TP/(TP + FP) 
Recall R TP/(TP + FN) 
F-measure F 2TP/(2TP + FP+FN) 
Accuracy ACC (TP+TN)/(TP+TN+FP+FN) ×100% 

False Positive Rate FPR FP/(TN+FP) ×100% 

False Negative Rate FNR FN/(TP+FN) ×100% 
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.2.3. Hyper parameters 
he embedding size of API embeddings is 128. The stochastic 
radient descent optimizer was used to train the API embed- 
ings, and the learning rate is 1.0. The GCN model has two 

ayers. The number of units of the hidden layer is 500. The 
dam optimizer ( Kingma and Ba, 2015 ) is used to train the 
CN model, and the learning rate is 0.01. 

.2.4. Metrics 
able 2 lists the metrics used in this paper. For the malware de- 
ection task, we used Precision, Recall, F-measure, False Pos- 
tive Rate, and False Negative Rate to evaluate GDroid. Ideal 
nti-virus software should have high precision, low FPR and 

NR. We used Precision, Recall, F-measure to evaluate the 
odel performance for the malware familial task, just like 
ost existing studies. 

.3. Mining of API usage patterns 

e first mined the API usage patterns. It is an essential step for 
ubsequent experiments. Specifically, we extracted the API co- 
ccurrence feature from apps via static analysis. Each inter- 
al method corresponds to an API invocation sequence. Then 

e performed API embedding based on the API co-occurrence 
eature. The number of training steps is set to a maximum of 
en million until the loss function stabilizes. The embedding 
rocess is fast because of the shallow structure of the embed- 
ing network. It is a simple, fully connected neural network 
ontaining one hidden layer, so the back-propagation does not 
onsume much time. With the acceleration of GPU, the em- 
edding process took about several hours in our experiments.

Empirically, the APIs in the same class or package exhibit 
unctional relevance. They are usually invoked together. An 

xample is shown in Fig. 2 . Three APIs are invoked to achieve 
he functionality of checking network connection while two 
f them belong to the same package ( Landroid/net ). There- 
ore, their embeddings should be near to each other in the em- 
edding space. We exploited this observation to monitor the 
mbedding process. Concretely, we randomly selected 10,000 
PIs. While embedding, for each of them, we calculated the 

op-5 nearest APIs and counted the number of APIs that have 
he same class or package name as it. The results are shown 

n Fig. 6 . With the iteration of embedding, the total number of 
PIs that met the requirements increased and finally tended 
o be stable. It indicates that the API embedding approach ef- 
ectively captures the functional relevance among APIs. 

After embedding, we summarized the usage patterns 
ccording to the cosine distance metric among embeddings.
e list several security-relevant APIs with their top-5 near- 

st APIs in Table 3 . As expected, the APIs nearest to the
ecurity-relevant API are usually used with it. For exam- 
le, the APIs nearest to Ljava/io/FileWriter → flush 
re related to file operations. The APIs nearest to 
org/apache/http/client/HttpClient → execu-te 
re all about network request. And the APIs nearest to 
java/security/MessageDigest → update are related 

o message digest algorithm. 

.4. Android malware detection 

alware detection is essentially a binary classification prob- 
em, so there are two classes of app nodes in the heteroge- 
eous graph, benign and malicious. 

In our experiments, we used the sensitive APIs as key APIs.
or each of them, we summarized n nearest APIs in the em- 
edding space. We respectively set n to 5, 10, 20, extracting 
ulti-level API usage patterns to build graphs in the exper- 

ments. There are two types of API nodes in the heteroge- 
eous graph: sensitive APIs and some non-sensitive APIs with 

imilar usages as sensitive APIs. We used the invocation re- 
ationship between apps and these APIs and the APIs’ usage 
atterns to build the graph. The upper part of Table 4 lists 
he summary statistics of heterogeneous graphs under dif- 
erent n . In practice, we included all apps and APIs in the
raph for convenience of implementation because the iso- 
ated nodes did not affect the experimental results. The den- 
ity in Table 4 refers to the graph density. A simple undirected 

raph with p nodes and q edges has the graph density q 
1 
2 p(p−1) 

.

he graph density of the completed graph is 1. 
In order to verify the contribution of the API usage patterns,

e designed four Straightforward Practices (SP) for compari- 
on: 

• SP 1. Only using the invocation relationship between apps 
and sensitive APIs to construct graph. 

• SP 2. Only using the invocation relationship between apps 
and all APIs to construct the graph. 
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Fig. 6 – With the iteration of embedding, the number of APIs with the same class or package name as their corresponding 
APIs is increasing. 

Table 3 – arest APIs in the embedding space. 

Ljava/io/File → mkdir Ljava/io/FileWriter → flush 

Ljava/lang/Exception → toString Ljava/io/FileWriter → append 
Ljava/io/FileOutputStream → write Ljava/io/FileWriter → init 
Ljava/io/File → init Ljava/io/FileWriter → close 
Lorg/apache/http/client/HttpClient → execute Landroid/util/Log → getStackTraceString 
Ljava/text/NumberFormat → format Ljava/io/FileWriter → init 
Ljava/security/MessageDigest → update Landroid/location/Criteria → init 
Ljava/security/MessageDigest → digest Landroid/location/Criteria → setAccuracy 
Ljava/math/BigInteger → init Landroid/location/LocationManager → getBestProvider 
Ljava/security/MessageDigest → getInstance Landroid/location/Criteria → setCostAllowed 
Ljava/security/MessageDigest → reset Landroid/location/Location → init 
Ljava/math/BigInteger → toString Landroid/location/Criteria → setBearingRequired 
Ljava/lang/reflect/Method → getModifiers Lorg/apache/http/client/HttpClient → execute 
Ljava/lang/reflect/Method → getParameterTypes Lorg/apache/http/StatusLine → getStatusCode 
Ljava/lang/reflect/Modifier → isStatic Lorg/apache/http/HttpEntity → getContent 
Ljava/lang/reflect/Constructor → getParameterTypes Lorg/apache/http/HttpResponse → getEntity 
Ljava/lang/Class → getDeclaredMethods Lorg/apache/http/HttpResponse → getStatusLine 
Ljava/lang/Class → getDeclaredConstructors Lorg/apache/http/message/BasicNameValuePair → init 

Table 4 – Summary statistics of the heterogeneous graphs 
for the malware detection experiments. 

Graph # Nodes # Edges Density 

GDroid ( n = 5 ) 101,315 1,623,980 3.16E-04 
GDroid ( n = 10 ) 101,315 1,641,100 3.20E-04 
GDroid ( n = 20 ) 101,315 1,675,506 3.26E-04 
SP 1 101,315 160,6,871 3.13E-04 
SP 2 101,315 11,159,909 2.17E-03 
SP 3 101,315 1,704,671 3.32E-04 
SP 4 101,315 14,444,939 2.81E-03 

 

 

 

 

 

 

 

 

 

 

 

 

• SP 3. Using the invocation relationship between apps and
sensitive APIs and the co-occurrence relationship among
sensitive APIs to construct the graph. 
• SP 4. Using the invocation relationship between apps and
all APIs and the co-occurrence relationship among all APIs
to construct the graph. 

Co-occurrence refers to whether APIs are invoked by the
same method (i.e., co-occurrence in a method). The lower
part of Table 4 lists the summary statistics of heteroge-
neous graphs constructed by the straightforward practices. As
shown in Table 4 , the usage pattern-based practices, SP 1 and
SP 2 have relatively few edges. The SP 2 and SP 4 have much
more edges, which implies the training time is extended. 

4.4.1. Results 
The experimental results are shown in Table 5 . When setting n
to 10, GDroid achieved the best performance without too much
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Table 5 – The Performance of GDroid in Android Malware 
Detection. 

Scheme ACC P R F FPR FNR Time 

GDroid ( n = 5 ) 98.59 0.978 0.983 0.981 1.27 1.67 3.29 
GDroid ( n = 10 ) 98.99 0.989 0.983 0.986 0.63 1.67 3.40 
GDroid ( n = 20 ) 98.38 0.973 0.983 0.978 1.59 1.67 3.42 
SP 1 97.37 0.966 0.961 0.964 1.90 3.89 3.45 
SP 2 97.58 0.972 0.961 0.966 1.59 3.89 18.36 
SP 3 97.37 0.961 0.967 0.964 2.22 3.33 3.56 
SP 4 98.59 0.978 0.983 0.981 1.27 1.67 25.75 

ACC, FPR and FNR are presented in the form of percentages. 

Table 6 – Comparison of GDroid with other malware de- 
tection approaches. 

Method ACC P R F FPR FNR 

McLaughlin et al. (2017) 95.73 0.941 0.941 0.941 3.34 5.41 
Onwuzurike et al. (2019) 93.74 0.952 0.872 0.910 2.54 12.64 
Zhang et al. (2018) 96.67 0.967 0.967 0.967 1.90 3.26 
GDroid 98.99 0.989 0.983 0.986 0.63 1.67 
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Table 7 – The Performance of GDroid in Android Malware 
Familial Classification. 

Dataset ACC Precision Recall F-measure 

AMGP1 97.10 0.976 0.970 0.973 
AMGP2 96.88 0.974 0.931 0.939 
DB1 98.84 0.990 0.983 0.986 
DB2 99.15 0.995 0.984 0.989 
DB3 96.92 0.969 0.975 0.970 
DB4 95.85 0.957 0.932 0.935 
AMD1 99.00 0.990 0.990 0.990 
AMD2 95.45 0.958 0.956 0.956 
AMD3 95.28 0.947 0.951 0.945 
AMD4 95.34 0.933 0.919 0.921 
Avg. 96.98 0.969 0.959 0.960 
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ime consumption. It detected 98.99% of malware with a low 

PR ( < 1%) and FNR. 
As for SP 1 and SP 3, the training time consumption of them 

s similar to GDroid, while the performance is not as good as 
Droid. For the SP 2 and SP 4, the GCN model required much 

ore time for training without performance improvement. It 
ndicates that the API usage patterns contribute to the model 
erformance. 

Answer to RQ 1 and RQ 5: GDroid can effectively detect 98.99% of 
alware with low FPR ( < 1%) and FNR. The API usage patterns con- 

ribute to the model performance, which help the model reach higher 
erformance with less time for training. 

.4.2. Comparison 

e used three representative approaches as baselines for 
omparison. They achieved good performance on their 
atasets at the time. McLaughlin et al. (2017) extracted the 
pcode sequences and utilized the Convolutional Neural Net- 
ork (CNN) to automatically find appropriate features and 

erform classification. Onwuzurike et al. (2019) modeled the 
PI sequences as Markov chains, using the probabilities of 
tate transitioning to construct the feature vectors for apps.
hey also utilized machine learning algorithms for classifi- 
ation. Zhang et al. (2018) extracted the API invocations and 

sed the n -gram of package names as the features to construct 
he feature vectors. Then they utilized the learning-based al- 
orithms to perform binary classification. We emphasize that 
 Onwuzurike et al., 2019 ) and ( McLaughlin et al., 2017 ) are pub-
ished in the reputable venues and have influence in malware 
lassification. Zhang et al. (2018) is our previous research, so 
redibility is not a concern. In addition, open source is an im- 
ortant consideration because it guarantees the consistency 
f the method and avoids potential biased. The authors of 
nwuzurike et al. (2019) and McLaughlin et al. (2017) have 
pen sourced their code so that we can easily reproduce them 

n our dataset (i.e., GP-AMD). 
Table 6 lists the comparison results. As expected, GDroid 

urpassed the baselines in all metrics. It demonstrates the ef- 
ectiveness of our approaches. 

Answer to RQ 2: GDroid outperforms the existing approaches in 
he malware detection task. It achieves the highest accuracy and the 
owest FPR and FNR. 

.5. Android malware familial classification 

alware familial classification is a multi-class classification 

roblem so that there are multiple classes of app nodes. 
According to our investigations, the divide of malware fam- 

lies is based not only on malicious behaviors but also on nor- 
al functionalities. Therefore, we consider all APIs to model 

he family behaviors. According to the pre-experiments, we 
et n to 5 to achieve the best performance of GDroid. 

.5.1. Results 
able 7 lists the experimental results. GDroid achieved an av- 
rage accuracy of almost 97% on various datasets. As the num- 
er of families increasing, the accuracy remained above 95%.
t indicates that our approach effectively captures the differ- 
nces in API usage patterns among different malware families.

Answer to RQ 3: GDroid can classify malicious apps into their 
amilies with an average accuracy of almost 97%. As the number of 
amilies involved in experiments increases, GDroid maintains high 
erformance. 

.5.2. Comparison 

e select three machine learning-based approaches as base- 
ines for comparison. Each of them represents a typical prac- 
ice for malware classification. The first approach is based 

n the frequency of API invocation. It ignores the relevance 
mong APIs. The second approach is based on the n -gram of 
pcodes. It uses the frequency of the trigram feature to charac- 
erize apps. The third approach draws inspiration from com- 
uter vision. It first transforms the dex files into gray-scale 

mages (one byte corresponds to one pixel). Then it resizes the 
mages to the same size ( 224 × 224 ), converting the malware 
lassification into an image classification task. The idea of per- 
orming malware classification based on the gray-scale image 
lassification is popular in recent years ( Liu et al., 2020; Vasan 

t al., 2020; Yuan et al., 2020 ). Machine learning algorithms are 
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Table 8 – Comparison of GDroid with other malware fa- 
milial classification approaches on average performance. 

Method ACC Precision Recall F-measure 

GBDT + API 91.28 0.926 0.891 0.904 
GBDT + Opcode 90.70 0.919 0.884 0.897 
CNN + Gray Image 82.39 0.832 0.785 0.802 
GDroid 96.98 0.969 0.959 0.960 

For each method, the results presented in the above table are the 
average results on ten familial classification datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 – The performance of GDroid for familial classifi- 
cation on real-world data. 

# Families ACC Precision Recall F-measure 

10 97.40 0.972 0.975 0.973 
20 95.55 0.948 0.961 0.952 
30 95.13 0.912 0.916 0.913 
40 92.07 0.887 0.856 0.865 
Avg. 95.04 0.930 0.927 0.926 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

applied for classification. For the first and second approaches,
we applied Principal Component Analysis (PCA) to reduce the
dimensionality of feature vectors, and then we respectively
used Random Forests (RF), Support Vector Machines (SVM),
and Gradient Boosting Decision Tree (GBDT) algorithms to per-
form classification. For the second approach, we used a widely
used CNN model named AlexNet ( Krizhevsky et al., 2017 ) for
gray-image classification. 

The comparison experiments are based on all the famil-
ial classification datasets (AMGP1-2, DB1-4, and AMD1-4). We
compare the average performance of GDroid with the base-
lines. The results are listed in Table 8 . Since RF and SVM per-
formed worse than GBDT, we omitted the corresponding re-
sults. As expected, GDroid achieved the best performance in
all metrics. 

Answer to RQ 4: GDroid outperforms the baselines in malware
familial classification. 

5. Deployment 

We have demonstrated that GDroid can perform Android mal-
ware classification with high performance in the experimen-
tal environment. In this section, we discuss the deployment of
GDroid in real-world scenarios. 

The Graph Convolutional Network used by GDroid is inher-
ently transductive, which means that all nodes should be in-
cluded in the training stage (but the test samples are unla-
beled). It is originally designed to be learned with the pres-
ence of both training and test samples and does not natu-
rally generalize to unseen nodes. As a result, each inference
needs to retrain the model. When deploying GDroid, the trans-
ductive feature makes GDroid be applied best to the scenar-
ios where simultaneously inferring apps as many as possible,
rather than inferring few apps at a time and performing mul-
tiple inferences. Additionally, we emphasize that the old pa-
rameters of Android APIs can be reused so that the time for
retraining is much less than that of training from scratch. 

In our research, we cooperate with QI-ANXIN Technology
Research Institute ( QI-ANXIN, 2021 ), deploying GDroid in real-
world scenarios to evaluate its impact. Overall, there are about
10,000 malware samples captured in November 2020 and la-
beled by ensemble methods (including manual analysis and
automated dynamic analysis based on sandbox), which can
reflect the latest Android malware status. 

The results are shown in Table 9 . We emphasize that a
slight degradation of performance in real-world scenarios is
acceptable compared to the experimental environment be-
cause there is a gap between the experimental environment
and the real-world scenarios (especially the malware sam-
ples). Comparing the results in Table 9 (ACC: 95.04%) and
Table 7 (ACC: 96.98%), we can conclude that GDroid main-
tains satisfactory performance in real-world scenarios. Our
approaches can help to complete the goal of malware clas-
sification in the real world. 

6. Discussion 

We use the API usage patterns to model the relevance of APIs,
thereby facilitating the subsequent classification. In this sec-
tion, we discuss the reasonability of applying the API usage
patterns in malware detection and classification. 

We would like to take the ( Zhang et al., 2020 ) as evidence,
a study on enhancing malware classifiers against model ag-
ing. The key observation is that malware samples, during evo-
lution, often keep the same semantics but switch to a differ-
ent implementation (mainly alternate use of APIs with simi-
lar functionalities) so that the evolve malware can avoid be-
ing detected by existing classifiers. The authors mine the APIs
with similar usages from the official documents of Android
API and then use the functionally similar API to enhance mal-
ware classifiers against model aging. In our research, we also
mine the API usage patterns, summarizing the APIs with sim-
ilar usages to facilitate malware detection and classification.
They mine the API usage from the documents, while we adopt
a data-driven strategy that mining the usage patterns from the
real-world app samples. In our opinion, our practice is closer
to reality, and the results should be more reflective of the real-
world scenarios in principle. 

7. Conclusion 

This paper proposes a novel GCN-based approach for Android
malware detection and familial classification. We map apps
and Android APIs into a large heterogeneous graph, converting
the app classification into a node classification task. To model
the relevance among APIs, we present an embedding-based
approach to mine API usage patterns. 

We develop a prototype system named GDroid and con-
duct extensive experiments to evaluate its performance. Ex-
perimental results show that GDroid outperforms the exist-
ing approaches in the malware detection task and surpasses
the baselines in the malware familial classification task. We
also verify the contribution of API usage patterns to the im-
provement of model performance. Our work yields insights
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nto the utilization of API usage patterns for malware clas- 
ification and shows promising results for studying malware 
lassification via the graph neural network. 
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